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What is evolution?

• Universal mechanism how diversity of a system changes endogenously

biological, ecological, chemical, social, industrial, economical, financial,
historical
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What is an evolutionary process ?

Evolution is a three step process

• Step 1: new thing comes into being into a given environment

• Step 2: new thing has the chance to interact with environment. Result
of this interaction: get selected or destroyed

• Step 3: if new thing gets selected (survives) in this environment it
becomes part of this environment – it becomes part of the definition of the
environment for all future new and arriving elements

Evolution is not physics
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Evolution is not physics

How does physics work?

Since Newton physics follows a recipe

(1) write down differential equations: d2x
dt2

= mg
(2) fix boundary conditions: x(0) = x0 , v(0) = v0
(3) solve equations: x(t) = 1

2mgt
2 + v0t+ x0

(4) test the solution in nature: drop stone, measure x(t), compare

Two problems

(1) can not fix boundary conditions

(2) can not prestate potential outcomes
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Facts on evolution dynamics?

• Evolution involves fast and dramatic changes of diversity
• Bursts of massive creation and extinction happen with little / no precursor
• Transitional species are practically missing
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Traditional view on evolutionary dynamics

Species i produces species k under the influence of species j – can be
expressed by a network equation of the type

ẋk =
∑
i,j

αkijxixj − xkΦ , Φ =
∑
i,j,k

αkijxixj

• entities: xi • rules: αkij (density of entries r)

replication xi → 2xi fi
competition xi + xj → xj pij
mutation xi → xj qij
recombination xj + xl → xi αijl
development xj + xl → pi dijl
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Problems

What can you measure?

• x: YES

• α: NO

Even if one could → fundamental problem of predictive value of traditional
of evolutionary dynamics
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Darwin’s daemon – limitations of the fitness concept

Fitness-based population dynamics can not make quantitative, falsifiable
predictions on long-term behavior of evolutionary systems

Thought experiment: Darwin’s Demon

Suppose a demon has exact knowledge on the abundance and fitness of each
species in the universe. (fitness ≡ functional dependence of its proliferation
rate on all other species). Daemon can measure fitness landscape exactly

What can the demon predict? Surprisingly little

New species is created → part of environment → environment changes

Demon has information on environment existing before arrival of new species

Thus the demon might have an exact description of the current biosphere,
but with the advent of each new species this description loses accuracy.

Fitness always encodes a posteriori info → useless for falsifiable predictions

bangalore jan 13 2010 10



Needed: co-evolution of fitness and species

Not fruitful to predict future fitness from present fitness

Instead one should understand how species and their fitness landscapes
co-construct each other – co-evolve

We propose a variational principle in a spin-model-like setup

We derive a functional which is minimized under the most general evo-
lutionary formulation of a dynamical system, i.e. evolutionary trajectories
causally emerge as a minimization of a functional
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Three components of a model

System is characterized by

• States: open system → infinite state vector. For simplicity binary

• Interactions: mutual influences of things→ production rate tensor. binary

• Stochastic component (β)
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Ingredients: Species

Species exist or not

σi(t) = 1 species i exists at t

σk(t) = 0 species k does not exist at t: because not produced yet, or got
eliminated from the system

N -dimensional vector ~σ(t) contains all thinkable species

Species has to be produced by its components at every timestep

Production of species i can happen only if all necessary components (parts)
are simultaneously available

Diversity of system: D(t) = 1
N

∑N
i=1 σi(t)
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How do new species (goods, ideas, ...) appear?

New things emerge through combination and substitution of existing things

Examples
• ∃ rule: a blacksmith can make a knife from a block of steel + a hammer
• ∃ rule: hydrogen with oxygen can form water
• ∃ rule: a cock and a hen can be the parents of a chicken
• ¬∃ rule: a fish and a dog can be the parents of a chicken
• ¬∃ rule: two blocks of U 235 can be welded into one big block of uranium

Whether a thing i can be produced from components j and k is encoded in
the production map, α+

ijk = 0 or 1
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Ingredients: Production map
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Ingredients: Production

If possible to produce thing i from j and k, call it a production ( α+
ijk = 1)

If production actually produces i, call it active production
(σi(t) = σj(t) = σk(t) = α+

ijk = 1)

Production process: σi(t+ 1) = α+
kijσj(t)σk(t)
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Ingredients: Selection/Competition/Destruction

New species, good,... can cause competition with existing one: think of
good which can be produced cheaper or that is more robust etc., will drive
the other from the market, biosphere,...

