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Outline

Two motivating examples:

Steady state data validation in mass action kinetics

Graphical model selection with hidden variables

Mathematical optimization

Taxonomy, features, techniques

Key desirable aspects: scalability and robustness

Convexity

Advantages, modeling power

Semidefinite programming

Validation / selection problems: our approach

Perspectives, limitations, and challenges
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Data consistency

Elementary reaction models for gene expression in yeast

d[TF ]

dt
= −KA,1 · [TF ] · [GENE] + KD,1 · [TF • GENE]

d[GENE]

dt
= −KA,1 · [TF ] · [GENE] + KD,1 · [TF • GENE]

d[TF • GENE]

dt
= KA,1 · [TF ] · [GENE] − KD,1 · [TF • GENE] −

−KA,2 · [TF • GENE] · [RNAPol] + KD,2 · [TF • GENE • RNAPol] +

+KTC · [TF • GENE • RNAPol]

Nonlinear dynamics

Microarray data of wildtype and mutants

Steady state + dynamic measurements

Extract as much information as possible

What parameter/rate values are consistent with measurements?

Joint work with L. Küpfer and U. Sauer (ETH Zürich)
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Graphical model identification

Graphical models are statistical models where

conditional independence is modelled by a graph

“Marriage”of probability and graph theory.

Very interesting theory and applications.

If edge (i, j) does not exist, then the random variables Xi and Xj are

independent, conditioned on all other variables.

Given samples of a collection of random variables, what is the“best”graph

that describes the system?

What if only we only have access to a subset of the relevant variables?

Joint work with V. Chandrasekaran and A. Willsky (MIT)
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Motivation

Different problems, that share common properties.

Can be expressed/approximated in crisp mathematical terms

Continuous variables, possibly also discrete

May include dynamical aspects

Provably difficult (NP-complete, or worse)

The techniques of mathematical optimization can be fruitfully applied to

many of these problems.

(other names: mathematical programming, optimization, etc.)
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Optimization is ubiquitous

Optimization is essential across many

engineering applications (e.g., signal processing,

control, routing, VLSI, machine learning,

mechanical design, revenue management, etc)

Often, defines what an“acceptable solution” is

Enables whole industries (e.g., airlines)

Demand for increasingly sophisticated mathematical programming methods:

From 1950s on: linear programming, nonlinear, global, convex,

quadratic, semidefinite, hyerbolic, etc.

Combinatorial, network, packing/covering, integer, submodular, etc.

Goal is to develop mathematical infrastructure and associated

computational methods for engineering and scientific applications.
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Mathematical Optimization

General formulation, that models questions in terms of

Decision variables: values under our control,“knobs”that we can change

Constraints: restrict the values the decision variables can take

Possibly, objective function(s), whose value we try to optimize

“Typical” form:

minimize f0(x1, . . . , xn) s.t. fi(x1, . . . , xn) ≤ 0 i = 1, . . . ,m

The nature of variables xi and constraints fi can be quite diverse:

Variables may represent individual values, or sets, or functions, . . .

Constraints may be deterministic, stochastic, logical, . . .
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Linear programming (LP)

A well-known and important case, where both the objective and constraints

are affine functions

minimize cTx s.t. Ax ≤ b

Well-developed, mature theory

Algebraic and geometry aspects are well understood

Many applications (e.g., flux balance analysis)

Efficiently solvable, both combinatorial (simplex) and continuous

(interior-point) algorithms
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Many other kinds...

Many classes of optimization techniques have been developed, and are of

interest in this context:

Linear network optimization: specialization of LP to problems with

graph structure (shortest path, transportation, transshipment, etc).

Integer programming: decision variables are allowed only integer, or 0-1

values.

Nonlinear programming: objective and constraints are nonlinear (usually

differentiable) functions.

Combinatorial optimization: decision variables have nice combinatorial

structures (e.g., trees, permutations, matchings)

Not a strict separation, often merge...
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Methodological issues and caveats

Optimization formulations are great (whenever they work), but their

successful application is not always straightforward.

An optimization approach is only as good as its formulation. Even if

mathematically correct, could be nearly useless.

Often many equivalent formulations exist, that differ substantially in

efficiency and solvability. (Moderate) expertise is needed to choose

appropriate descriptions.

Optimization methods only know what they are told. All relevant

features of the desired solution must be part of the model, either

implicitly or explicitly (e.g., optimal control, learning)

Let’s see this a bit more detail...
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Example: Global optimization

Consider unconstrained optimization minx1,...,xn
F (x1, . . . , xn).

Typically, extremely difficult, many local minima.

Many questions can be posed in these terms (e.g., protein folding).

Very flexible formulation (everything is an

optimization problem!)

But, hard to do anything substantial with it

Complexity-theoretic obstacles (P vs. NP)

Heuristics can work well, difficult to assess

performance
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Just because we can write an optimization problem, does not mean we can

solve it...
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Sensitivity and Robustness

Every model we write is only a coarse description of reality.

Conclusions about the model may or may not correspond to actual behavior.

Classically, this is not made too explicit.

Validity of models often informal, implicit.

These considerations sometimes incorporated through sensitivity

analysis

Good step, but often incomplete (parametric assumptions, only small

perturbations, etc.).
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Sensitivity and Robustness (II)

More recently, better techniques to explicit account of difference between

“real world”and“model”(robust control, robust optimization). Ex:

Constraints and/or objective known only approximately

“implemented”solution different from computed one

Different ways of assessing uncertainty (e.g., deterministic, stochastic,

parametric, nonparametric, etc.)

