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OUTLINE
• Background

– self-driven particles
– who should care and why

• Summary of results
– theory, simulation
– experiments: living & nonliving

• How we got these results
– interacting agents and flocking models
– self-driven hydrodynamics
– tabletop experiments, simulations
– self-propelled elastic dimer

• Prospect
– where do we go from here? Evolution?
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BACKGROUND: SELF-DRIVEN PARTICLES

Fuel in 
Free energy dissipated
Internal coordinate cycles
Reaction products out
Result: translation, rotation, pulsation… 
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K Vijay Kumar et al. PRE 77 (2008) 020102 R PcrA helicase: Yu et al., Biophys J 91 (2006) 
2097



CYTOSKELETON http://www.cellsalive.com/cells/cellpix/cytosk2.jpg 

MYXOBACTERIAL SWARM
www.bio.indiana.edu/img/app-profiles/
gvelicer/velicer_swarming_EM.jpg

Organized states of self-driven particles

What’s this?
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BIRDS  http://www.bbc.co.uk/iplayer/
images/clip/p00381fg_126_71.jpg

FISH: http://i.dailymail.co.uk/i/pix/2009/08/07/
article-0-05FBBBB2000005DC-727_634x392.jpg

http://www.bio.indiana.edu/img/app-profiles/
http://www.bbc.co.uk/iplayer/images/clip/p00381fg_126_71.jpg
http://www.bbc.co.uk/iplayer/images/clip/p00381fg_126_71.jpg
http://i.dailymail.co.uk/i/pix/2009/08/07/


Who should care and why

• Physicists, engineers, materials 
scientists
–new kind of matter, new laws 
–order, fluctuations and response?
–phases and phase transitions 
–uses: stirring, pumping, swarming
– inanimate mimics of active matter? 
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Who should care and why

• Cell biologists, biochemists, 
ethologists
–collective dynamics of motors
–single and collective cell 

mechanics
–Biofilms, quorum sensing
– tissue mechanics and growth
–animal flocks, swarms, migration
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Who should care and why

• Complex systems scientists
–Emergent complex behaviour
–Patterns, instabilities, chaos
–Unexpected links between 

disciplines
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SUMMARY OF RESULTS
complex dynamics in or near ordered state
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• Filament amidst self-driven particles: negative 

dissipation

• Strong tendency towards high inhomogeneity

• Rods on vibrated surface self-propel: test-bed for 

theories

• Self-propelled elastic dimer: model for helicase? 

• Swimming affects viscosity: experiments!

• Bacteria can’t swim straight: turbulence at Re = 0
SR – Annual Review of Condensed Matter Physics 2010 to appear



– One long stiff filament (“microtubule”)  in background 

of self-driven particles (“actomyosin”)

– Activity  + anchoring enhances or reduces tension

– Can get: waves without inertia; negative dissipation

Kikuchi,,Ehrlicher, Koch, 
Kaes, Ramaswamy, Rao
PNAS 106 (2009) 19776

Tense filament as probe of active 
medium
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Spontaneous inhomogeneity as system 
orders

Initially: isotropic state, uniform density
Watch onset of oriented state 
Defect motion causes strong clumping

Mishra, Ginelli, Chate, Puri, SR 2010
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Giant density fluctuations in ordered phase

V Narayan, SR, N Menon
Science 317 (2007) 105:
experiments on a vibrated 
layer of wire segments 
confirm prediction of  
SR, Simha, Toner 2003
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A self-propelled elastic dimer
directed motion from noise

K V Kumar, SR and M Rao Phys Rev E 2008
A Baule, K V Kumar and SR JSTAT 2008
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It moves!



