Hybrid Cybernetic Modelling for studying the behaviour of metabolic systems towards the variation of its environment

Lalit S. Khot¹ Prof. Arvind M. Lali¹ Dr. Hyun-Seob Song² Prof. Doraiswami Ramkrishna²

DBT-ICT-Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India¹. School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA².

Satellite Conference of ICM 2010

on

APPLICATION OF CONTROL THEORY AND OPTIMIZATION TECHNIQUES IN BIOCHEMICAL PATHWAYS

HICC, Hyderabad, India 16~18 August, 2010

Outline of the presentation

- Cybernetic approach
- Cybernetic control laws
- Incorporation of cybernetic control laws
- Transitions in Cybernetic Models
- Pathway Modeling
- Hybrid Cybernetic Model
 - Model formulation
 - Case study of *Clostridium acetobutylicum*
- Conclusion

Introduction to Cybernetic Approach

- This approach differs from kinetic modelling efforts by incorporation of the optimal nature of microbial regulatory processes
- "Cybernetic" is derived from the Greek " $\chi v \beta \epsilon \rho \tau \eta \sigma$ " which means steersman approach
- Microorganisms are optimal control strategists, use their internal regulatory machinery to "steer" themselves toward maximization of performance index (goal) while interacting with the environment
- Microbes have acquired the capability to control their regulatory processes to optimize their growth pattern
- The complex regulatory processes are reflected in terms of the cell's accomplishment of its optimal control objectives
- Microbial response in multiple substrate environments is a judicious investment of cellular resources in synthesizing different key proteins according to an optimal regulatory strategy

Cybernetic view of Cell

Cells can be viewed as a combination of machineries

• Adaptive machinery

Kinetic Model

For Multiple Substrate Growth

Microbial growth on substrate (S_i) :

The synthesis of enzyme (E_i) : $B \rightarrow E_i + B'$

> The rate equation for biomass formation is : $r_i = \frac{\mu_i e_i s_i B}{K_i + s_i}$

 \triangleright The rate equation for enzyme synthesis :

$$r_{Ei} = \frac{\alpha_i s_i B}{K_i + s_i}$$

- B ~ biomass;
- **E** ~ enzyme;
- **K** ~ Michaelis constant (g/L);
- S substrate;
- α enzyme synthesis rate constant;
- Y ~ yield coefficient;
- \mathbf{r} rate of synthesis (hr⁻¹); μ specific growth rate (hr⁻¹);

Kompala et. al., (1986)

$$B + S_i \xrightarrow{E_i} (1 + Y_i)B + \dots$$

$$B + S \rightarrow (1 + Y)B + \dots$$

Regulatory variables

When multiple substrates are present, the cellular regulatory processes of **repression/induction** and **inhibition/activation** affects the growth

Hence, the actual rate of synthesis of enzyme :

 u_i is fractional allocation of critical resources for the synthesis of E_i > It incorporates regulatory action of repression and induction

& the total growth rate :

 v_i is fractional allocation of critical resources for the activity of E_i

> It incorporates regulatory action of inhibition and activation

6

$u_i \longrightarrow Matching Law$

$v_i \implies$ Proportional Law

Matching Law

The regulatory action of repression/induction is incorporated by variable u

According to the law of diminishing marginal utility :

> Maximum for Total Returns = $\sum_{i} p_i(r_i)$ S.T. : Total Resources $\sum_{i} r_i = r$ can be obtained when,

$$\frac{dp_1}{dr_1} = \frac{dp_2}{dr_2} = \dots = \frac{dp_n}{dr_n}$$

Hence, Fractional Allocation (u_i) :

$$(0 \le u_i \le 1) \& (\sum u_i = 1)$$

Fractional allocation must match fractional return

Proportional Law

Multiple substrate environment causes inhibition/activation of enzymes

The control action of inhibition/activation governed by v_i is proportional to maximum specific growth rate r_i

$$v_i = \lambda r_i$$

This proportionality combined with constraints determine the bound on λ

$$0 \le v_i \le 1 \implies 0 \le \lambda \le \frac{1}{r_i} \text{ or } \lambda \le \frac{1}{\max_j(r_j)}$$

