

Perfect Adaptation and Integral Feedback in E. coli

- Perfect adaptation
- Hence Integral Feedback

Block Diagram Representation

R. sphaeroides

Feedback Interconnection

- Which feedback configuration is correct?
- Created four models with different feedback connectivities, each reproducing wild type data, then assessed their performance.
- Undertaken experiments to invalidate models.

Four Possible Feedback Interconnections
Models are initially fitted to wild-type ligand response data

From model invalidation procedure, only one model survives.

- 16 nonlinear ODEs are used to describe this system
- Uncertainties in most parameters.
- What can we now say about this system?
- How can we evaluate its stability, performance or understand its properties?

- Iterate to invalidate models and create new hypotheses.
- New models reproduce all available data.
- New experiments are designed and undertaken in the lab.
- Hope is that the new data can be used to invalidate some models.
- We have actually used this method in the laboratory.

BMC Systems Biology 2009, 3:25
BMC Bioinformatics 2009, 10:132 BMC Systems Biology 2009, 3:103
BMC Systems Biology 2010, 4:38

- Dynamical system model:

$$
\begin{array}{lll}
\dot{x}=f(x, u, \theta) & \text { or } & x_{k+1}=f\left(x_{k}, u_{k}, \theta\right) \\
y=h(x) & & y_{k}=h\left(x_{k}\right)
\end{array}
$$

- State-space/Input Space/Parameter Space:

$$
x \in X \subseteq \mathbb{R}^{n_{x}}, \quad u \in U \subseteq \mathbb{R}^{n_{u}}, \quad \theta \in \Theta \subseteq \mathbb{R}^{n_{\theta}}, \quad y \in \mathbb{R}^{n_{y}}
$$

- All functions are assumed to be sufficiently smooth.
- Model has been proposed a-priori but can be uncertain or under the influence of disturbances/inputs.
- Interested in analysis questions.

Questions of Interest

Is the system robustly performing well?

- Stability/Robust Stability of the equilibrium.

Assume: $u=0, f\left(x^{*}, 0, \theta\right)=0$, is x^{*} stable/as.stable?

- Performance/Robust Performance

Is some performance metric guaranteed?

- Safety/Robust Safety

Does dynamical system ever evolve into unsafe regions?

- Eventuality/Robust Eventuality

Does it visit a particular set of states?

Analysis in Dynamical Systems

Lyapunov:

$$
\dot{x}=f(x), f(0)=0, f \text { Lipschitz, }
$$

$$
x \in X \subseteq \mathbb{R}^{n_{x}}, 0 \in X
$$

If $\exists V: X \rightarrow R$ cont. differentiable s.t.
$V(0)=0$, and $V(x)>0$ in $X \backslash\{0\}$
$-\dot{V}(x)=-\frac{\partial V(x)}{\partial x} f(x)>0$ in $x \backslash\{0\}$
then $x=0$ is asymptotically stable.

Positive Polynomials and Sum of Squares

$p(x)$ is Sum of Squares $\Rightarrow p(x)$ is positive semi-definite
Shor:

$$
p(x)=\sum_{i=1}^{m} f_{i}^{2}(x) \underset{\nless}{\Rightarrow} p(x) \geq 0
$$

Worst-case polynomial \quad NP-hard when $\operatorname{deg}(p) \geq 4$
time complexity

Can be reduced to a semidefinite programme (SDP) (Parrilo), which can be setup and solved using SOSTOOLS: www.eng.ox.ac.uk/control/sostools

Lyapunov: For $\dot{x}=f(x)$, with $f(0)=0$, find V such that

$$
\begin{aligned}
V(x) & >0 \\
-\dot{V}(x)=-\frac{\partial V}{\partial x} f(x) & >0
\end{aligned}
$$

Then $x=0$ is asymptotically stable.
For $\dot{x}=f(x)$, with $f(0)=0$, find $V, \varphi(x)>0, \psi(x)>0$ such that $V(x)-\varphi(x)$ is SOS

$$
-\frac{\partial V}{\partial x} f(x)-\psi(x) \text { is SOS }
$$

Then $x=0$ is asymptotically stable.

$$
\varphi(x)=\sum_{i=1}^{n} \sum_{j=1}^{\operatorname{deg}(\varphi(x)) / 2} c_{i j} x_{i}^{2 j}, \quad c_{i j} \geq 0, \quad \sum_{j=1}^{\operatorname{deg}(\varphi(x)) / 2} c_{i j} \geq \gamma>0 \forall i
$$

Papachristodoulou, Prajna CDC02

How to Construct Polynomial Lyapunov Functions

$$
\begin{gathered}
\dot{x}=f(x), f(0)=0 \\
D=\left\{x \in R^{n} \mid a(x) \triangleq\|x\|_{2}^{2}-\gamma \leq 0\right\}
\end{gathered}
$$

