Minimal Metabolome: The Canonical Network of Autotrophic Metabolism and Its Analysis

Vijay Srinivasan

Krasnow Institute for Advanced Study George Mason University Fairfax, VA

Hierarchy in Biology:

Prebiotic Chemistry
Intermediary Metabolism
Cellularity
Prokaryotes
Eukaryotes
Multicellularity

Chemolithoautotrophs

Hierarchy - Complexity

- Reductive world precedes Oxidative environment
- > Autotrophs preceding heterotrophs
- Chemolithoautotrophs preceding phototrophs
- Minimal Metabolome and Chart of Autotrophic Metabolism

Core Intermediary Metabolism is Universal & Robust

Robust	Variable
Atoms	Gene (DNA) Sequence
Building Blocks (Metabolites)	RNA Sequence
Cofactors	Protein Sequence
Core Network	
Hydrophobic membrane	

Reductive Citric Acid Cycle is Network Autocatalytic

Intermediary Metabolism of an Early Autotroph

Phylogenetic profiling places hyperthermophilic bacteria at the deep end

Aquifex aeolicus:

- Hyperthermophilic, Reductive
- Chemolithoautotrophic,
- Anabolic ...
- Small genome : 1,551,335 bp
- > 1560 ORFs

Autotrophic Intermediary Metabolism

- Aim: To Construct a Canonical Chart of Intermediary Metabolism
- Strategy: To datamine biological databases for metabolic pathway information
 KEGG, NCBI– Pubmed, Genome, Pubchem, Metacyc, BRENDA
- Organisms: Aquifex aeolicus, Hydrogenobacter thermophilus, Thiomicrospira denitrificans, Chlorobium limicola

Metabolic Reconstruction

- Data-mining: KEGG & other Databases
- Reactions of individual metabolic and submetabolic pathways
- Reactants, Products and Intermediates of
 - rTCA cycle Carbon fixation
 - » Glycolysis/Gluconeogenesis
 - > Amino acid biosynthesis
 - > Purine & Pyrimidine biosynthesis
 - Fatty acid, Sterol and Lipid & Peptidoglycan biosynthesis
 - Cofactor biosynthesis

Complete Metabolic Chart Of a Reductive Chemoautotroph

Complete Metabolic Chart – Reductive Chemoautotroph

Pathway Reactions – rTCA cycle

Metabolome of a Reductive Chemoautotroph Summary:

- Rudimentary Organic Chemical Reactions 4 general types: oxidation/reduction, addition/elimination, hydrolysis and decarboxylation (Petsko & Dagmar, 2004)
- **287** Unique Compounds
- Compound Categories: Monomers and Intermediates

• Sub-classification in the context of 'Nodes in the metabolic network'

Metabolome of a Reductive Chem	oautotroph
Core (rTCA outputs)	6
Nodal Core (Pyr, 2-OXG, OXA)	7
Intermediate (utilized once)	169
Nodal Intermediate (utilized > once)	20
Precursor to (amino acids, dNTPs) Polymerization	18
Nodal Precursor (amino acids, rNTPs) to Polymerization	13
CoFactor	12
Lipid Intermediate	35
Lipid Component	
Total	287

Network Analysis & Generalizations

 The universal atomic constituents of metabolism are Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorous, and Sulfur

Wald, G. 1962. "Life in the Second and Third Periods; Why Phosphorus and Sulfur for High-Energy Bonds?" In 'Horizons in Biochemistry' ed. M. Kasha and B. Pullman. Academic Press, New York.

> 2. All pathways are anabolic

> 3. No Molecule Left Behind – When a pathway involves a splitting of a molecule, both parts enter into anabolic pathways

Network Analysis & Generalizations – No Molecule Left Behind

	Compound	Reaction	Production Pathway	Feedback Pathway
1	Pyruvate	Chorismate + NH3 <=> Anthranilate + Pyruvate + H2O	TRP, FOLATE	rTCA
2	Fumarate	N-(L-Arginino)succinate <=> Fumarate + L-Arginine	ARG, PUR	rTCA
3	2-Oxo glutarate	4-Methyl-2-oxopentanoate + L- Glutamate <=> L-Leucine + 2- Oxoglutarate	LEU, VAL, ILEU, SER, LYS,HIS	rTCA
4	L-Glutamate	L-Glutamine + PRPP + H2O<=> 5-Phosphoribosylamine + Pyrophosphate + L-Glutamate	PUR,PYR, HIS	GLN, LEU, VAL, ILEU, SER, LYS,HIS