> The actual growth rate
$$\sum_{i} r_i v_i = \lambda \sum_{i} r_i^2 \le \frac{1}{\max_{j} (r_j)} \sum_{j} r_j^2$$

> Therefore, for maximum of growth rate $\lambda = \frac{1}{\max_{i}(r_{i})}$

 $v_i = \frac{r_i}{\max_j(r_j)}$

and

Incorporation of cybernetic variables

Diauxic Growth

• Diauxic growth of *Klebsiella oxytoca* on mixed carbon source of Glucose and Arabinose

Cybernetic Models

Modeling of Metabolic Systems

13

Representation of Metabolic Systems

Metabolism can be represented in the algebraic form :

S – stoichiometric matrix r – flux vector of reactants LHS – flux exchange vector

- s substrate
- a, b & c intermediate metabolites
- $p_1, p_2 \& p_3$ extracellular products

[w]	d[w]/dt
S	- r ₁
a	r ₁ - r ₂
b	$r_2 + r_4 - r_3 - r_5$
с	r ₅ - r ₆ - r ₇
p ₁	r ₃ - r ₄
p ₂	r ₆
p ₃	r ₇

Hybrid Cybernetic Model (HCM)

- It is the combination of FBA and classical lumped cybernetic model
- HCM considers the metabolic map of organism for the model building
- Provides the dynamic framework for modeling metabolic systems
- It requires only the measurement of extracellular component fluxes to estimate the coupled intracellular fluxes
- HCM considers the decomposition of network into several elementary modes
- HCM considers the pathway as convex combination of elementary modes, which can obtain by METATOOL 5.1

Hybrid Cybernetic Model (HCM)

Assumptions:

- Organism adapts itself to extracellular environment which continuously changes with time
- Quasy-steady state for intracellular metabolites
- Extracellular metabolites are considered as dynamic
- Slow dynamic intracellular metabolite are considered as extracellular
- Response of an organism is summation of response obtained through different elementary modes

Model Formulation

HCM of Clostridium acetobutylicum

- *Clostridium acetobutylicum* is used in ABE fermentation
- Main products are acetic acid, butyric acid, acetone, butanol, and ethanol
- Its growth is combination of two phases; namely acidogenic and solventogenic
 - Acidogenic acetic acid and butyric acid
 - Solventogenic acetone, butanol and ethanol
- Dynamic data of these 5 products, glucose uptake and biomass formed are considered for model building and parameter estimation

1. Clostridium acetobutylicum pathway

2. Clostridium acetobutylicum pathway reactions

From KEGG (KYOTO ENCYCLOPEDIA OF GENES AND GENOMES) Pathway

Database

Sr.	Glycolysis	Sr.	Pentose Phosphate Pathway	Sr	Pyruvate Metabolism	Sr.	Citric Acid Cycle
R1	GLC + PEP = G6P + PYR	R8	G6P = Ru5P + CO2 + 2 NADPH	R14	PYR + 2 FDO = AcCoA + 2 FDR + CO2	R22	OACT + AcCoA = CTR
R2f	G6P = F6P	R9f	Ru5P = X5P	R15	CO2 = CO2x	R23f	CTR = ICTR
R2b	F6P = G6P	R9b	X5P = Ru5P	R16f	2 FDO + NADPH = 2 FDR	R23b	ICTR = CTR
R3	F6P + ATP = F16DP	R10f	Ru5P = R5P	R16b	2 FDR = 2 FDO + NADPH	R24	ICTR = AKG + NADH + CO2
R4f	F16DP = 2 GAP	R10b	R5P = Ru5P	R17f	2 FDO + NADH = 2 FDR	R25	AKG = SCNCoA + NADH + CO2
R4b	2 GAP = F16DP	R11f	X5P + R5P = GAP + S7P	R17b	2 FDR = 2 FDO + NADH	R26f	SCNCoA = SCN + ATP
R5f	GAP = G13DP + NADH	R11b	GAP + S7P = X5P + R5P	R18	2 FDR = 2 FDO + H2	R26b	SCN + ATP = SCNCoA
R5b	G13DP + NADH = GAP	R12f	S7P + GAP = F6P + E4P	R19	H2 = H2x	R27f	FUM + FADH2 = SCN
R6f	G13DP = PEP + ATP	R12b	F6P + E4P = S7P + GAP	R20f	PYR + NADH = LAC	R27b	SCN = FUM + FADH2
R6b	PEP + ATP = G13DP	R13f	X5P + E4P = F6P + GAP	R20b	LAC = PYR + NADH	R28f	FUM = MAL
R7	PEP = PYR + ATP	R13b	F6P + GAP = X5P + E4P	R21	LAC = LACx	R28b	MAL = FUM
						R29f	MAL = OACT + NADH

