

THE COMPLEX COLLECTIVE DYNAMICS OF SELF-DRIVEN PARTICLES from interacting agents to hydrodynamics **Sriram Ramaswamy** http://www.physics.iisc.ernet.in/~sriram CCMT, Physics, IISc

OUTLINE

- Background
 - self-driven particles
 - who should care and why
- Summary of results
 - theory, simulation
 - experiments: living & nonliving
- How we got these results
 - interacting agents and flocking models
 - self-driven hydrodynamics
 - tabletop experiments, simulations
 - self-propelled elastic dimer
- Prospect
 - where do we go from here? Evolution?

Students, collaborators and support

Sumithra Sankararaman Norio Kikuchi

DST Math-Bio Centre SR/S4/MS:419/07

Tapan Adhyapak, K Vijay Council of Scientific and Industrial Research Kumar Ananyo Maitra, Saroj Nandi Suropriya Saha Shradha Mishra (Syracuse) Vijay Narayan (Cambridge) Aditi Simha (IITM) Y Hatwalne (RRI), G Menon (IMSc) M Rao (RRI/NCBS), JF Joanny (Curie) D Lacoste, J Prost (ESPCI)

CEFIPRA | IFCPAR

- N Menon (Amherst), H Chaté (Saclay), F Ginelli (Inst Sys Complexes)
- D Marenduzzo (Edinburgh), S Puri (JNU), J Toner (Oregon),
- M C Marchetti (Syracuse), T B Liverpool (Bristol)

13 Jan 2010

BACKGROUND: SELF-DRIVEN PARTICLES

K Vijay Kumar *et al.* PRE **77** (2008) 020102 R

Fuel in
Free energy dissipated
Internal coordinate cycles
Reaction products out
Result: translation, rotation, pulsation...

PcrA helicase: Yu *et al.,* Biophys J **91** (2006) 2097

13 Jan 2010

Organized states of self-driven particles

CYTOSKELETON http://www.cellsalive.com/cells/cellpix/cytosk2.jpg

What's this?

MYXOBACTERIAL SWARM www.bio.indiana.edu/img/app-profiles/ gvelicer/velicer_swarming_EM.jpg

> BIRDS http://www.bbc.co.uk/iplayer/ images/clip/p00381fg_126_71.jpg

FISH: http://i.dailymail.co.uk/i/pix/2009/08/07/ article-0-05FBBBB2000005DC-727_634x392.jpg

Who should care and why

- Physicists, engineers, materials scientists
 - -new kind of matter, new laws
 - -order, fluctuations and response?
 - -phases and phase transitions
 - -uses: stirring, pumping, swarming
 - -inanimate mimics of active matter?

Who should care and why

- Cell biologists, biochemists, ethologists
 - -collective dynamics of motors
 - -single and collective cell mechanics
 - -Biofilms, quorum sensing
 - -tissue mechanics and growth
 - -animal flocks, swarms, migration

Who should care and why

- Complex systems scientists
 - -Emergent complex behaviour
 - -Patterns, instabilities, chaos
 - Unexpected links between disciplines

SUMMARY OF RESULTS complex dynamics in or near ordered state

- Filament amidst self-driven particles: negative dissipation
- Strong tendency towards high inhomogeneity
- Rods on vibrated surface self-propel: test-bed for theories
- Self-propelled elastic dimer: model for helicase?
- Swimming affects viscosity: experiments! SR - Annual Review of Condensed Matter Physics 2010 to appear
 Bacteria can't swim straight: turbulence at Re = 0 Evolution of Complex Systems, 9

Tense filament as probe of active medium

Kikuchi,,Ehrlicher, Koch, Kaes, Ramaswamy, Rao PNAS **106** (2009) 19776

- One long stiff filament ("microtubule") in background of self-driven particles ("actomyosin")
- Activity + anchoring enhances or reduces tension
- Can get: waves without inertia; negative dissipation

Spontaneous inhomogeneity as system orders

Initially: isotropic state, uniform density Watch onset of oriented state Defect motion causes strong clumping

Giant density fluctuations in ordered phase

V Narayan, SR, N Menon Science **317** (2007) 105: experiments on a vibrated layer of wire segments confirm prediction of SR, Simha, Toner 2003

A self-propelled elastic dimer

The minimal animal t = 0.1The Minimal Animal t = 0.1Pair of particles with asymmetric internal coupling in a homogenous, dissipative, noisy environment

- Damping coefficients depend on pair separation
- Driven by noise with a nonequilibrium component

It moves!