Swimming affects viscosity
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Prediction (Hatwalne et al., PRL 2004): bacteria lower viscosity, algae raise it
Confirmed: Rafai et al., arXiv:0909.4193v1, Sokolov + Aranson PRL 2009

S Rafai et al. 2009 
arXiv:0909.4193v1



Bacteria can’t swim straight
thin film instability of aligned swimmers

p

Sankararaman + 
SR 
Phys Rev Lett 2009
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HOW WE GOT THOSE RESULTS
interacting agents and flocking models
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Each agent has position  and direction
Updates it by interaction with neighbours
Simplest models: ignore fluid flow

Reynolds 1987
Vicsek et al. 1995

Borkar, Jain, Rangarajan adap-org 9804004: 
“direction” in strategy space
Neighbourhood: adjacency matrix, not metric 
distance
Specialisation: freezing of spin
Diversification: spin glass
Single strategy for all: ferromagnet = flock

Agent: animal, 
bird ,fish, 
bacterium



How we got those results
interacting agents and flocking models
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Each agent has position  and direction
Aligns with mean of neighbours + noise

Reynolds 1987
Vicsek et al. 1995



How we got those results
interacting agents and flocking models
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Each agent has position  and direction
Aligns with mean of neighbours + noise
Follows her/his nose

Low noise, high density: ordered flock
High noise, low density: isotropic state 
Reynolds 1987
Vicsek et al. 1995

Coarse-grain 



Continuum field theory

Toner-Tu 1995, 1998

Concentration field c
Particle velocity field p

Orientation = velocity
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noisealignmentPreferred length pressureadvection

Bertin et al 2003
Mishra 2009



Flocks have big density fluctuations
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Toner and Tu PRE 1998

HIGH LOW

Easy orientational 
fluctuations lead to 
large fluctuating mass flux



Headless flockers: Chaté et al.’s model

No head­tail distinction
Align with mean of neighbours 
+ small angular noise
Fixed small step forward or back 
along length

PRL 96, 180602 (2006)

Parameters: angular noise, number density
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Coarse-grain

Mishra, Ginelli, Chaté, Puri, SR 
2010

n = local principal axis of Q
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find SR­Simha­Toner equations of motion
for alignment tensor Q



Headless flocks have big density fluctuations too
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SR, Simha, Toner 2003
Easy orientational  fluctuations lead to 
large fluctuating mass flux in steady state
Giant density fluctuations: a major 
prediction



Numerical studies: continuum and particle models

Approach to ordered phase, with and without noise

Ordered phase: giant fluctuations, time­correlations

Subtleties associated with noise

Random vs ordered initial conditions

Mishra, Ginelli, Chaté, Puri, SR 
2010
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Approach to ordered phase

Start with Chaté et al. flocking rule

Build coarse­grained PDEs with noise

Compare behaviours

Compare PDEs with SR/Simha/Toner

Shradha Mishra (now at Syracuse) et al. 2010

Initial state: random orientation, uniform density
Final state: macroscopically oriented
How does your garden grow? 
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Kinetics of domain growth

Start with isotropic state, uniform density:
Defect motion causes clumping as nematic orders 

Curvature  mass flux

Shradha Mishra et al 2010
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Strong inhomogeneity as domains grow

3-armed density 
bands around -1/2 
defects 
(Actin: J Kaes)

Initially uniform density, 
random orientation

Nematic order grows, 
density clumps strongly

Mishra et al. 2010
13 Jan 2010 27

Evolution of Complex Systems, 
IISc/ICTS



Towards self-driven hydrodynamics

Toner-Tu 1995, 1998

Concentration field c
Particle velocity field p

Orientation = velocity
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noisealignmentPreferred length pressureadvection

Bertin et al 2003
Mishra 2009



Including fluid flow

Density, orientation,  fluid velocity 
fields 
Self-propulsion produces flow
flow carries and aligns agents

collective dynamics of self-driven particle with 
fluid
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LEADING TO 



Liquid-crystal hydrodynamics with a difference

Simha and SR 2002; Hatwalne et al. 2004
Kruse, Juelicher, Joanny, Prost, Voituriez, Sekimoto 
Curie/ESPCI/Dresden 2004-present

F = free energy relative to isotropic fluid
A = deformation rate tensor, Dt = comoving, corotating derivative
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+ advection by flow

inertia



Minimal model for self-driven particle in fluid

bacterium

Motor-filament 
complex, alga: 
contractile

Active particles generate local straining flows
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Curvature pumps fluid; flow reorients filaments
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Apply these ideas to fluid film 
and viscosity behaviour



Swimming affects viscosity: theory
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Base state isotropic
Shear aligns swimmers: built-in stresses  secondary flow
Contractile: opposes imposed flow; tensile: supports it
Hatwalne et al. PRL 2004