Sr.	Butanoate Matabolism
R30f	2 AcCoA = AcAcCoA
R30b	AcAcCoA = 2 AcCoA
R31f	AcAcCoA + NADPH = HCoA
R31b	HCoA = AcAcCoA + NADPH
R32f	HCoA = CCoA
R32b	CCoA = HCoA
R33f	CCoA + NADH = BCoA
R33b	BCoA = CCoA + NADH

R29b

OACT + NADH = MAL

Sr.	Butanoate Matabolism
R30f	2 AcCoA = AcAcCoA
R30b	AcAcCoA = 2 AcCoA
R31f	AcAcCoA + NADPH = HCoA
R31b	HCoA = AcAcCoA + NADPH
R32f	HCoA = CCoA
R32b	CCoA = HCoA
R33f	CCOA + NADH = BCOA
R33b	BCoA = CCoA + NADH

Sr.	Acid Phase Reactions
R34f	AcCoA = ACP
R34b	ACP = AcCoA
R35f	ACP = ACT + ATP
R35b	ACT + ATP = ACP
R36f	ACT = ACTx
R36b	ACTx = ACT
R37f	BCoA = BTP
R37b	BTP = BCoA
R38f	BTP = BTR + ATP
R38b	BTR + ATP = BTP
R39f	BTR = BTRx
R39b	BTRx = BTR

Sr	Maintenance/Transhydrogena tion/Oxidative Phosphorilation				
R56	ATP = MAINT				
R57f	NADPH = NADH				
R57b	NADH = NADPH				
R58	NADH = FADH2				
R59	NADH = 2 ATP				
R60	FADH2 = ATP				

Sr.	Solvent Phase Reactions
R40f	ACD = AcCoA + NADH
R40b	AcCoA + NADH = ACD
R41f	ACD + NADH = ETH
R41b	ETH = ACD + NADH
R42	ETH = ETHx
R43f	AcAcCoA = AcACT
R43b	AcACT = AcAcCoA
R44	AcACT = ACN + ATP
R45	ACN = ACNx
R46	BCoA + NADH = BTD
R47f	BTD + NADPH = BUT
R47b	BUT = BTD + NADPH
R48	BUT = BUTx
R49	ACT + AcAcCoA = AcACT + AcCoA
R50	BTR + AcAcCoA = BCoA + AcACT

Sr.	Granulose Accumulation
R51f	G6P = G1P
R51b	G1P = G6P
R52	G1P + ATP = ADPG
R53	ADPG = GRN
R54	GRN = G1P

Sr.	Anapleurotic Reactions
R61	PEP + CO2 = OACT
R62	PYR + ATP = OACT

Sr.	
R63	NH3x = NH3

Biomass Formation

0.20 G6P + 0.81 R5P + 0.356 E4P + 2.29 PEP + 2.95 PYR + 2.24 AcCoA + 1.12 AKG + 1.83 OACT + 40.06 ATP + 12.69 NADH + 10.09 NH3 = BIOM + 0.30 CO2

3. Decomposition of network into EFMs

- Elementary Flux Modes are a set of nondecomposable pathways consisting of a minimal set of reactions that function in steady state
- Using METATOOL 5.1
 - Kamp A. and Schuster S.