Assume for now that f is polynomial and look for V polynomial.
Given $\dot{x}=f(x)$ with $f(0)=0$ and $a(x) \leq 0$, find a polynomial $V(x)$ of order ≥ 2, positive definite polynomials $\varphi(x), \psi(x)$ and $p(x) \geq 0$ such that

$$
V(x)-\varphi(x) \geq 0 \Rightarrow V(x) \geq \varphi(x)>0
$$

$$
-\frac{\partial V(x)}{\partial x} f(x)+p(x) a(x)-\psi(x) \geq 0 \Rightarrow-\dot{V}(x) \geq \psi(x)>0 \text { on } D
$$

Then $x=0$ is asymptotically stable and V is a Lyapunov function.

How to Construct Polynomial Lyapunov Functions

$$
\begin{gather*}
\dot{x}=f(x), f(0)=0 \\
D=\left\{x \in R^{n} \mid a(x) \triangleq\|x\|_{2}^{2}-\gamma \leq 0\right\} \tag{5}
\end{gather*}
$$

Assume for now that f is polynomial and look for V polynomial.
Given $\dot{x}=f(x)$ with $f(0)=0$ and $a(x) \leq 0$, find a polynomial $V(x)$ of order ≥ 2, positive definite polynomials $\varphi(x), \psi(x)$ and $p(x)$ SOS

$$
\text { such that } \quad V(x)-\varphi(x) \text { is SOS }
$$

$$
-\frac{\partial V(x)}{\partial x} f(x)+p(x) a(x)-\psi(x) \text { is SOS }
$$

Then $x=0$ is asymptotically stable and V is a Lyapunov function.

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2} \\
& \dot{x}_{2}=x_{1}-\left(1-x_{1}^{2}\right) x_{2}
\end{aligned}
$$

Papachristodoulou, 2005

From Systems Theory:

- Robust Stability/Performance analysis for nonlinear systems;
- Analysis of hybrid/switched, time-delay and PDE systems;
- Model invalidation, hybrid verification, controller synthesis.

From Optimization:

- In conjunction with positivstellensatz, provides a nested family of relaxations for NP-hard problems.

Applications:

- From Biology to Aerospace, from Fluid Mechanics to the Internet and from Multi-agent Systems to Process Control.

ACC Tutorial session on "SOS in Industry"

CDC Workshop on Biomolecular Circuit Analysis and Design

Biologically Driven Problem: Heat-Shock in E-Coli

$\frac{d S_{t}}{d t}=\eta-\alpha_{0} S_{t}-\alpha_{s} \frac{K_{s} D_{t}}{1+K_{u} U_{t}+K_{s} D_{t}} S_{t}$
$\frac{d D_{t}}{d t}=K_{d} \frac{S_{t}\left(1+K_{u} U_{t}\right)}{1+K_{u} U_{f}+K_{s} D_{t}}-\alpha_{d} D_{t}$
$0=K\left[P_{t}-U_{t}\right]-\left[K+K_{\text {ford }}\right] D_{t}$

System features:

- Rational vector field;
- Parametric uncertainty;
- Equilibrium moves as parameters change.

Robust stability can NEVER be verified using simulation.

Robustly stable with respect to η and α_{s}.

EGF-MAPK

Computation

$p(x)=\sum_{i=1}^{m} f_{i}^{2}(x)=Z(x)^{\top} Q Z(x)=Z(x)^{\top}\left(Q_{0}+\sum_{i=1}^{L} \lambda_{i} Q_{i}\right) Z(x)$

Require

$$
\begin{aligned}
& Q_{0}+\sum_{i=1}^{\llcorner } \lambda_{i} Q_{i} \geq 0 \\
& Z(x)^{\top} Q i Z(x)=0, i=1, \ldots, L
\end{aligned}
$$

- Reduce the size of $Z(x)$?
- Reduce the number of decision variables?
- Structure the decomposition?

Model Decomposition

Anderson, Chang, Papachristodoulou, to appear

Model Reduction

Model (Reaction Network) Decomposition

$$
\dot{x}=f(x), x \in \mathbb{R}^{n}
$$

For the EGF-MAPK model we consider has $n>100$.

- This system is difficult to analyze and understand directly.

Instead, we can decompose the dynamical system into interacting subsystems:

$$
\begin{gathered}
\dot{x}_{1}=f_{1}\left(x_{1}\right)+g_{1}\left(x_{1}, u_{1}\right), \quad y_{1}=x_{1} \\
\dot{x}_{2}=f_{2}\left(x_{2}\right)+g_{2}\left(x_{2}, u_{2}\right), \quad y_{2}=x_{2} \\
u_{1}=y_{2}, u_{2}=y_{1}
\end{gathered}
$$

Then we can analyze/understand each subsystem in turn and then attempt to draw global conclusions.