Swimming affects viscosity: experiments
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Prediction (Hatwalne et al., PRL 2004): bacteria lower viscosity, algae raise it
Confirmed: Rafai et al., arXiv:0909.4193v1, Sokolov + Aranson PRL 2009

S Rafai et al. 2009 
arXiv:0909.4193v1

Compare viscosity
vs vol frac for living and dead 
algal cells. Find living more viscous, 
as theory (Hatwalne et al 2004) 
predicts



Instabilities of active ordered thin film

Get effective dynamics of  
Thickness field h 
Orientation field p
concentration c 

S Sankararaman + SR PRL 
2009

Free surface: 
spontaneous splay;
order parameter couples to 
tilt

p
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Instability mechanism
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End result of these instabilities: turbulence at Re = 0
Saintillan and Shelley 2007-09; Wolgemuth 2008……



Another instability: tilt-induced pumping

Contractile filaments: splay  flow
Free surface unstable
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And another: tensility lowers tension

Tensile active stresses: like anisotropic reduction of surface tension
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Tabletop experiments
Testing flocking theories with dead particles

– vibrated granular matter:

a model active system

– experiments
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Dead active particles

Tilt = motor coordinate
Shaking = energy input to each particle

Polar: directed motion
Apolar: no net direction

Yamada et al., Kudrolli et al.
vibrate

Granular rods are self-driven!
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Active granular matter
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• Granular systems: testing ground 
    for active-matter theories
• Real-space imaging

– Count all particles, measure all orientations

• Access to space-time data
– Measure time-series, correlators

• SR, Simha, Toner predicted giant number 
fluctuations
– Confirmed in Narayan et al. Science 2007

V. Narayan (IISc), N. Menon (UMass), SR:
JSTAT 2006, Science 2007



Swarming granular matter

N = 2820

Γ = 5

Movie sped up 75x
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Fluctuation excess: ∆ N/N1/2 vs N 

V Narayan et al 
Science
317 (2007) 105
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Get time series of 
number of particles 
in windows of various 
sizes, plot std dev vs 
mean



A filament among self-driven particles

What happens to a stiff filament surrounded by activity? 
How does actin-myosin activity affect microtubules?

orientation Q

Kikuchi,,Ehrlicher, 
Koch, Kaes, 
Ramaswamy, Rao 
arXiv:0901.4126
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A simple model
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Free-energy: ordering, elasticity, anchoring

Favours normal or parallel alignment of 
medium and filament
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Where’s activity?

Force balance: friction against active stresses
“Rouse” approximation: local damping

Combine these elements
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Interplay: anchoring and 
activity

Active stiffening Active softening

Active softening Active stiffening

•Stiffening: strictly nonequilibrium effect 
•Buckling: provides basis for Brangwynne et al. 
2008 
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Fluctuation-dissipation ratio

•A mess: should be unity if effective temperature
•Depends on activity through Σ
•Can turn negative at finite frequency
•Close analogy: Hudspeth et al PNAS ‘01 auditory hair cells

Scaled ratio of correlation function and dynamic response
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Self-propelled elastic dimer
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Self-propelled elastic dimer
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Self-propelled elastic dimer
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K Vijay Kumar et al., Phys Rev E 2008



Prospect: where do we go from here?

– Achievements

– Quantitative experiments?

– Evolution?

13 Jan 2010 53
Evolution of Complex Systems, 

IISc/ICTS



Achievements

• Framework for mechanics of living matter
• Striking rheology, instabilities; new coarsening
• Activity  clumping: bio consequences? 
• Thin-film instabilities – biofilms? Lamellipodium?
• Granular matter: great laboratory for active 

matter
• Many new directions to be explored

What’s missing?
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Quantitative experiments?

• Most comparisons so far: qualitative
– Picture in experiment looks like theory
– Must do better

• Controlled experiments on model 
systems
– Bacteria, cell extracts: motors, 

filaments, ATP
– Collections of artificial swimmers? 
– Thin-film or confined geometries
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Evolution?
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• Guttal and Couzin 2010 (to be 
published) allow parameters in model 
to evolve, select those that yield 
success

• Find remarkable state space of 
Evolutionarily Stable Strategies



Thank you!
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