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Introduction - Control

◮ An important property of a chaotic system is sensitivity to
initial conditions. Two neighbouring trajectories tend to move
away from each other exponentially.

◮ Hence one may think that it will be difficult to harness chaos.

◮ However, by a clever use of the properties of a chaotic system
it is possible to harness chaos.

◮ OGY control - periodic orbits
E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett 64, 1196 (1990).

◮ Synchronization - both periodic and chaotic orbits
L. M. Pecora and T. A. Carroll, Phys. Rev. Lett 64, 821 (1990).
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Synchronization: Huygens (1665)

Two Pendulum clocks hung from the same support.
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Synchronization: Firefly

Fireflies Sci. American May 76 Synchronus lightening

Synchronus lightening Phase synchronization
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Synchronization: Prey-Predator
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Synchronization

◮ Synchronize the trajectory of one chaotic system with that of
another chaotic system.

◮ Exact/perfect synchronization: x = x
′

.

◮ The basic idea:
◮ Control part of the system.
◮ Introduce some coupling.

Ideally the control must be such that its magnitude becomes
zero in the synchronized state.
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Synchronization

Synchronization with linear coupling Consider the dynamical
system

ẋ = f (x)

Couple two identical dynamical systems

ẋ = f (x) + ǫ1Γ(x ′ − x)

ẋ ′ = f (x ′) + ǫ2Γ(x − x ′)

Under suitable conditions |x − x ′| → 0 as t → ∞.
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Synchronization - Lorenz System

ẋ = σ(y − x) + ǫ(x ′ − x)

ẏ = x(z − r) − y

ż = xy − bz

ẋ ′ = σ(y ′ − x ′) + ǫ(x − x ′)

ẏ ′ = x ′(z ′ − r) − y ′

ż ′ = x ′y ′ − bz ′

The condition for synchronization: The transverse Lyapunov
exponents are all negative.
Bang 13-15Jan.10



Different types of synchronization

◮ Exact synchronization: x
′

= x.

◮ Phase synchronization: In general it is not easy to define a
phase variable for chaotic systems. However, in many systems
it is possible to introduce a suitable definition of a phase
variable, i.e. for a Rössler system tan−1(y/x) can be used as
a phase variable.

◮ Generalized synchronization: There is a functional relation
between the variables of the two systems.

◮ Delay synchronization: x
′

(t) = x(t − τ).

◮ Anticipatory synchronization: x
′

(t) = x(t + τ).
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N coupled dynamical systems

◮ A network of N nodes and one oscillator on each node.

◮ The coupling between the oscillators is given by the edges of
the network.

ẋ
i (t) = f(xi (t)) +

∑

j

GijΓu(xj (t)).

◮ xi , i = 1, . . . ,N, dynamical variables.
m – dimension of each system. mN – total dimension.

◮ f – local dynamics, u – coupling function
G – coupling matrix (N × N)
Γ – matrix defining the way the components are coupled

(m × m)
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Single cluster synchronization (1CS)

◮ Definition of Single cluster synchronization (1CS)

x
1 = x

2 = · · · = x
N = x

◮ Condition on the coupling matrix

∑

j

Gij = g , ∀i .

◮ The synchronized state: It is a solution of

ẋ = f(x) + gu(x).

If g = 0 then ẋ = f(x).
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Stability of 1CS

◮ We divide the phase space into two parts.
◮ Synchronization manifold: Def. of Synchronization manifold is

x
1 = x

2 = · · · = x
N = x.

Dimension = m.
Coupling matrix G has one eigenvector of the type
eR
1 = (1, . . . , 1)T with eigenvalue γ1 = g and defines the

synchronization manifold.
◮ Transverse manifold: All transverse directions.

Dimension = m(N − 1).

◮ Condition for the stability of synchronized state:
All Lyapunov exponents in the transverse directions must be
negative.
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Stability – Manifolds

manifold

manifold

transverse

synchronization

Schematic diagram of synchronization and transverse manifolds.
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Linear stability

◮ Linearization
Let zi = xi − x,
Z = (z1, z2, . . . , zN).

Ż = Df Z + Du Z GT ,

◮ Eigenvalues and eigenvectors of GT

γk , eL
k , k = 1, . . . ,N.

Ż eL
k = Df ZeL

k + Du ZγkeL
k .
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Block diagonal form

Let φk = ZeL
k . (dimension m)

φ̇k = [Df + γkDu]φk ,

where k = 1, . . . ,N.
For each k we can calculate the Lyapunov exponents.
For the stability of the synchronized state all transverse Lyapunov
exponents (k = 2, . . . ,N) must be negative.
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Time-varying networks

◮ Many natural networks have topologies changing with time.