	Network Analysis & Generalizations – No						
-	Molecule Left Behind						
5	Glyceraldehyde 3- phosphate	L-serine + Indoleglycerol phosphate <=> L-tryptophan + Glyceraldehyde 3-phosphate + H2O	TRP	RIBOSE			
6	D-Erythrose 4- phosphate	D-Fructose 6-phosphate + D- Glyceraldehyde 3-phosphate <=> D-Xylulose 5-phosphate + D- Erythrose 4-phosphate	RIB OSE	PHE, TYR, TRP			
7	AICAR	Phosphoribulosyl-formimino- AICAR-P + L-Glutamine <=> D-erythro-1-(Imidazol-4- yl)glycerol 3-phosphate + AICAR + L-Glutamate	HIS	PURINE			

Core-24 network has five starting termini leading to 20 amino acids and 4 ribonucleotides

These five compounds are universal termini for all autotrophic metabolism

- Acetate (acetyl-CoA)
- Pyruvate
- Phosphoenolpyruvate
- Oxaloacetate
- 2-Oxoglutarate

Core-24 network has five starting termini leading to 20 amino acids and 4 ribonucleotides

These five compounds are universal termini in all autotrophic metabolism

- Acetate (acetyl-CoA)
- Pyruvate
- Phosphoenolpyruvate
- Oxaloacetate
- 2-Oxoglutarate

Irrespective of the Carbon Fixation pathways these five compounds serve as universal termini in all autotrophic metabolism

1. rTCA cycle

- 2. Reductive acetyl-CoA pathway
- 3.3-Hydroxypropianate cycle
- 4.4-hydroxybutyrate cycle
- 5. Reductive Pentose Pathway

Network Analysis & Generalizations – Universality in autotrophic eco systems

Network Analysis & Generalizations – Acid Derivatives

- > 5. All core molecules contain either carboxylic or phosphoric acid moieties or both.
- The possible exceptions, histidinal and histidinol, may more appropriately be regarded as part of a coenzyme pathway

Network Analysis & Generalizations – Acid Derivatives

> 5. All core molecules contain either carboxylic or phosphoric acid moieties or both.

> R-COOH, R - O-P-OH

Network Analysis & Generalizations – Acid Derivatives

- > 5. All core molecules contain either carboxylic or phosphoric acid moieties or both.
- The possible exceptions, histidinal and histidinol, may more appropriately be regarded as part of a coenzyme pathway

Histidine – a Vestigial Cofactor ?

- Most cofactors contain nitrogenous heterocyclic rings.
 Histidine has an imidazole heterocyclic ring
- > Histidine mediates acid-base catalyzed reactions
- > Histidine is at the active site of a vast majority of enzymes
- Of the enyzymes catalyzing the biosynthesis of the core metabolome, contain Histidine at the active site
- Self- cleavage of the Ribozyme His-84 is exclusively dependent on Histidine (Nuc. Acid Res.Symp 50, 241, 2006)
- RNA cleavage by a Deoxy Ribozyme is enhanced over 10⁶ times by the addition of Histidine (Proc. Natl. Acad. Sci. 95, 6027 (1998)

Histidine – a Vestigial Cofactor ?

- Most cofactors contain nitrogenous heterocyclic rings.
 Histidine has an imidazole heterocyclic ring
- > Histidine mediates acid-base catalyzed reactions
- > Histidine is at the active site of a vast majority of enzymes
- Of the enyzymes catalyzing the biosynthesis of the core metabolome, contain Histidine at the active site
- Self- cleavage of the Ribozyme His-84 is exclusively dependent on Histidine (Nuc. Acid Res.Symp 50, 241, 2006)
- RNA cleavage by a Deoxy Ribozyme is enhanced over 10⁶ times by the addition of Histidine (Proc. Natl. Acad. Sci. 95, 6027 (1998)

Network Analysis & Generalizations – Acid Derivatives

- > 5. All core molecules contain either carboxylic or phosphoric acid moieties or both
- > 6. All sugars are phosphorylated
- All compounds of the core metabolome are charged molecules - 'intrinsic barrier to diffusion'

Distribution:

65 – Carboxylic
45 – Phosphoric
10 - Both

Network Analysis & Generalizations – Stability

> 7. The core metabolic network is both brittle and robust

Brittleness: Any break in the core-24 network would result in the inability to make one or more of the 24 building blocks