(Department of Bioinformatics, Friedrich-Schiller-University, Jena, Germany)

- Number of total EFMs = 30091
- Number of Glucose consuming EFMs = 19715

4. Reduction of set of EFMs

Song et. al., (2009)

Fermentation profile of *Clostridium acetobutylicum* ATCC 4259

Kim et al. 1984

Selection of M_{act} based on experimental yield data

• Phase I

Extracellular products	Biomass	Acetic acid	Butyric acid	
Y _{Model}	0.0250	0.3580	0.3900	
Y _{Expt}	0.0250	0.3580	0.3900	

• Phase II

Extracellular products	Biomass	Acetic acid	Butyric acid	Ethanol	Acetone	Butanol
Y _{Model}	0.0142	0.3655	0.3199	0.0729	0.0080	0.1169
Y _{Expt}	0.0150	0.3940	0.3940	0.0750	0.0080	0.1260

• Phase III

Extracellular products	Biomass	Acetic acid	Butyric acid	Ethanol	Acetone	Butanol	
Y _{Model}	0.0050	-0.1843	-0.3028	0.3398	0.0798	0.8405	
Y _{Expt}	0.0050	-0.1800	-0.2800	0.3800	0.0800	0.8940	

Reduced EFMs

Phase	$\mathbf{M}_{\mathbf{mas}}$	$\mathbf{M}_{\mathbf{y}}$	\mathbf{M}_{99}	M _{act}	M _{act}
Ι	2127	6	6	4	
II	6181	47	28	6	15
III	18529	113	47	5	

Group	EFM	Net Reactions
	2	GLC = BTR
GLC	3	GLC = 2 ACT
	4	GLC = 0.1080 BIOM + 0.5120 ACT
	5	GLC + 35 ACT = 18 ACN
GLC + ACT	6	GLC + 24 ACT = 10 BTR
	10	GLC + 15 ACT = 7 BTR
	7	GLC = 10 BTR + 9BUT
	8	GLC + 4 BTR = 6 ETH + 2 ACN
GLC + BTR	9	GLC + 1.8664 BTR = 0.1920 BIOM + 3.0876 ACT
	11	GLC + 2 BTR = 2 ACN + BUT
	12	GLC + 2 BTR = 2 ETH + 2 CAN
	13	GLC + BTR = 2 ACT + BUT
GLC + ACT + BTR	14	GLC + 15.4229 ACT + 0.3245 BTR = 0.1920 BIOM +7.7134 ACN

MODES	1	2	3	4	5	6	7	8	9	10	11	12	13	14
GUI	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
RIOM		0	0	0 1080	0	0	0	0	0 1920	0	0	0	0	0 1920
		0	2	0.5120	25	24	0	0	3.0876	15	0	0	2	15 4220
רע ו		1	2	0.5120	-55	-2 4	10	0	1 8664	-13	0	0 0	2	0 2245
		1	0	0	0	0	-10	-4	-1.8004	1	-2	-2	-1	-0.3243
		0	0	0	10	0	0	0	0	0	0	2	0	0
ACN	0	U	0	0	18	U	0	2	0	U	2	2	0	1./134
BUT	0	0	0	0	0	0	9	0	0	0	1	0	1	0

Z =

5. Model Building

• Metabolism in the algebraic form : Sr = w (1)

• The vector of extracellular variables : $x = \begin{bmatrix} s \\ p \\ c \end{bmatrix}$ (2)

- The intracellular variables are represented by vector **m**
- The dynamic model then can be represented by,

$$Sr = \begin{bmatrix} \frac{1}{c} \frac{dx}{dt} \\ \frac{dm}{dt} \end{bmatrix}$$
(3)

• Applying pseudo-steady state hypothesis on internal metabolites,

$$\frac{dm}{dt} = 0 \tag{4}$$

Kim et.al.,(2008)