◮ Periodical switches between couling matrices G1,G2, . . . ,Gg

with periods τ1, τ2, . . . τg .

G (t) =

g
∑

i=1

Giχ[ti−1,ti ]

χ[ti−1,ti ] is an indicator function.

◮ The time averaged G (t) is

Ḡ =
1

T

g
∑

i=1

Giτi
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Time-varying networks

◮ Condition for synchronization:
If the network synchronizes for the static time-average of the
topology, i.e. with Ḡ , then the network will synchronize with
the time-varying topology if the time-variation is done
sufficiently fast.

◮ It is interesting to note that the synchronized state can
become stable even when the individual networks do not
support the synchronized state.
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Time-varying networks

Divide the time-varying networks into two classes.
I. Commuting Matrices:

[Gi ,Gj ] = 0, for i, j = 1, · · · , g.

The different coupling matricess Gi and also the average Ḡ have
the same set of eigenvectors though the eigenvalues are different.
It can be shown that if the switching is sufficiently fast

λ̄kj ≈ λkj =
1

T

g
∑

i=1

λi
kjτi

Thus, the time-varying case has the same stability range as that of
the time-average case.
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Time-varying networks

II. Noncommuting matrices: The different coupling matrices have
different sets of eigenvectors. Hence, as we switch from one matrix
to another the set of eigenvectors undergoes a rotation. This
rotation has the effect of narrowing the spread of the Lyapunov
exponents in the transverse manifold. Hence, largest transverse
Lyapunov exponent decreses.
The time-varying case has a better stability than the time-average
case.
(REA and C. K. Hu, Chaos 16, 015117 (2006).)
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Time-varying networks - Lyapunov exponents

i

λ
i
−

λ̄
i

302520151050

0.003

0.002

0.001

0

−0.001

−0.002

−0.003

Difference between Lyapunov exponents of time-varying and
time-average networks.

Bang 13-15Jan.10



Time-varying networks - examples

Example Coupled Rössler systems.

◮ Ex. 1: The commuting class:
Stability range of synchronized state, σ ∈ (0.75, 2.30) for both
t-varying and t-average case.
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Time-varying networks - examples

Example Coupled Rössler systems.

◮ Ex. 2: The non-commuting class:
Stability range of synchronized state

◮ The t-varying case: σ ∈ (0.70, 2.30)
◮ The t-average case: σ ∈ (0.75, 2.30).

Thus, the lower limit which corresponds to the
long-wavelength instability gets extended for the t-varying
case.

Bang 13-15Jan.10



Time-varying networks - examples

Example Coupled Rössler systems.

◮ Ex. 3: The non-commuting class:
Stability range of synchronized state

◮ The t-varying case: σ ∈ (0.75, 2.45)
◮ The t-average case: σ ∈ (0.75, 2.30).

Thus, the upper limit which corresponds to the
short-wavelength instability gets extended for the t-varying
case.
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Critical coupling constant

Expt 1:

◮ 1. Consider any network, AN .
2. Null network, AN0, zero edges.

◮ Switch between AN ⇐⇒ AN0.
Switching times τ1 and τ0.

◮ The critical coupling constant

σc ≈ σ̄c = σc0 +
τ0

τ1
σc0

where AN synchronizes for σ > σc0.
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Critical coupling constant

a

σ
c

0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1

b

τ0

σ
c

0.50.40.30.20.10

0.07

0.06

0.05

0.04

0.03

0.02

0.01

a. 2 nodes - coupled Rössler systems
b. 10 nodes completely connected
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Chua circuits

Single Chua circuit Switching network of two Chua circuits
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Chua circuits

a

b
a. Control pulse

b. synchronization

σc vs τ0
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Critical coupling constant

Expt 2:
Two networks with critical coupling constants σc1 and σc2.
switching times τ1 and τ2.

σc =
τ1σc1 + rτ2σc2

τ1 + rτ2

where r = s2/s1 and si = (∂λi

∂σ )σ=σci

A2 =

(

−1 1
1 −1

)

A21 =

(

−1 1
0 0

)

; A22 =

(

0 0
1 −1

)
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Chua circuits

Unidirection ↔ Bidirection

a

b
a. pulse using two switches

b. synchronization
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Chua circuits

σc vs τ1/T

τ1/T

σ
c

10.80.60.40.20

0.15

0.14

0.13

0.12

0.11

0.1

0.09

0.08

0.07

Rössler system - numerical
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Expt 3

For commuting matrices the order does not matter.
A2 → A21 → A0 → ...
A2 → A0 → A21 → ...