Robustness : Ubiquity and persistence of the network

Network Analysis & Generalizations – Hierarchy of Synthesis and Structure

- > The hierarchical order of synthesis produces:
- 1. Monomers
- 2. Polymers
- 3. Chimeromers
- 4. Repeatomers
- 5. Super chimeromers such as peptidoglycan
- 6. Coacervates and other structures held together by non covalent bonds

Network Analysis & Generalizations – Hierarchy of Synthesis and Structure

Monomer

Chimeromer

Repeatomer

HO

H₃C

H₃C

HO

ÇH₃

CH2

CH3

Superchimeromer

Aggregate

Network Analysis & Generalizations – Hierarchy of Synthesis and Structure

Reaction Type	Building Blocks Pathways
Oxidation	8
Reduction	13
Amination /Transamination*	5 + 16*
Hydration	19
Dehydration	17
Phosphorylation	12
Dephosphorylation	17

Network Analysis & Generalizations – Hierarchy of Synthesis and Structure

Decarboxylation	9
Carboxylation	2
Isomerization	9

> 11 types of Chemical Transformations: Oxidation, Reduction, Amination, Hydration, Dehydration, Phosphorylation, Dephosphorylation Group transfer, Carboxylation, Decarboxylation, Isomerization

Network Analysis & Generalizations – Sparseness

- Estimation of covalently bonded CHNOPS with molecular weight of ~300 daltons > millions
- Core -24 is125 molecules C₁₅H₂₅N₅O₂₀P₄S
- Limited diversity in types of chemical transformations recursively used to generate a strikingly sparse set of 125 compounds
- How this selection is achieved ? What are the pruning rules?

Network Analysis & Generalizations – Small Molecule Catalysis

Figure 1 | **An explosion of interest.** The number of publications on the topic of organocatalysis has recently increased markedly. Data were obtained by a search of the ISI Web of Knowledge in May 2008 for the

Network Analysis & Generalizations – Small Molecule Catalysis

Organocatalysis

?

DOI: 10.1002/anie.2007021

Organocatalysis Lost: Modern Chemistry, Ancient Chemistry, and an Unseen Biosynthetic Apparatus

Carlos F. Barbas III*

aldolases · asymmetric synthesis · biosynthesis · catalytic antibodies · organocatalysis

In memory of Frank H. Westheimer (1912–2007)

Since the year 2000 there has been aldol and Robinson annulation,^[2] the explosive growth in an area of catalytic asymmetric synthesis now known as organocatalysis, catalysis mediated sole-

Hajos–Wiechert^[3] reaction (1971) provides the proper foreshadowing. The MacMillan iminium ion based Dielsly by small organic molecules.^[1] A large Alder reaction^[4] is foreshadowed by the

"...I suggest that organocatalysis may be a yet-to-bediscovered biosynthetic mechanism at work in living organisms today."

Network Analysis & Generalizations – Small Molecule Catalysis

COMPLEXITY 2009 Vol. 14, No. 6

Revolution in Organic Chemistry and Its Implication in Biogenesis

wo articles appearing in 2008 [1, 2] point to the explosive emergence of a field of organic chemistry designated as organocatalysis, catalysis mediated solely by small organic molecules. Publication in this domain has gone from one or two articles a year in the late 1900s to over 500 articles in 2007. For a variety of reasons including stability, chirality, low cost, and nontoxicity these catalysts have presented organic chemists with an entirely new paradigm of synthetic organic chemistry. As a consequence of these developments, biochemists are called on to examine the role of small molecule catalysis in metabolism. This is especially true since enamines and iminium ions, two of the major organocatalysts, seem as intermediates in several metabolic networks. The concept of small molecule catalysis also provides us with a fresh point of view from which to look at biogenesis.

Small molecule catalysis was not part of traditional biochemistry because of the hypothesis that all reactions taking place in a cell are mediated by macromolecular protein enzymes and ribozymes. This permits a large number of chemical reactions to take place simultaneously in a small volume without mutual interference. This view must now be re-examined in some detail. The catalytic potential of a cell, determined by its genome and all the catalysts so encoded, may be insufficient to describe the cell's activity if some of the small molecules generated by the cell's metabolism are themselves catalytic for reactions that are part of the

HAROLD J. MOROWITZ, VIJAYASARATHY SRINIVASAN, AND ERIC SMITH

Minimal Autotroph

Experimental Search for Minimal Organisms and the Last Universal Common Ancestor

Reconstructing the Ur-Organism

wo questions that should be closely related have historically been studied with very different approaches. One is what constitutes a minimal living system, whether minimal cell or minimal self-contained ecosystem. The other is what actual system was the last universal common ancestor (LUCA) of all modern cells. As the LUCA is supposed to have been a bottleneck through which all life passed before diversifying into modern forms, it is treated as a self-sufficient organism and would be a candidate for a minimal cell.