For static networks (graphs) many decomposition strategies exist:
Given a graph with a weighted Adjacency matrix A, assign integer values $z_{i}= \pm 1$ to each node in the graph so as to

Can the same ideas be used for partitioning dynamical systems?
minimize:

$$
f(z)=\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}\left(z_{i}-z_{j}\right)^{2}
$$

Using the weighted Laplacian, L, solve:

$$
\begin{array}{ll}
\min & \frac{1}{2} z^{\top} L z \\
\text { s.t. } & z_{i}^{2}=1
\end{array}
$$

Relaxation solution is the Fiedler eigenvector, corresponding to the smallest non-zero eigenvalue of L.

Want a decomposition that takes into account structure AND dynamics.

Let the edge weights represent energy flow between species
Apply spectral partitioning to obtain a decomposition

Partitioning Algorithm

1) Represent $\dot{x}=f(x)$ as a weighted graph $G(V, E)$, where each state is a vertex and an edge connects v_{i} to v_{j} if \dot{x}_{i} is a function of x_{j}
2) Compute initial condition \hat{x} that maximizes energy input to the system by solving for P :

$$
F^{\top} P+P F=-C C^{\top}
$$

where F is the linearization of $\dot{x}=f(x)$ and C is the incidence matrix of G.
3) Construct the energy matrix W, where $W_{i j}$ defines the energy flow from v_{i} to $v_{j} ; W_{i j} \triangleq\|y\|_{2}^{2}=\hat{x}^{\top} X \hat{x}$
where X solves $F^{\top} X+X F=-\delta^{\top} \delta$, where δ is the appropriate column of C.
4) Apply spectral partitioning algorithm on W.

Decomposition of a large network by trying to minimize the energy flow between species in it.

Decomposition of a large network by trying to minimize the retroactivity between the components.

The decompositions look very similar and we are currently investigating the relation between the two approaches

- Construct a Lyapunov function for each subsystem:

$$
\begin{aligned}
& V_{1}\left(x_{1}\right)>0, \frac{\partial V_{1}}{\partial x_{1}} f_{1}\left(x_{1}\right)<0 \\
& V_{2}\left(x_{2}\right)>0, \frac{\partial V_{2}}{\partial x_{2}} f_{2}\left(x_{2}\right)<0
\end{aligned}
$$

- Test whether the following is a Lyapunov function for the full system

$$
V=V_{1}\left(x_{1}\right)+\alpha V_{2}\left(x_{2}\right)
$$

Numerical Results

Lotka-Voltera Dynamics: 16 states, standard assumptions for scalable analysis do not hold

$$
\dot{x}_{i}=x_{i}\left(b_{i}-x_{i}-\sum_{j=1}^{n} A_{i j} x_{j}\right)
$$

Decompose into 3 subsystems:

Can we do better? Yes.

Model Reduction - "Complexity Reduction"

- Given a system

$$
\dot{x}=f(x), \quad y=g(x), \quad x \in R^{n}, \quad x(0)=x_{0}, \quad y \in R^{m}
$$

we want to construct a system

$$
\dot{\hat{x}}=\hat{f}(\hat{x}), \hat{y}=\hat{g}(\hat{x}), \quad \hat{x} \in R^{\hat{n}}, \hat{x}(0)=\hat{x}_{0}, \hat{y} \in R^{m}
$$

where $\hat{n} \ll n$ which makes $\|y-\hat{y}\|$ as small as possible.

- In this talk we will aim to "collapse states" - which amounts to reducing the number of differential equations.
- Very similar to Singular Perturbation.

- Finding the "ground state" is exponential.
- But can still get
- A bound on the error from the original system
- A suggested ordered list of states to be removed

Network in Synthetic Biology- the Engineering of Biology

- Establish links between electrical/control/ computer engineers, mathematicians, physicists, biologists and ELSI members.

Acknowledgements

Current DPhil (PhD) Students:

- Yo-Cheng (Mark) Chang, Bence Melykuti, James Anderson, Edward Hancock
- A major challenge that Synthetic Biology faces is that new designs have to function in uncertain environments.

(Previous) PDRAs:

- Elias August, Mark Roberts, Abdullah Hamadeh, Christoph Maier
- First 3-day workshop was on 14-16 September 2009.
- Second 3-day workshop was on 12-14 July 2010.

Oxford Collaborators:

- Judith Armitage, George Wadhams, Biochemistry
- Philip Maini, Mathematical Institute