Two pulses for switching between three networks
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Delay/Anticipatory synchronizarion

Two coupled systems

ẋ = f (x)

ẏ = f (y) + ǫ (xt1 − yt2)

where zti = z(t − ti).

Under suitable conditions we have the synchronization as

y(t) = x(t + t2 − t1)

◮ t1 = t2 – Normal synchronization

◮ t1 > t2 – Delay Synchronization

◮ t1 < t2 – Anticipatory Synchronization

Bang 13-15Jan.10



Variable delay

We assume that t1 and t2 vary with time.

ẋ = f (x)

ẏ = f (y) + ǫ
∞
∑

m=0

Γ (xt1 − yt2)χ(mτ,(m+1)τ)

We choose the following time dependence

ti = τi + t − mτ, i = 1, 2.

t − ti = mτ − τi

Here, τ is the reset time.

Bang 13-15Jan.10



Delay/Anticipatory synchronization

delay anticipatory
Coupled Rössler systems
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Linear stability analysis

◮ Three time scales: τ1, τ2, τ .

◮ The transverse system: ∆ = y − xτ1−τ2 .

∆̇ = f
′

(xτ1−τ2)∆ − ǫ

∞
∑

m=0

χ(mτ,(m+1)τ)∆m

where ∆m = ∆(mτ − τ2).

◮ Approximate solution can be obtained.
◮ f

′

is some effective constant, say λ.
◮ ∆ is a scalar.

◮ In the interval mτ ≤ t < (m + 1)τ , the solution is

∆ = α∆m + Cmeλt

where α = ǫ/λ, and Cm is an integration constant.
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Linear stability analysis

◮ For 0 ≤ τ2 ≤ τ : We get the recursion relation

∆m+1 = a∆m − b∆m−1

where a = α(1 − eλ(τ−τ2)) + eλτ and b = αeλτ (1 − e−λτ2).

◮ This gives a 2-d map

(

∆m+1

∆m

)

=

(

a −b

1 0

)(

∆m

∆m−1

)

◮ Delay/anticipatory synchronized state: ∆ = 0.
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Linear stability analysis

◮ For kτ < τ2 < (k + 1)τ : k + 2 dimensional map.















∆m+k+1

∆m+k

∆m+k1

...
∆m















=















c 0 . . . b1 b0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
0 0 . . . 1 0





























∆m+k

∆m+k−1

∆m+k−2
...

∆m−1















where c = eλτ , b1 = α(eλ(τ−τ
′

2 ) − 1) and

b0 = αeλτ (1 − e−λτ
′

2 ).
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Stability region

τ2

ǫ

10.80.60.40.20

8

7

6

5

4

3

2

1

0

Stability region of the synchronized state of two chaotic Rössler
systems in the parameter plane τ2 − ǫ.
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Stability region

τ

τ 2
m

a
x

21.510.50

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

The maximum τ2max for stable anticipatory synchronization, in two
coupled Rössler systems as a function of the reset time τ .
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Oscillator Death - Quiescent state of neurons

Hindmarsh-Rose model
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Parameter estimation from time series

Definition of the problem

◮ Given the form of the dynamical equations

ẋ = f (x , µ)

µ is a set of parameters.
x is d-dimensional.

◮ Two possibilities:
◮ The time series of a scalar variable is given.
◮ The time series of all the variables are given.

◮ To determine µ.
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Parameter estimation

Error minimization: Static method, master–slave approach.

◮ The master system gives the time series say x1(t).

◮ The slave system knows the equations but does not know one
of the parameter, say r . Assume an arbitrary value r ′.

◮ Define synchronization error

Es =
1

T

∫ T

0
(y − x)2dt

◮ Evaluate Es as a function of r ′. For r ′ = r , we get Es = 0.

◮ Method requires a large number of calculations.

U. Parlitz, Phys. Rev. Lett. 76, 1232 (1996).
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Parameter estimation

Adaptive control: Dynamic method

◮ The master system gives the time series say x1(t).

◮ The slave system knows the equations but does not know one
of the parameter, say r . Assume an arbitrary value r ′.

◮ Introduce a dynamic equation for r ′.

ṙ ′ = h(y1 − x1)

◮ The function h(0) = 0 and it is defined in such a way that
asymptotically r ′ → r and also y → x .

