







- Which feedback configuration is correct?
- Created four models with different feedback connectivities, each reproducing wild type data, then assessed their performance.
- Undertaken experiments to invalidate models.





- 16 nonlinear ODEs are used to describe this system
- Uncertainties in most parameters.
- What can we now say about this system?
- How can we evaluate its stability, performance or understand its properties?



#### Mathematical Setting

• Dynamical system model:

$$\dot{x} = f(x, u, \theta)$$
 or  $x_{k+1} = f(x_k, u_k, \theta)$   
 $y = h(x)$   $y_k = h(x_k)$ 

State-space/Input Space/Parameter Space:

$$x \in X \subseteq \mathbb{R}^{n_x}, \quad u \in U \subseteq \mathbb{R}^{n_u}, \quad \theta \in \Theta \subseteq \mathbb{R}^{n_\theta}, \quad y \in \mathbb{R}^{n_y}$$

- All functions are assumed to be sufficiently smooth.
- Model has been proposed a priori but can be uncertain or under the influence of disturbances/inputs.
- · Interested in analysis questions.

#### **Questions of Interest**

## Is the system robustly performing well?

- Stability/Robust Stability of the equilibrium.
  Assume: u = 0, f(x\*,0,θ) = 0, is x\* stable/as.stable?
- Performance/Robust Performance.
  Is some performance metric guaranteed?
- Safety/Robust Safety
  Does dynamical system ever evolve into unsafe regions?
- Eventuality/Robust Eventuality
  Does it visit a particular set of states?





Prajna, Papachristodoulou, Parrilo CDC02

# SOSTOOLS

Formulates and solves the equivalent semidefinite programme (SDP) www.eng.ox.ac.uk/control/sostools



How to Construct Polynomial Lyapunov Functions

 $\dot{x} = f(x), f(0) = 0$ 

 $D = \left\{ \boldsymbol{x} \in \boldsymbol{R}^{n} \middle| \boldsymbol{a}(\boldsymbol{x}) \triangleq \left\| \boldsymbol{x} \right\|_{2}^{2} - \gamma \leq 0 \right\}$ 

Assume for now that f is polynomial and look for V polynomial.

Given  $\dot{x} = f(x)$  with f(0) = 0 and  $a(x) \le 0$ , find a polynomial V(x)

of order  $\geq 2$ , positive definite polynomials  $\varphi(x)$ ,  $\psi(x)$  and  $p(x) \geq 0$ 

Then x = 0 is asymptotically stable and V is a Lyapunov function.

 $-\frac{\partial V(x)}{\partial x}f(x) + p(x)a(x) - \psi(x) \ge 0 \implies -\dot{V}(x) \ge \psi(x) > 0 \text{ on } D$ 

such that

 $V(x) - \varphi(x) \ge 0 \implies V(x) \ge \varphi(x) > 0$ 

#### How to Construct Polynomial Lyapunov Functions

Lyapunov: For  $\dot{x} = f(x)$ , with f(0) = 0, find V such that V(x) > 0 $-\dot{V}(x) = -\frac{\partial V}{\partial x}f(x) > 0$ Then x = 0 is asymptotically stable. For  $\dot{x} = f(x)$ , with f(0) = 0, find V,  $\varphi(x) > 0$ ,  $\psi(x) > 0$  such that  $V(x) - \varphi(x)$  is SOS  $-\frac{\partial V}{\partial x}f(x)-\psi(x)$  is SOS Then x = 0 is asymptotically stable.  $\varphi(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{\deg(\varphi(\mathbf{x}))/2} c_{ij} \mathbf{x}_i^{2j}, \quad c_{ij} \ge 0, \qquad \sum_{i=1}^{\deg(\varphi(\mathbf{x}))/2} c_{ij} \ge \gamma > 0 \ \forall i$ Papachristodoulou, Prajna CDC02 How to Construct Polynomial Lyapunov Functions  $\dot{x} = f(x), f(0) = 0$  $D = \left\{ \boldsymbol{x} \in \boldsymbol{R}^{n} \, \middle| \, \boldsymbol{a}(\boldsymbol{x}) \triangleq \left\| \boldsymbol{x} \right\|_{2}^{2} - \gamma \leq 0 \right\}$ Assume for now that f is polynomial and look for V polynomial. Given  $\dot{x} = f(x)$  with f(0) = 0 and  $a(x) \le 0$ , find a polynomial V(x)of order  $\geq$  2, positive definite polynomials  $\varphi(x)$ ,  $\psi(x)$  and p(x) SOS  $V(x) - \varphi(x)$  is SOS such that  $-\frac{\partial V(x)}{\partial x}f(x)+p(x)a(x)-\psi(x)$  is SOS Then x = 0 is asymptotically stable and V is a Lyapunov function.