In optimization: stochastic programming, robust optimization (e.g.,

Ben-Tal/El Ghaoui/Nemirosvski, etc.
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Convex optimization

Particularly nice class of optimization problems: Convex Optimization

Objective function is convex

Feasible set is convex.

Many advantages:

Modelling flexibility

Tractability and scalability

Sensitivity analysis relatively simple

Can naturally incorporate robustness considerations

Key mathematical reason: duality theory.

Optimization and applications in biology – p. 14/24



Duality

Consequence of the dual nature of convex sets: points and hyperplanes.

In the case of LP:

min cTx s.t.







Ax = b

x ≥ 0
(P)

Every LP problem has a corresponding dual problem, which in this case is:

max bT y s.t. c−AT y ≥ 0. (D)

Weak duality: For any feasible solutions x, y of (P) and (D):

cTx− bT y = xT c− (Ax)T y = xT (c−AT y) ≥ 0.

In other words, from any feasible dual solution we can obtain a lower bound

on the primal.

Conversely, primal feasible solutions give upper bounds on the dual.
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Semidefinite programming

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn
+

PSD cone

O

L

The intersection of an affine subspace L and the cone of positive

semidefinite matrices.

Lots of applications. A true“revolution” in computational methods for

engineering applications

Originated in control theory (Boyd et al., etc) and combinatorial

optimization (e.g., Lovász). Nowadays, applied everywhere.

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Semidefinite programming (II)

An SDP problem in standard primal form is written as:

minimize C •X

subject to Ai •X = bi, i = 1, . . . ,m (1)

X � 0,

where C,Ai are n× n symmetric matrices, and X • Y := Tr(XY ).

Set of feasible solutions is always convex.

Weak duality always holds:

C •X − bTy = (C −

m
∑

i=1

Aiyi) •X ≥ 0.

Algorithms to solve SDP (interior-point) are generalizations of those for LP.

Other methods also exist, more suitable for truly large-scale problems.
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What about nonconvexity?

What happens when problems/formulations are not convex?

Several alternatives:

Suitable local algorithms exist, but hard to assess global performance

properties. Heuristics also used, sometimes (often?) adequate.

Convexify! Replace/relax with an associated convex problem,

sometimes with suboptimality/performance guarantees. Very powerful,

particularly if reformulated problem can be solved efficiently.

Combination of techniques, e.g., convex relaxations + branch/bound.

Often, yields best available methods (e.g., integer programming).
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Data consistency

Elementary reaction models for gene expression in yeast

d[TF ]

dt
= −KA,1 · [TF ] · [GENE] + KD,1 · [TF • GENE]

d[GENE]

dt
= −KA,1 · [TF ] · [GENE] + KD,1 · [TF • GENE]

d[TF • GENE]

dt
= KA,1 · [TF ] · [GENE] − KD,1 · [TF • GENE] −

−KA,2 · [TF • GENE] · [RNAPol] + KD,2 · [TF • GENE • RNAPol] +

+KTC · [TF • GENE • RNAPol]

Nonlinear dynamics

Microarray data of wildtype and mutants

Steady state + dynamic measurements

Extract as much information as possible

What parameter/rate values are consistent with measurements?

Joint work with L. Küpfer and U. Sauer (ETH Zürich)
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Steady-state data consistency

(Küpfer-Sauer-P., BMC Bioinformatics 12:8, 2007)

Want to determine parameter/rate values that are inconsistent with data.

Equilibrium conditions give a system of quadratic equations

Steady-state measurements give linear constraints

After homogenization, can rewrite as

xTQix = 0, Ax ≥ 0.

Sufficient condition for infeasibility (weak duality):

∑

i

λiQi +ATNA � 0, N ≥ 0.

Can find suitable λi, N by solving a semidefinite program!
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From singletons to sets

What if we want to invalidate whole sets of parameters at a time?

Can adapt the techniques, to provide boxes of invalid parameters.

Key idea: assume we want to show that

A0 +

n
∑

i=1

δiAi � 0, for all |δi| ≤ 1.

A sufficient condition: there exist matrices Wi, such that

A0 =

n
∑

i=1

Wi,







Wi + Ai � 0

Wi − Ai � 0
, i = 1, . . . , n.
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Graphical model identification

Recall notion of conditional independence: random variables X and Y are

independent conditioned on Z if P (X |Z)P (Y |Z) = P (X, Y |Z).

A Gaussian model whose conditional independence prop-

erties are given by a graph.

The covariance Σ−1 is sparse.

No longer true if the model has hidden variables.

But, it is the sum of a sparse and a low-rank matrix:

K̂o = Σ−1
o = Ko −Ko,hK

−1

h Kh,o
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Optimization formulation

Determine the structure of a statistical model with hidden variables.

Simultaneously find the graph (sparse) and the hidden variables (low-rank).

Consider the sample covariance

Σn
O =

1

n

n
∑

i=1

Xi
O(X

i
O)

T

Proposal: Optimize regularized log-likelihood (convex)

(Ŝn, L̂n) := argmin
S,L

Tr(S − L)Σn
O − log det(S − L) + λn[γ||S||1 + TrL]

s.t. S − L � 0, L � 0.

Under suitable identifiability conditions, and parameters, the estimate given

by this convex program yields the correct sign and support for Sn, and the

correct rank for Ln. Can obtain explicit sample complexity rates.
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Summary

Optimization techniques have many applications in bioengineering

Requires careful thought at modeling time, no“black box” (yet!?)

Methods have enabled many new applications

Mathematical structure must be exploited for reliability and efficiency
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