A. Maybhate and REA, Phys. Rev. E 59, 284 (1999); 61, 6461 (2000).
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Lorenz equations + parameter

Lorenz equations for the master system

ẋ1 = σ(x2 − x1)

ẋ2 = x1(r − x3) − x2

ẋ3 = x1x2 − bx3

Lorenz equations for the slave system

ẏ1 = σ(y2 − y1) − ǫ(y1 − x1)

ẏ2 = y1(r − y3) − y2

ẏ3 = y1y2 − by3

σ̇′ = −δ(y1 − x1)(y2 − y1)
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Parameter estimation - Lorenz
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Problems of Synchronization methods

◮ Total time: Condition
T > τs

T – the total time of the time series data.
τs – the time scale for synchronization.

◮ Synchronizing variable:
(a) The slave system must be able to synchronize.
(b) Only time series data of the variables which can lead to
synchronization can be used.
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Modified Newton-Raphson method

Given a dynamical system

ẋ = f (x , µ)

Construct an auxiliary system

ẏ = f (y , ν)

Here ν are the guess values of the parameters µ.
The difference vector

w(t) = y(t) − x(t)

We look for the solution of the equation

w(t) = 0
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Modified Newton-Raphson method

We combine the standard Newton-Raphson method and an Euler
expansion for time evolution.

−(δyk)i = (W k)i =
∑

j

(Ak−1 · · ·A0)ij(W
0)j , i = 1, · · · , d .

→ d independent linear equations for m unknown quantities δν.
To get m equations, we write equations for W 1,W 2, . . . ,W k so
that kd ≥ m.
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Modified Newton-Raphson method

Numerical procedure:

1. Take some guess values for the parameters ν.

2. Use equations above to yield δν.

3. The process is iterated by taking the new improved guess
values as ν + δν.

Note: The total duration of the time series: k∆t.
The procedure leads to numerical problems if m, the number of
unknown parameters is large.

◮ Multiple solutions

◮ Divergence
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Embedding

Embedding with suitable time delays:

◮ Choose some initial times t1, . . . , tn.
E.g. 0, τ, . . . , (n − 1)τ .

◮ The final times t1 + k∆t, . . . , tn + k∆t.

◮ For each pair (ti , ti + k∆t), construct d-equations.
(condition: m ≤ nd .)

◮ Numerical procedure same as before.

Total time duration: tn − t1 + k∆t.
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Example: Rössler

Rössler System

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b + x3(x1 − c)

Rewrite with all quadratic terms

ẋ1 = a0 + a1x1 + a2x2 + a3x3 + a4x
2
1 + a5x

2
2 + a6x

2
3

+a7x1x2 + a8x2x3 + a9x3x1

ẏ1 = b0 + b1x1 + b2x2 + b3x3 + b4x
2
1 + b5x

2
2 + b6x

2
3

+b7x1x2 + b8x2x3 + b9x3x1

ż1 = c0 + c1x1 + c2x2 + c3x3 + c4x
2
1 + c5x

2
2 + c6x

2
3

+c7x1x2 + c8x2x3 + c9x3x1
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Example: Rössler
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Extinction: Introduction

◮ Extinction: 99% species that ever existed on the surface of
the earth are now extinct.

1. What are the reasons of this extinction?
2. Why the species die everywhere, and not survive in some

location or patches? (Rescue effect)

◮ Second question: Spatial synchronization as a possible answer.

REA and G. Rangarajan, Phys. Rev. Lett. 96, 258102 (2006).

REA and G. Rangarajan, unpublished.
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Extinction of species

Some facts.

◮ More than twenty million species exist on the earth today.

◮ More than 99% species that ever existed on the earth are now
extinct.

◮ Presently more than 1000 animal species are endangered.

◮ There are several mass extinction events. A large fraction of
the species die in a small period. (Permian-Triassic extinction:
Killed about 95% of the species.)

◮ Sixth extinction: It is feared that today we are either close to
or at the beginning of a mass extinction event caused by
man’s activities.
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Major mass extinction events

Extinction Event Million Likely Cause
years ago

Cretaceous-Tertiary 65 asteroid hits → large
(KT) scale weather disturbance
End Triassic 199–214 massive floods of lava
Permian-Triassic 251 asteroid hit
Late Devonian 364 unknown
Ordovician-Silurian 439 a drop in sea levels

as glaciers formed, then
by rising sea levels
as glaciers melted.
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KT Extinction

Edaphosaurus,Dimetrodon Platecarpus

Bang 13-15Jan.10



Extinction - causes

KT extinction
Asteroid Hit

Ordovician-Silurian Extinction
Falling and rising sea level
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Rescue Effect

◮ Two possible ways to rescue a population

1. Variation of population: Different patches have different
populations → take different times for extinction. (case I)

2. Variation of external threat/ forcing: Intensity of an external
threat will be minimum or zero in some patches. Populations
may survive in such patches. (case II)

◮ Rescue effect: Population survives in some isolated patches and leads to
the revival of the species.