Attempted reconstructions of the LUCA have largely been inferences in molecular phylogeny. Modern genes are grouped by common function and where possible by sequence homology, and primordial forms are traced back through the tree of life. In contrast, the search for minimal organisms has been mostly experimental, based on survey of short natural genomes and further random removal of genes. Current understanding of metabolism and control is still too primitive for theoretical approaches to have significantly affected this program.

The experimental search for a minimal microbial genome began in the early 1960s, culminating with *Mycoplasma genitalium*, which has only 482 protein-coding

Eric Smith, Harold J. Morowitz, and Vijayasarathy Srinivasan

Eric Smith is at the Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501. Harold J. Morowitz and Vijayasarathy Srinivasan are at the Krasnow Institute for Advanced Study,

Balch's Growth Media

						TA	ble 1. C	ompositio	ns of standard m	ediaª						
Component																
Me- dium Mineral Mineral Mineral NaCl NH ₄ Cl min- 1 ^b (ml) 2 ^c (ml) 3 ^d (ml) (g) (g) (g) (g) (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml					Sodium formate (g)	Yeast extract (Difco) (g)	Trypti- case (BBL)	L-Cys- teine hydro- chloride - H ₂ O (g)	Na2S· 9H2O (g)							
1 2 3	50	50 25	500	18	1.25	10 10 10	10 10 10	0.002	0.02 0.002	5.0 7.5 5.0	2.5 1.0	2.5	2.0 2.0	2.0 2.0	0.5 0.6 0.5	0.5 0.6 0.5

"Ingredients are added to distilled water to give a final volume of 1 liter. Cysteine and Na₂S are added after boiling the medium under an 80% N₂-20% CO₂ gas mixture, the final gas phase of tubed medium being an 80% H₂-20% CO₂ gas mixture at two atmospheres of pressure.

^b Contains 6 g of K₂HPO₄ per liter of distilled water.

^c Contains, in grams per liter of distilled water: KH₂PO₄, 6; (NH₄)₂SO₄, 6; NaCl, 12; MgSO₄ · 7H₂O, 2.6; CaCl₂ · 2H₂O, 0.16.

^d Contains, in grams per liter of distilled water: KCl, 0.67; MgCl₂·2H₂O, 5.5; MgSO₄·7H₂O, 6.9; NH₄Cl, 0.5; CaCl₂·2H₂O, 0.28; K₂HPO₄, 0.28.

Contains, in grams per liter of distilled water (pH to 7.0 with KOH): nitrilotriacetic acid, 1.5; MgSO₄ · 7H₂O, 3.0; MnSO₄ · 2H₂O, 0.5; NaCl, 1.0; FeSO₄ · 7H₂O, 0.1; CoSO₄ or CoCl₂, 0.1; CaCl₂ · 2H₂O, 0.1; ZnSO₄, 0.1; CuSO₄ · 5H₂O, 0.01; AlK(SO₄)₂, 0.01; H₃BO₃, 0.01; Na₂MoO₄ · 2H₂O, 0.01. Dissolve nitrilotriacetic acid with KOH to pH 6.5; then proceed to add minerals.

Contains, in milligrams per liter of distilled water: biotin, 2; folic acid, 2; pyridoxine hydrochloride, 10; thiamine hydrochloride, 5; riboflavin, 5; nicotinic acid, 5; pL-calcium pantothenate, 5; vitamin B₁₂, 0.1; p-aminobenzoic acid, 5; lipoic acid, 5.

