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Perfect Adaptation and Integral Feedback in E. coli

Sourjik et al., PNAS

• Perfect adaptation
• Hence Integral FeedbackHence Integral Feedback

Yi et al., PNAS

Rhodobacter Sphaeroides

• Also perfect adaptation.
• Hence Integral feedback.g

Martin et al, J. Bact. 183(24) pp.7135-7144
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Feedback Interconnection

Membrane Cytoplasmic
L L~ Motor

Receptor Receptor
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• Which feedback configuration is correct?

CheB2

• Which feedback configuration is correct?
• Created four models with different feedback 
connectivities, each reproducing wild type data, thenconnectivities, each reproducing wild type data, then 
assessed their performance. 
• Undertaken experiments to invalidate models.



Four Possible Feedback Interconnections
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Models are initially fitted to wild-type ligand response data
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• Iterate to invalidate models and create new hypotheses.
• New models reproduce all available data.
• New experiments are designed and undertaken in the lab.
• Hope is that the new data can be used to invalidate some 

d lmodels.
• We have actually used this method in the laboratory.

BMC Systems Biology 2009, 3:25BMC Systems Biology 2009, 3:25 
BMC Bioinformatics 2009, 10:132
BMC Systems Biology 2009, 3:103
BMC Systems Biology 2010, 4:38

From model invalidation procedure, only one model survives…

Membrane Cytoplasmic
L L~ Motor

Cluster Cluster

CheB1

Ch B

• 16 nonlinear ODEs are used to describe this system

CheB2

• 16 nonlinear ODEs are used to describe this system
• Uncertainties in most parameters.
• What can we now say about this system?What can we now say about this system?
• How can we evaluate its stability, performance or 

understand its properties?
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Dynamical system model:

Mathematical Setting
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   Dynamical system model:
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   State-space/Input Space/Parameter Space:i

    ,    ,   ux nnx X u U∈ ⊆ ∈ ⊆\ \  ,   ynn yθθ ∈Θ ⊆ ∈\ \

   All functions are assumed to be sufficiently smooth.i

   Model has been proposed -  but can be 
    uncertain or under the influence of disturbances/inputs.

a priorii

   Interested in ai nalysis questions.

Questions of Interest

Is the system robustly performing well?

 Stability/Robust Stability of the equilibrium.
        Assume: 0,  ( ,0, ) 0,  is  stable/as.stable?u f x xθ∗ ∗= =
i

( )

  Performance/Robust Performance.
I f t i t d?

i
        Is some performance metric guaranteed?

Safety/Robui st Safety Safety/Robui st Safety
        Does dynamical system ever evolve into unsafe regions?

  Eventuality/Robust Eventuality
        Does it visit a particular set of states?
i

Analysis in Dynamical Systems
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Can be reduced to a semidefinite programme (SDP) (Parrilo),
which can be setup and solved using SOSTOOLS:

www eng ox ac uk/control/sostoolswww.eng.ox.ac.uk/control/sostools

C l h f k ffi i t f ( )Can also search for unknown coefficients of ( )
                    so that ( ) is SOS

p x
p x

Prajna, Papachristodoulou, Parrilo CDC02



SOSTOOLS

Formulates and solves the equivalent semidefinite programme (SDP)
www.eng.ox.ac.uk/control/sostools

SOSTOOLS

SOS
program SDPprogram

SeDuMi/
SDPT3

SDP
solution

SOSP
solution

SDPT3

SOSTOOLS

How to Construct Polynomial Lyapunov Functions
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Papachristodoulou, Prajna CDC02

How to Construct Polynomial Lyapunov Functions
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Assume for now that  is polynomial and look for  polynomial.f V
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Then 0 is asymptotically stable and  is a Lyapunov function.x V=

How to Construct Polynomial Lyapunov Functions
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Given ( ) with (0) 0 and ( ) 0 find a polynomial ( )x f x f a x V x= = ≤�Given ( ) with (0)  0 and ( ) 0,  find a polynomial ( ) 
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Van der Pol Oscillator