Mechanism: combination of things i and j produces a thing l which then
drives product k out.

active destruction: if σi(t) = σj(t) = σk(t) = α−ijk = 1

Destruction process (if σi(t) = 1): σi(t+ 1) = 1− α−jkiσj(t)σk(t)
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The active production network

Distinguish production rules (α+) and the active production networks A(t)
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Spontaneous inventions/mutations

• From time to time spontaneous ideas or inventions happen

• Introduce probability p with which a non-existing good gets spontaneously
invented or an existing good is spontaneously annihilated
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Summary of the model

• Phase space: Γ ≡ {0, 1}N = {σ |σi ∈ {0, 1}, 1 ≤ i ≤ N}, N � 1

• Define quadratic forms: ∆i(σ) ≡
∑N
j,k αijkσjσk with αijk ∈ {−1, 0, 1}

• Select a positive value p ≤ 1

• Dynamical update is the map F : Γ→ Γ via the difference equation

σ(t+ 1) = F (σ(t)) , F = Ψ ◦Φ

• Deterministic part Φ(σ) ≡ x where xi = 1(0) when ∆i(σ) > 0(< 0),
and xi = σi, when ∆i(σ) = 0.

• Stochastic part Ψ ≡ x, where xi = 1−σi with probability p, and xi = σi
else
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An evolutionary algorithm

Update from time t to t+ 1

• pick a thing i at random (random sequential update)

• count all active productive and destructive influences on i

For example: If Nprod
i > Ndestr

i −→ produce i

• with probability p switch the state of σi(t+ 1)

• continue with next thing

Initial condition (t = 0): fraction of randomly chosen initial things which
exist

For simplicity: αijk binary random matrices, characterized by r±
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Variables and parameters

Variable Description
σi(t) state of species i. exists / does not exist dynamic
D(t) diversity at time t dynamic
A(t) active production network dynamic

Parameter
α± productive/destructive interaction topology fixed
r± rule densities fixed
p mutation rate / innovation parameter fixed
N number of nodes fixed
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Diversity dynamics
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Production dynamics – ‘GDP’
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Dependence on invention rates
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Model variants

• More realistic competition

hierarchical suppression as a more realistic mechanism of competition

• Topology of production and destruction networks

scale-free production/destruction networks
Presence of hubs stabilizes system: increases lifetime of plateaus

• Asymmetry in production and destruction

easier to destroy than to ’create’: one destructive influence stops production

• Modular structure of production/destruction networks

use modules m (up to ten) with different random topologies r±m linked by
a variable number of connecting links
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Model variants II

• Finite lifetime of things

things decay with probability λ (can serve as a stochastic driving force, for
p = 0)

• Bounded rationality

if a product can get produced it does not mean that it actually will get
produced. To incorporate this possibility we say that if a good can get
produced, it will actually get produced with a probability q

• Variations in the update: robust for parallel update
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Competition ?

• How to get competition without introducing new ingredients

• → destructive pairs

Taboo: utility, fitness, niches, selection pressure, ...

bangalore jan 13 2010 36



bangalore jan 13 2010 37



bangalore jan 13 2010 38



Combine α+
ijk (constructive) and α−ijk (destructive) pairs

for implicit competition mechanism
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Understanding the dynamics I: it’s a sandpile
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Understanding the dynamics II: Eigenvalues & Keystone
species
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Relate topology of active production network with diversity

Similar to what was found in Jain&Krishna model of biological evolution

Kill keystone species (in autocatalytic core) → diversity collapses
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Pajek
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Toward a unified mathematical framework
At each time each element i experiences one of three cases:

(i) creation σi(t) = 0→ σi(t+ 1) = 1
(ii) annihilation σi(t) = 1→ σi(t+ 1) = 0
(iii) nothing σi(t) = σi(t+ 1)

Imagine a function, fi(~σ(t)) : {0, 1}N → R to indicate

(i) fi(~σ(t)) > 0 ⇒ σi(t+ 1) = 1

(ii) fi(~σ(t)) < 0 ⇒ σi(t+ 1) = 0

(iii) fi(~σ(t)) = 0 ⇒ σi(t+ 1) = σi(t)

Use ramp function R(x) ≡ max(0, x)

σi(t+ 1) = σi(t) + ∆σi(t) ,

∆σi(t) = sgn [(1− σi(t))R(fi(~σ(t)))− σi(t)R(−fi(~σ(t)))]
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A variational principle for diversity dynamics

Consider displacement: σ′i(t) = σi(t) + δσi(t)

• Quadratic distance: Ki(σ′i(t), σi(t)) ≡
µ
2 [σ′i(t)− σi(t)]

2

• Potential: Vi(σ′i(t), ~σ(t)) ≡ |(1− σ′i(t))R(fi(~σ(t)))− σ′i(t)R(−fi(~σ(t)))|

• Balance function: Bi ≡ Ki + Vi contains all full dynamical information

• Variational principle (Theorem):

Given ~σ(t) the solution σi(t+ 1) is identical to the value of σ′i(t) for which
Bi assumes its minimum, i.e.

σi(t+ 1) = argmin
σ′i(t)

[
Bi

(
σ′i(t), ~σ(t)

)]

with argmin
x

[f(x)] the x for which f(x) takes its minimum
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Stochastic formulation

Probability to find a configuration σi(t)

p(σi(t)) ∝ e−βBi(~σ(t)) β ≡ 1/T

Demand detailed balance

p(σi(t)→ σ̂i(t))
p(σ̂i(t)→ σi(t))

=
p(σ̂i(t))
p(σi(t))

= e−β(B̂i−Bi)

with B̂i ≡ Bi(σ̂i(t), σ(t)j 6=i)

Now use e.g. Metropolis transition probabilities
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Mean-field approximation
Expectation value qi(t) = 〈σi(t)〉

Assume probability factorizes: p(~σ(t)) =
∏
i pi(σi(t))

Boltzmann-Gibbs entropy s for element i is

s(σi(t)) = −〈ln pi(σi(t))〉 ≡ s(qi(t))

Free energy

φ(qi(t)) = 〈Bi〉p(~σ(t)) −
s(qi(t))
β

Asymptotic state of species i, qi(t→∞) ≡ qi at minimum in φ

Necessary condition ∂φ(qi)/∂qi = 0, is ∂〈Bi〉
∂qi

+ 1
β ln

(
qi

1−qi

)
= 0

qi =
1
2

{
tanh

[
−β

2
∂〈Bi〉
∂qi

]
+ 1
}

The self-consistent solution yields the asymptotic configuration
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Mean-field approximation II
Calculate 〈Bi〉 for random interaction topologies

rule densities: r±

constructive / desructive set size: n±

〈Ki〉p(σ) =
1
2

(
(1− qi)p+ + qip

−
)2

and
〈Vi〉p(σ) = |(1− qi)R(fi)− qiR(−fi)|

Take derivative w.r.t. qi. MF result is the self-consistent solution for q

q =
1
2

{
tanh

[
β

2

(
r+qn

+
− r−qn

−
+
[
(1− q)p+ + qp−

]
(p+ − p−)

)]
+ 1
}
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Mean-field approximation III
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Phase diagrams of evolution systems
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Exaples I: GDP
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Exaples II: Life time of species
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Exaples III: Chemical reactions e. coli
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Conclusions

• identified problem with traditional evolutionary thinking

• proposed model: overlay production map with states

• formulate as a spin system

• compute its phase diagrams and compare to simulations

• show that actual timeseries are within predictions of the model

bangalore jan 13 2010 63