How does a species become extinct throughout the world?

Why does the rescue effect not operate?
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Population dynamics

A species located at different locations or patches.

◮ Pi (t) – the population at i−th patch, i = 1, . . . N.

◮ Q(t) – an external variable (e.g. lava, asteroid hit, climate
etc.).

Case 1: External variable affects all the populations

dPi

dt
= f1(Pi (t)) + ǫ1g1(Pi (t),Q(t))

+δ
1

N − 1

N
∑

j=1,j 6=i

h(Pi ,Pj )

dQ

dt
= f2(Q(t)) +

ǫ2

N

∑

i

g2(Pi (t),Q(t)),
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Synchronization and extinction

We define the following states

◮ Spatial Synchronization: P = P1 = P2 = · · · = PN .

◮ Extinction: Pi = 0 for all i .

We study the stability of both the states.
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Linear Stability

The Jacobian (δ = 0)

J =













∂f1(P)+ǫ1g1(P,Q)
∂P

· · · 0 ∂ǫ1g1(P,Q)
∂Q

...
...

...
...

0 · · · ∂f1(P)+ǫ1g1(P,Q)
∂P

∂ǫ1g1(P,Q)
∂Q

∂ǫ2g2(P,Q)
∂P

. . . ∂ǫ2g2(P,Q)
∂P

∂f2(Q)+ǫ2g2(P,Q)
∂Q












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Manifolds

◮ Synchronization manifold: It is defined by (P ,Q) and has
dimension two. The eigenvalues are obtained from the matrix

J =

(

∂(f1(P)+ǫ1g1(P,Q))
∂P

∂ǫ1g1(P,Q)
∂Q

N
∂ǫ2g2(P,Q)

∂P
∂(f2(Q)+ǫ2g2(P,Q))

∂Q

)

◮ Transverse manifold It has dimension (N − 1). The
eigenvalues are degenerate and are given by

∂(f1(P) + ǫ1g1(P ,Q))

∂P
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Stability – Manifolds

manifold

manifold

transverse

synchronization

Schematic diagram of the manifolds.

Condition for the stability of synchronized state: All Lyapunov
exponents in the transverse directions must be negative.
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Stability conditions

The stability conditions and the time constants
Spatial Synchronization

λs = 〈
∂

∂P
(f1(P) + ǫ1g1(P ,Q))〉 < 0

τs = 1/λs

Extinction

λe = 〈
∂

∂P
(f1(P) + ǫ1g1(P ,Q))P=0〉 < 0

τe = 1/λe
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Growth and decay terms

We expand function f1(P) in terms of P .

f1(P) = aP + bP2 + O(P3).

◮ First term - must be a growth term, i.e. a > 0.

◮ Second term - observations indicate and also the population
models assume that this term is a decay term, i.e. b < 0.

We find that

τs < τe , b < 0

τs > τe , b > 0

Bang 13-15Jan.10



Synchronization and extinction

◮ b < 0, τs < τe

◮ Spacial synchronization will occur before extinction.
◮ Hence during extinction populations in different patches will

die almost simultaneously.
◮ Rescue effect cannot revive the population.

◮ b > 0, τs > τe

◮ Populations will not synchronize before extinction.
◮ The rescue effect is possible.

(Note: In this case the next higher order term in the expansion is required to get stable solution.)
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Synchronization and extinction

◮ The term bP2 normally comes from competition. Hence in
general b < 0.

◮ A cooperation between the members of the species can help
to make b less negative or even positive. In this case the
rescue effect may operate.

◮ Thus the species can have a natural resistance to extinction if
b > 0.
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Numerical Demonstration
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(Parameters N = 100, ǫ1 = 4.8, ǫ2 = 1.0,Q∗ = 0.5,
u = 0.1, f2(Q) = −u(Q − Q∗))
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Concluding Remarks

◮ Synchronization is an important phenomena of coupled
dynamical systems.

◮ We can observe synchronization in time varying networks.

◮ Synchronization with variable delay is possible.

◮ We can use synchronization for estimating parameters.

◮ We establish a close connection between extinction and
spatial synchronization. Spatial synchronization precedes
extinction when b < 0, thus avoiding rescue effect.
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