K V Kumar, SR and M Rao Phys Rev E 2008 A Baule, K V Kumar and SR JSTAT 2008

Swimming affects viscosity

Prediction (Hatwalne *et al.,* PRL 2004): bacteria lower viscosity, algae raise it Confirmed: Rafai *et al.,* arXiv:0909.4193v1, Sokolov + Aranson PRL 2009

S Rafai *et al.* 2009 arXiv:0909.4193v1

Bacteria can't swim straight thin film instability of aligned swimmers

HOW WE GOT THOSE RESULTS

interacting agents and flocking models

Reynolds 1987 Vicsek *et al.* 1995

Each agent has position and direction Updates it by interaction with neighbours Simplest models: ignore fluid flow

Agent: animal, bird ,fish, bacterium

Borkar, Jain, Rangarajan adap-org 9804004: "direction" in strategy space Neighbourhood: adjacency matrix, not metric distance Specialisation: freezing of spin Diversification: spin glass Single strategy for all: ferromagnet = flock

13 Jan 2010

How we got those results

interacting agents and flocking models

Each agent has position and direction Aligns with mean of neighbours + noise

Reynolds 1987 Vicsek *et al.* 1995

How we got those results

interacting agents and flocking models

Each agent has position and direction Aligns with mean of neighbours + noise Follows her/his nose

Low noise, high density: ordered flock High noise, low density: isotropic state Reynolds 1987 Vicsek *et al.* 1995

Coarse-grain \rightarrow

Continuum field theory

Orientation = velocity

$$\partial_t c = -\boldsymbol{\nabla} \cdot \boldsymbol{c} \, \mathbf{p}$$

Concentration field *c* Particle velocity field *p*

 $\partial_t \mathbf{p} + \lambda \mathbf{p} \cdot \nabla \mathbf{p} + \dots = (\alpha - \beta \mathbf{p} \cdot \mathbf{p})\mathbf{p} + \Gamma \nabla \nabla \mathbf{p} - \nabla P(c) + \mathbf{f}$

advection Preferred length alignment pressure noise Bertin et al 2003 Mishra 2009

Flocks have big density fluctuations

Toner and Tu PRE 1998

Easy orientational fluctuations lead to large fluctuating mass flux

Headless flockers: Chaté et al.'s model

PRL 96, 180602 (2006)

No head-tail distinction Align with mean of neighbours + small angular noise Fixed small step forward or back along length

Parameters: angular noise, number density

Coarse-grain

find SR-Simha-Toner equations of motion for alignment tensor Q

Mishra, Ginelli, Chaté, Puri, SR 2010

$$\frac{\partial \rho}{\partial t} = a_2 \,\partial_\alpha \partial_\beta \left(\rho \left[\mathbf{Q}\right]_{\alpha\beta}\right) + \frac{a_2}{2} \nabla^2 \rho + a_1 \nabla \cdot \sqrt{\rho} \,\mathbf{n}\eta$$

anisotropic diffusion term $T_m \equiv a_2 \partial_\alpha \left([\mathbf{Q}]_{\alpha\beta} \partial_\beta \rho \right)$

non-equilibrium term $T_c \equiv a_2 \partial_\alpha \left(\rho \partial_\beta [\mathbf{Q}]_{\alpha\beta} \right)$

$\mathbf{n} = \mathbf{local}$ principal axis of \mathbf{Q}

Headless flocks have big density fluctuations too

Easy orientational fluctuations lead to large fluctuating mass flux in steady state Giant density fluctuations: a major prediction

SR, Simha, Toner 2003

13 Jan 2010

Numerical studies: continuum and particle models

Approach to ordered phase, with and without noise

Ordered phase: giant fluctuations, time-correlations

Subtleties associated with noise

Random vs ordered initial conditions

Mishra, Ginelli, Chaté, Puri, SR 2010

Approach to ordered phase

Initial state: random orientation, uniform density Final state: macroscopically oriented How does your garden grow?