#### Van der Pol Oscillator

## Problems Solved Using SOS





From Systems Theory:

- Robust Stability/Performance analysis for nonlinear systems;
- Analysis of hybrid/switched, time-delay and PDE systems;
- Model invalidation, hybrid verification, controller synthesis.

From Optimization:

• In conjunction with positivstellensatz, provides a nested family of relaxations for NP-hard problems.

Applications:

 From Biology to Aerospace, from Fluid Mechanics to the Internet and from Multi-agent Systems to Process Control.

ACC Tutorial session on "SOS in Industry" CDC Workshop on Biomolecular Circuit Analysis and Design







### Model (Reaction Network) Decomposition

For static networks (graphs) many decomposition strategies exist:

Given a graph with a weighted Adjacency matrix *A*, assign integer values  $z_i = \pm 1$  to each node in the graph so as to minimize:  $f(z) = \frac{1}{4} \sum_{j=1}^{n} \sum_{j=1}^{n} A_{ij} (z_i - z_j)^2$ 

Using the weighted Laplacian, L, solve:

$$\begin{array}{ll} \text{min} \quad \frac{1}{2}z^{T}Lz\\ \text{s.t.} \quad z_{i}^{2}=1 \end{array}$$

Relaxation solution is the Fiedler eigenvector, corresponding to the smallest non-zero eigenvalue of *L*.

# Partitioning Algorithm

- Represent x = f(x) as a weighted graph G(V, E), where each state is a vertex and an edge connects v<sub>i</sub> to v<sub>j</sub> if x<sub>i</sub> is a function of x<sub>i</sub>
- 2) Compute initial condition  $\hat{x}$  that maximizes energy input to the system by solving for *P*:

$$F^T P + PF = -CC^T$$

where *F* is the linearization of  $\dot{x} = f(x)$  and *C* is the incidence matrix of *G*.

3) Construct the energy matrix W, where  $W_{ii}$  defines the

energy flow from  $v_i$  to  $v_j$ ;  $W_{ij} \triangleq \|y\|_2^2 = \hat{x}^T X \hat{x}$ 

where X solves  $F^T X + XF = -\delta^T \delta$ , where  $\delta$  is the appropriate column of *C*.

4) Apply spectral partitioning algorithm on *W*.

# Model (Reaction Network) Decomposition

Can the same ideas be used for partitioning dynamical systems?

Want a decomposition that takes into account structure AND dynamics.

states



Let the edge weights represent energy flow between species

Apply spectral partitioning to obtain a decomposition



# EGF-MAPK

Decomposition of a large network by trying to minimize the energy flow between species in it.

Decomposition of a large network by trying to minimize the retroactivity between the components.

The decompositions look very similar and we are currently investigating the relation between the two approaches





# **Dynamical Systems Analysis**



Construct a Lyapunov function for each subsystem:

$$V_1(x_1) > 0, \quad \frac{\partial V_1}{\partial x_1} f_1(x_1) < 0$$
$$V_2(x_2) > 0, \quad \frac{\partial V_2}{\partial x_1} f_2(x_2) < 0$$

• Test whether the following is a Lyapunov function for the full system

$$V = V_1(x_1) + \alpha V_2(x_2)$$

Model Reduction – "Complexity Reduction"

• Given a system

 $\dot{x} = f(x), y = g(x), x \in \mathbb{R}^{n}, x(0) = x_{0}, y \in \mathbb{R}^{m}$ 

we want to construct a system

 $\dot{\hat{x}} = \hat{f}(\hat{x}), \quad \hat{y} = \hat{g}(\hat{x}), \quad \hat{x} \in R^{\hat{n}}, \quad \hat{x}(0) = \hat{x}_0, \quad \hat{y} \in R^m$ where  $\hat{n} \ll n$  which makes  $\|y - \hat{y}\|$  as small as possible.

- In this talk we will aim to "collapse states" which amounts to reducing the number of differential equations.
- Very similar to Singular Perturbation.

Anderson, Chang, Papachristodoulou, to appear



- A bound on the error from the original system
- · A suggested ordered list of states to be removed



 Establish links between electrical/control/ computer engineers, mathematicians, physicists, biologists and ELSI members.



- A major challenge that Synthetic Biology faces is that new designs have to function in uncertain environments.
- Launched on 6<sup>th</sup> July 2009.
- First 3-day workshop was on 14-16 September 2009.
- Second 3-day workshop was on 12-14 July 2010.
- Interested? Visit

# www.rosbnet.org









### Acknowledgements

Current DPhil (PhD) Students:

• Yo-Cheng (Mark) Chang, Bence Melykuti, James Anderson, Edward Hancock

#### (Previous) PDRAs:

• Elias August, Mark Roberts, Abdullah Hamadeh, Christoph Maier

### **Oxford Collaborators:**

Judith Armitage, George Wadhams, Biochemistry

Research Council

Philip Maini, Mathematical Institute



## EPSRC Engineering and Physical Sciences





Arts & Humanities Research Council