• So, the dynamic model of interest reduces to :

$$S_x r = \frac{1}{c} \frac{dx}{dt}$$
(5)

where, S_x is the stoichiometric matrix of extracellular fluxes

• The reaction rate vector is expressed in terms of elementary mode decomposition as :

$$\frac{1}{c}\frac{dx}{dt} = S_{x}r$$

$$r = Zr_{M} = \begin{bmatrix} z_{1} & z_{2} & \dots & z_{n} \end{bmatrix} \begin{bmatrix} r_{M_{1}} \\ r_{M_{2}} \\ \vdots \\ r_{M_{r}} \end{bmatrix}$$
(6)

• The differential equation for enzymes,

$$\frac{de_{M_i}}{dt} = \alpha + r_{E_i} u_i - (\beta + r_G) e_{M_i}$$
(7)

• Growth rates through all modes,

$$r_G = \sum_{i=1}^{n_z} Z_{i,n_f} v_i r_{M_i}$$
(8)

• where specific uptake rate (r_M) of each mode and the enzyme synthesis rate (r_E) is given by,

$$r_{M_i} = k_i^{\max} e_i v_i \frac{S_1}{K_i + S_1}$$
 $r_{E_i} = k_E u_i \frac{S_1}{K_i + S_1}$ $i = 1, 2, ..., n_z - 1$
(9 & 10)

 k^{max} ~ maximum uptake rate n_z ~ number of elementary modes

Model Equations

• Fluxes of extracellular species:

$$\frac{dx}{dt} = S_x Z r_M c$$

• Uptake rate:

Modes	Substrate uptake rates	
1, 2, 3 & 4	$r_{M,i} = v_i e_i k_i^{max} \frac{x_{GLC}}{K_G + x_{GLC}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right]$	≻ GLC
5, 6 & 10	$r_{M,i} = v_i e_i k_i^{max} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{ACT}}{K_A + x_{ACT}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right]$	≻ GLC + ACT
7, 8, 9, 11, 12 & 13	$r_{M,i} = v_i e_i k_i^{max} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{BTR}}{K_B + x_{BTR}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right]$	\succ GLC + BTR
14	$r_{M,i} = v_i e_i k_i^{max} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{ACT}}{K_A + x_{ACT}} \frac{x_{BTR}}{K_B + x_{BTR}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right]$	$\succ GLC + ACT + BTR$

Model Equations

• Enzyme synthesis rates:

Modes	Enzyme synthesis rates
1, 2, 3 & 4	$\frac{de_i}{dt} = \alpha_i + u_i k_{E,i} \frac{x_{GLC}}{K_G + x_{GLC}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right] - (\beta_i + \mu) e_i$
5, 6 & 10	$\frac{de_i}{dt} = \alpha_i + u_i k_{B,i} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{ACT}}{K_A + x_{ACT}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right] - (\beta_i + \mu) e_i$
7, 8, 9, 11, 12 & 13	$\frac{de_i}{dt} = \alpha_i + u_i k_{E,i} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{BTR}}{K_B + x_{BTR}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right] - (\beta_i + \mu)e_i$
14	$\frac{de_i}{dt} = \alpha_i + u_i k_{B,i} \frac{x_{GLC}}{K_G + x_{GLC}} \frac{x_{ACT}}{K_A + x_{ACT}} \frac{x_{BTR}}{K_B + x_{BTR}} \left[1 - \left(\frac{x_{BUT,i}}{x_{BUT,m}}\right)^n \right] - (\beta_i + \mu)e_i$

Metabolites profile

Metabolites profile of *Clostridium acetobutylicum* ATCC 4259

Cybernetic variable (u)

Cybernetic variable (u) of each elementary flux mode

Cybernetic variable v

Cybernetic variable (v) of each elementary flux mode

Fluxes through metabolic pathway

Fluxes of metabolic pathway at different time intervals

Conclusion

- Cybernetic modeling framework best describes the control action of regulatory processes
- The dynamic framework resulting from cybernetic models have been shown to describe dynamic data on concentrations of biomass, substrate and extracellular variables
- Metabolic pathway of *Clostridium acetobutylicum* is modeled from limited set of data
- Hybrid Cybernetic Modeling reduces the burden of parameter estimation by reducing the number of elementary modes, while describing the metabolic network