1 2
2(1 )

x x= −�
� 2

2 1 1 2(1 )x x x x= − −

Papachristodoulou, 2005

Problems Solved Using SOS

From Systems Theory: 
• Robust Stability/Performance analysis for nonlinear systems;• Robust Stability/Performance analysis for nonlinear systems;
• Analysis of hybrid/switched, time-delay and PDE systems;
• Model invalidation, hybrid verification, controller synthesis.Model invalidation, hybrid verification, controller synthesis.

From Optimization:
• In conjunction with positivstellensatz, provides a nested

family of relaxations for NP-hard problems.

Applications:
• From Biology to Aerospace from Fluid Mechanics to theFrom Biology to Aerospace, from Fluid Mechanics to the 

Internet and from Multi-agent Systems to Process Control.

ACC Tutorial session on “SOS in Industry”
CDC Workshop on Biomolecular Circuit Analysis and Design

Biologically Driven Problem: Heat-Shock in E-Coli

η α α=
+ +0- -

1
t s t

t s t
u f s t

dS K DS S
dt K U K D η αRobustly stable with respect to  and .s

[ ]

α
+

=
+ +
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u f s t

t t u f
d d t

u f s t

dD S K UK D
dt K U K D

[ ]= +0 - - [ ]t f fold tK P U K K D

S t f tSystem features:
• Rational vector field;
• Parametric uncertainty;
• Equilibrium moves as• Equilibrium moves as 

parameters change.

Robust stability can NEVER be
verified using simulation.

El-Samad et al., Proceedings of the IEEE, 2006

EGF-MAPK

Schoeberl et al, Nat. Biot. 2002



What restricts SOS methods?

Computation
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• Reduce the size of Z(x)?
• Reduce the number of decision variables?• Reduce the number of decision variables?
• Structure the decomposition?

Model Decomposition

Anderson, Chang, Papachristodoulou, to appear

Model Reduction

Anderson, Chang, Papachristodoulou, to appear

Model (Reaction Network) Decomposition

( ), nx f x x= ∈� \

100.n >For the EGF-MAPK model we consider has
• This system is difficult to analyze and understand directly.

Instead, we can decompose the dynamical system into 
interacting s bs stemsinteracting subsystems:

1 1 1 1 1 1 1 1( ) ( , ),    x f x g x u y x= + =�

2 2 2 2 2 2 2 2

1 2 2 1

( ) ( , ),  
             , 
x f x g x u y x

u y u y
= + =

= =

�

1 2 2 1,y y

Then we can analyze/understand each subsystem in turn 
and then attempt to draw global conclusionsand then attempt to draw global conclusions.



Model (Reaction Network) Decomposition

Gi h ith i ht d Adj t i A i

For static networks (graphs) many decomposition strategies 
exist:
Given a graph with a weighted Adjacency matrix A, assign 
integer values            to each node in the graph so as to 
minimize: 1 n n

1iz = ±
minimize: 2

1 1

1( ) ( )  
4 ij i j

i j
f z A z z

= =

= −∑∑

Using the weighted Laplacian, L, solve:
1min Tz Lz

2

min   
2

s.t.     z 1i

z Lz

=

         z 1T n≠

Relaxation solution is the Fiedler eigenvector,Relaxation solution is the Fiedler eigenvector, 
corresponding to the smallest non-zero eigenvalue of L.

Model (Reaction Network) Decomposition

Can the same ideas be used for partitioning dynamical 
systems?

Want a decomposition that takes into account structure AND 
dynamics.dynamics.