ž

Minimal Autotroph

Minimal Autotroph

Microorganisms

Pages Is Layers Is Signatures Is Bookmarks

41

<i>Trace element solution:</i> Nitrilotriacetic acid
MgSU ₄ X / H_2U
MnSO4 x H2O
N-Cl
NaCI
$FeSO_4 \times 7 H_2O$
$CoSO_4 \times 7 H_2O$
CaCl ₂ x 2 H ₂ O
ZnSO ₄ x 7 H ₂ O
CuSO ₄ x 5 H ₂ O
KAI(SO ₄) ₂ x 12 H ₂ O
H ₃ BO ₃
Na ₂ MoO ₄ x 2 H ₂ O
NiCl ₂ x 6 H ₂ O
8.27 x 11.69 in <

D	SI	M	7 🏼
	1		
		-	•

1.500

3.000

0.500

1.000

0.100

0.180

0.100

0.180

0.010

0.020

0.010

0.010

0.025

g

g

g

g

g

g

g

g

g

g

g

g

q

¥

🛛 🚺 🔹 2 of 2 🔹 🔊 🖓	31
--------------------	----

Minimal Autotroph – Growth Medium

Medium data

Searched about grmd=[356].

356 MJ BASAL MEDIUM

MJ(-N) synthetic sea water (see Medium No. <u>268</u>)	1.0	L
NH4Cl	0.25	g
NaHCO3	1.5	g
Na ₂ S ₂ O ₃ ·5H ₂ O	1.5	g
Trace vitamins (see Medium No. <u>197</u>)	1.0	ml

Mix ingredients, except NaHCO₃, Na₂S₂O₃·5H₂O and the trace vitamins, and autoclave. Fi (w/v) NaHCO₃, 10% (w/v) Na₂S₂O₃·5H₂O and the trace vitamins solutions and add to the the gas phase with a N₂-CO₂-O₂ (77:17:6, v/v) gas mixture, and pressurize to 200 kPa.

Minimal Autotroph

Caralogue

» Order a Strain

-see also: Bacterial Nomenclature Up-to-Date

» Prices						
»Handling Strains/Ampoules	Name:	Sulfurimonas denitrificans (Timmer-ten Hoor 1975) Takai et al. 2006				
» Deposit a Strain	DSM No.:	1251				
	Other	ATCC 33889				
» Additional Services	collection no.					
» Science of Systematics	Synonyms:	Thiomicrospira denitrificans Timmer-ten Hoor 1975				
»Nomenclature Up-to-Date		<- A. Timmer-ten Hoor. Estuarine mud; Netherlands, Dollard (1107, 1108). Tyl				
	Information:	strain. Taxonomy/description (1107, 1300, 10555). Bioenergetics (1654). Cell yield (1654). (Medium 113, 20-25°C, anaerobic)				
» Research	Teoloted from	actuarina mud				
» Publications	Isolated from:	estuarine mud				
	Medium:	113, 20-25°C, anaerobic				
» Staff	Literature:	<u>1107, 1108, 1300, 1654, 10555</u>				

Minimal Autotroph

113. THIOBACILLUS DENITRIFICANS MEDIUM

Adjust pH to 7.0 with NaOH.

Solution B:

Minimal Autotroph – Growth Medium

First dissolve EDTA in distilled water by adjusting the pH to 7.0 - 8.0 using a 2 M solution of NaOH; then add ferrous sulfate and the trace element solution SL-6.

Minimal Autotroph – Growth Medium

Trace element solution SL-6:

$ZnSO_4 \times 7 H_2O$	0.10	g	
MnCl ₂ x 4 H ₂ O	0.03	g	
H ₃ BO ₃	0.30	g	
$CoCl_2 \times 6 H_2O$	0.20	g	
$CuCl_2 \ge 2 H_2O$	0.01	g	
$NiCl_2 \times 6 H_2O$	0.02	g	
Na ₂ MoO ₄ x 2 H ₂ O	0.03	g	
Distilled water	1000.00	ml	

Continued on next page

© 2007 DSMZ GmbH - All rights reserved

M JCM Database (medium) 🖾 M Medium data 🛛 🔆							
		1					
CaCl ₂	0	.75	g				
KH ₂ PO ₄	0	.5	g				
$(NH_4)_2Ni(SO_4)_2\cdot 6H_2O$	2	.0	mg				
Distilled water	1	.0	L				
Trace minerals:		1					
Nitrilotriacetic acid	1.5	g					
MgSO ₄ ·7H ₂ O	3.0	g					
MnSO ₄ ·xH ₂ O	0.5	g					
NaCl	1.0	g					
FeSO ₄ ·7H ₂ O	0.1	g					
CoSO ₄ ·7H ₂ 0	0.1	g					
CaCl ₂ ·2H ₂ O	0.1	g					
ZnSO ₄ ·7H ₂ O	0.1	g					
CuSO ₄ ·5H ₂ O	0.01	g					
AlK(SO ₄) ₂	0.01	g					
H ₃ BO ₃	0.01	g					
Na2MoO4·2H2O	0.01	g					
Distilled water	1.0	L					
Dissolve nitrilotriacetic acid and adjust pH to 6.5 with KOH solution. Then proceed to add mineral							