Start with Chaté et al. flocking rule

Build coarse-grained PDEs with noise

Compare behaviours

Compare PDEs with SR/Simha/Toner

Shradha Mishra (now at Syracuse) et al. 2010

Kinetics of domain growth

Start with isotropic state, uniform density: Defect motion causes clumping as nematic orders

Curvature \rightarrow mass flux

Shradha Mishra et al 2010

Strong inhomogeneity as domains grow

3-armed density bands around -1/2 defects

Initially uniform density, random orientation

Nematic order grows, density clumps strongly

Mishra et al. 2010

Towards self-driven hydrodynamics

Orientation = velocity

$$\partial_t c = -\boldsymbol{\nabla} \cdot \boldsymbol{c} \, \mathbf{p}$$

Concentration field *c* Particle velocity field *p*

 $\partial_t \mathbf{p} + \lambda \mathbf{p} \cdot \nabla \mathbf{p} + \dots = (\alpha - \beta \mathbf{p} \cdot \mathbf{p})\mathbf{p} + \Gamma \nabla \nabla \mathbf{p} - \nabla P(c) + \mathbf{f}$

advection Preferred length alignment pressure noise Bertin et al 2003 Mishra 2009

Including fluid flow

collective dynamics of self-driven particle with fluid

Density, orientation, fluid velocity fields Self-propulsion produces flow

flow carries and aligns agents

LEADING TO \rightarrow

Liquid-crystal hydrodynamics with a difference

F = free energy relative to isotropic fluid A = deformation rate tensor, Dt = comoving, corotating derivative

$$D_{t}\mathbf{p} + \lambda \mathbf{p} \cdot \nabla \mathbf{p} + \dots = \gamma \mathbf{A} \cdot \mathbf{p} - \frac{\delta F}{\delta \mathbf{p}} + \mathbf{f}$$

inertia
$$\rho(\partial_{t} + \mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla (\sigma^{a} + \sigma^{h}) - \eta \nabla^{2}\mathbf{u} - \nabla \Pi$$

$$\partial_{t}c = -\nabla \cdot c \mathbf{p}$$

$$\sigma^{a} = Wc(\mathbf{r}, t)\mathbf{pp}$$

+ advection by flow

<u>Simha and SR 2002</u>; Hatwalne *et al.* 2004 Kruse, Juelicher, Joanny, Prost, Voituriez, Sekimoto Curie/ESPCI/Dresden 2004-present

Minimal model for self-driven particle in fluid

Curvature pumps fluid; flow reorients filaments

Apply these ideas to fluid film and viscosity behaviour

Swimming affects viscosity: theory

Base state isotropic Shear aligns swimmers: built-in stresses \rightarrow secondary flow Contractile: opposes imposed flow; tensile: supports it Hatwalne et al. PRL 2004

Swimming affects viscosity: experiments

Prediction (Hatwalne *et al.,* PRL 2004): bacteria lower viscosity, algae raise it Confirmed: Rafai *et al.,* arXiv:0909.4193v1, Sokolov + Aranson PRL 2009

Compare viscosity vs vol frac for living and dead algal cells. Find living more viscous, as theory (Hatwalne et al 2004) predicts

S Rafai *et al.* 2009 arXiv:0909.4193v1

Instabilities of active ordered thin film

S Sankararaman + SR PRL $\partial_t h = -\nabla \cdot (h \mathbf{M} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{\sigma})$ $h(\mathbf{r}_{\perp},t)$

Get effective dynamics of Thickness field h Orientation field *p* concentration c

Free surface: spontaneous splay; order parameter couples to tilt

2009

Instability mechanism

End result of these instabilities: turbulence at Re = 0Saintillan and Shelley 2007-09; Wolgemuth 2008.....

13 Jan 2010

Another instability: tilt-induced pumping

Contractile filaments: splay \rightarrow flow Free surface unstable

And another: tensility lowers tension

Tensile active stresses: like anisotropic reduction of surface tension

13 Jan 2010

Tabletop experiments Testing flocking theories with dead particles

- vibrated granular matter:
 a model active system
- experiments

Dead active particles

Tilt = motor coordinate Shaking = energy input to each particle

Active granular matter

- Granular systems: testing ground for active-matter theories
- Real-space imaging
 - Count all particles, measure all orientations
- Access to space-time data
 - Measure time-series, correlators
- SR, Simha, Toner predicted giant number fluctuations
 - Confirmed in Narayan et al. Science 2007

V. Narayan (IISc), N. Menon (UMass), SR: JSTAT 2006, Science 2007 13 Jan 2010

Swarming granular matter

N = 2820 $\Gamma = 5$ Movie sped up 75x

Fluctuation excess: $\Delta N/N^{1/2} vs N$

V Narayan *et al* Science **317** (2007) 105

Get time series of number of particles in windows of various sizes, plot std dev vs mean

A filament among self-driven particles

What happens to a stiff filament surrounded by activity? How does actin-myosin activity affect microtubules?