1

states

24

2 4
1 1 3 4 3 2

2 3 2 2
2 2 4 4 4 1

x 2    2

4      5

x x x x x

x x x x x x

= − + = −

= − − = −

� �
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3
species 

interactionse ac o s

Let the edge weights represent energy flow between species

Apply spectral partitioning to obtain a decomposition

Partitioning Algorithm

1)  Represent ( ) as a weighted graph ( , ), where each
     state is a vertex and an edge connects  to  if  is ai j i

x f x G V E
v v x

=�
�

     function of 
ˆ2)  Compute initial condition  that maximizes energy in

j

jx

x put to) p gy p
     the system by solving for :
                                     T T
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     where  is the linearization of ( ) and  is the incidence
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2
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ˆ ˆenergy flow from to ;
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T
j ij

W W

v v W y x Xx=�i 2
     energy flow from  to ;   

     where  solves , where  is the appropriate column
of

j ij

T T

v v W y x Xx

X F X XF
C

δ δ δ+ = −
     of .
4) Apply spectral partitioning algorithm on .

C
W

EGF-MAPK

Schoeberl et al, Nat. Biot. 2002



EGF-MAPK

Decomposition of a large 
network by trying to minimizenetwork by trying to minimize 
the energy flow between 
species in it.p

Decomposition of a large 
network by trying to minimize 
the retroactivity between the 
componentscomponents.

The decompositions look very p y
similar and we are currently 
investigating the relation 
b t th t hbetween the two approaches

Conzelman et al, IEE Sys Bio, 2004

Dynamical Systems Analysis

1 1 1 1 1 1

1 1
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Construct a Lyapunov function for each subsystem:• Construct a Lyapunov function for each subsystem:

1
1 1 1 1( ) 0, ( ) 0VV x f x∂

> <1 1 1 1
1

2
2 2 2 2

( ) , ( )

( ) 0, ( ) 0

x
VV x f x

∂

∂
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∂2 2 2 2
2
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• Test whether the following is a Lyapunov function for
the full systemthe full system

1 1 2 2( ) ( )V V x V xα= +

Numerical Results

Lotka-Voltera Dynamics: 16 states, standard assumptions 
for scalable analysis do not hold

n

i i i i ij jx x b x A x
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∑� Decompose into 3 
b t1

j j
j=

⎜ ⎟
⎝ ⎠

∑
subsystems:

Direct SOS analysis not possible:
LMI too larger for SeDuMi to parse

Can we do better?
Yes.g p

Anderson, Papachristodoulou, ACC 2010

Model Reduction – “Complexity Reduction”

   Given a systemi

0                       ( ),   ( ),   ,   (0) ,   
    we want to construct a system

n mx f x y g x x R x x y R= = ∈ = ∈�

ˆ
0

y
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                       ( ),   ( ),   ,   (0) ,   

ˆwhere

n mx f x y g x x R x x y R
n

= = ∈ = ∈�

ˆwhich makes as small as possiblen y y<<    where n  which makes  as small as possible.

In this talk we will aim to "collapse states" which amounts to

n y y<< −

   In this talk we will aim to "collapse states" - which amounts to
    reducing the number of differential equations.
i

   Very similar to Singular Perturbationi .

Anderson, Chang, Papachristodoulou, to appear



Our Approach – Linear Case

  nx Ax x R= ∈�

ˆˆˆ ˆ ˆ,   nx Ax x R= ∈�

• Finding the “ground state” is exponential.
• But can still get

• A bound on the error from the original system
A suggested ordered list of states to be removed• A suggested ordered list of states to be removed
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Network in Synthetic Biology- the Engineering of Biology

• Establish links between electrical/control/
computer engineers, mathematicians,
physicists, biologists and ELSI members.

• A major challenge that Synthetic Biology faces is that new j g y gy
designs have to function in uncertain environments.

• Launched on 6th July 2009.y

• First 3-day workshop was on 14-16 September 2009.

Second 3 day workshop was on 12 14 July 2010

www rosbnet org

• Second 3-day workshop was on 12-14 July 2010.

• Interested? Visit 
www.rosbnet.org
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