Multidentate Metal Chelators

Fate of EDTA & NTA in growth media

- What happens to EDTA and NTA ? Can they get metabolized?
- > That is, do they get catabolized /degraded /split into smaller carbon compounds?
- What happens to those compounds? Do they get modified into some metabolite?
- That is if those carbons get incorporated into metabolic compounds, could they be considered as additional source for anabolic synthesis?
- If so, wouldn't it then cause ambiguity towards the very identity of an autotroph?

entiality of Transition Metals in with Medium

Trace element solution SL-6:

$2nSO_4 \times 7 H_2O$ $MnCl_2 \times 4 H_2O$ H_3BO_3 $CoCL_X \in H_2O$	0.10 0.03 0.30	g g g
	0.03	g
$\Gamma_3 D O_3$ CoCl ₂ x 6 H ₂ O	0.30	g
$CuCl_2 \ge H_2O$	0.01	g
$NiCl_2 \times 6 H_2O$	0.02	g
$Na_2MoO_4 \ge H_2O$	0.03	g
Distilled water	1000.00	ml

Continued on next page

© 2007 DSMZ GmbH - All rights reserved

H	Periodic Table of the Elements								He ²								
Li ³	Be ⁴	 hydrogen alkali metals alkali earth metals 					■ pa □ na ■ na	oor me onmeta oble ga	als ases			B	C	N ⁷	08	۶ ۶	¹⁰ Ne
11 Na	12 Mg	a transition metals are earth metals are						18 Ar									
19 K	Ca	SC	22 Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn 30	Ga 31	Ge ³²	As	³⁴ Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te	53 	Xe
Cs	Ba	57 La	Hf	⁷³ Ta	74 W	75 Re	76 Os	r77 Ir	Pt	79 Au	Hg	81 TI	Pb	⁸³ Bi	⁸⁴ Po	At 85	86 Rn
87 Fr	⁸⁸ Ra	⁸⁹ Ac	¹⁰⁴ Unq	¹⁰⁵ Unp	106 Unh	¹⁰⁷ Uns	108 Uno	Une	Unn								

Ce	Pr	Nd	Pm	82 Sm	Eu	Gd ⁶⁴	Tb	66 Dy	67 Ho	Er	Tm	Yb	71 Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	Cf	Es	100 Fm	101 Md	102 No	103 Lr

TRANSITION METALS IN EXTANT LIFE

- Iron is present in heme and cytochromes
- The enzyme Nitrogenase needed to fix Nitrogen in the global eco system requires Molybdenum as an essential cofactor
- Cobalt is a must for Vitamin B12 in all mammalian systems
- In archaea, the cofactors of methanogens need Nickel, Cobalt and Molybdenum and Iron complexed to their cofactors
- Many enzymes and coenzymes need Iron, Cobalt, Nickel, Copper, Manganese, Chromium, Vanadium, Molybdenum, Tungsten

Transition metals in sea water

Metal	Concentration in nanomoles/liter
> Iron	179
> Nickel	91
> Copper	47
> Vanadium	39
> Manganese	39
> Cobalt	4.5
> Chromium	0.9

Transition Metals & the Core Metabolome

> 5. All core molecules contain either carboxylic or phosphoric acid moieties or both.

Transition Metals & the Core metabolome

In addition to the Oxygen atoms of the carboxylic & phosphate groups, majority of the core compounds contain at least one or more Nitrogen atoms

- Both the Oxygens and Nitrogens can combine with the transition metals to form metallo-complexes
- These metallo-complexes can act as small molecule catalysts in the core network.
- Such an enrichment process may be a selection mechanism for the enrichment and emergence of the core metabolome

Acknowledgements

We (VS and Harold J Morowitz) are grateful to NSF and William Melton for the funding support of these studies

MDL Keys & Feature Space

Descriptors – Molecular features

 Descriptors encoded into binary "keybits"
 Historically, MDL Information Systems designed 'keys' for substructure searching in chemical compounds libraries/ databases

> Three sets: 166, 324 and 960 keybits