> Kikuchi,,Ehrlicher, Koch, Kaes, Evolution of Complex Systemaswamy, Rao IISc/ICTS arXiv:0901.4126

A simple model

$$\partial_t \mathbf{u}_{\perp} - \mathbf{v}_{\perp}(x, \mathbf{r}_{\perp} = \mathbf{0}, t) = -\frac{1}{\gamma} \delta F / \delta \mathbf{u}_{\perp} + \mathbf{f}_{\perp}$$
$$\partial_t \mathbf{Q} = -\frac{1}{\zeta} \delta F / \delta \mathbf{Q} + \boldsymbol{\eta},$$

 $\mathbf{u}_{\perp}(x,t)$ transverse fluctuations

$$\mathbf{V}$$
hydrodynamic velocity field \mathbf{Q} nematic order parameter $F_{13}[\mathbf{u}_{2d10}, \mathbf{V}]$ free-energy functional

Free-energy: ordering, elasticity, anchoring

$F[\mathbf{u}_{\perp}, \mathbf{Q}] = F_f[\mathbf{u}_{\perp}] + F_{LD}[\mathbf{Q}] + F_{anc}[\mathbf{u}_{\perp}, \mathbf{Q}]$

$$F_f[\mathbf{u}_{\perp}] = \int_0^L dx [(\sigma/2) \, (\partial_x \mathbf{u}_{\perp})^2 + (\kappa/2) (\partial_x^2 \mathbf{u}_{\perp})^2]$$

$F_{LD}[\mathbf{Q}] = \int dx \int d^2 r_{\perp} [(a/2)\mathbf{Q}^2 + (K/2)(\nabla \mathbf{Q})^2]$

 $F_{anc}[\mathbf{u}_{\perp},\mathbf{Q}]$ Favours normal or parallel alignment of medium and filament

Where's activity?

$$\mathbf{v}_{\perp}(x,\mathbf{r}_{\perp},t) = -(Wc_0/\Gamma)\partial_x \mathbf{Q}_{x\perp}(x,\mathbf{r}_{\perp},t)$$

Force balance: friction against active stresses "Rouse" approximation: local damping

Combine these elements

Interplay: anchoring and activity

Stiffening: strictly nonequilibrium effect
Buckling: provides basis for Brangwynne *et al.*2008

Fluctuation-dissipation ratio

$$R_{q_x\omega} = \frac{N_1\gamma}{k_BT} \left[1 + \frac{\alpha \left(\alpha N_2/N_1 + \beta\right) \left(\zeta/K\right)^2 q_x^2 \Sigma(q_\omega)}{1 - \alpha \beta (\zeta/K)^2 q_x^2 \Sigma(q_\omega)} \right]$$

Scaled ratio of correlation function and dynamic response

•A mess: should be unity if effective temperature

- Depends on activity through Σ
- •Can turn negative at finite frequency
- •Close analogy: Hudspeth et al PNAS '01 auditory hair cells

- Pair of particles with asymmetric internal coupling in a homogenous, dissipative, noisy environment
- Damping coefficients depend on pair separation
- Driven by noise with a nonequilibrium component

Self-propelled elastic dimer

Self-propelled elastic dimer

K Vijay Kumar *et al.,* Phys Rev E 2008

Prospect: where do we go from here?

- Achievements
- Quantitative experiments?
- Evolution?

Achievements

- Framework for mechanics of living matter
- Striking rheology, instabilities; new coarsening
- Activity \rightarrow clumping: bio consequences?
- Thin-film instabilities biofilms? Lamellipodium?
- Granular matter: great laboratory for active matter
- Many new directions to be explored

What's missing?

Quantitative experiments?

- Most comparisons so far: qualitative

 Picture in experiment looks like theory
 Must do better
- Controlled experiments on model systems
 - Bacteria, cell extracts: motors, filaments, ATP
 - Collections of artificial swimmers?
 - Thin-film or confined geometries

Evolution?

- Guttal and Couzin 2010 (to be published) allow parameters in model to evolve, select those that yield success
- Find remarkable state space of Evolutionarily Stable Strategies

Thank you!