Statistics of Kolkata Paise Restaurant Problem

Bikas K Chakrabarti, Saha Inst. Nucl. Phys., Kolkata

Collaborators: Anindya Sundar Chakrabari (ISI) Arnab chatterjee (ICTP) Asim Ghosh (SINP) Manipushpak Mitra (ISI)

Main Publication:

- The kolkata paise restaurant problem and resource utilization, Physica A 388 (2009)
- Kolkata paise restaurant problem ,Wolfram Demonstration (http://demonstrations.wolfram.com/KolkataPaiseRestaurantKPRProblem/)

Plan Of The Talk

- What is KPR ?
- Random choice case.
- Avoiding-past-crowd choice
 a) Deterministic b) Probabilistic
- Strict-rank-dependent choice.
- Summary and discussion.

What is KPR?

- There are N agents and N equally priced but differently ranked (agreed by all) restaurants, each capable of serving lunch to only one agent each evening.
- If, on any evening, more than one person arrive at the same restaurant, one of them, chosen randomly, gets food; rest do not get food that evening.
- No interaction (parallel discussion among the agents).
- A repeated game.
- Information regarding the agent distributions for previous evenings are available to everyone.
- Each agent wants to get food most evenings, and that too at the higher ranked restaurants!

The strategy chosen by each agent....

Let the probability to arrive at the $k^{\it th}$ ranked restaurant be:

$$p_{k}(t) = \frac{1}{z} \left[k^{\alpha} \exp\left(-\frac{n_{k}(t-1)}{T}\right) \right] \qquad z = \sum_{k=1}^{N} k^{\alpha} \exp\left(-\frac{n_{k}(t-1)}{T}\right)$$
$$\alpha, T > 0 \quad ;$$

• $\alpha = 0, T \rightarrow \infty$ corresponds to random choice

- $\alpha = 1, T \rightarrow \infty$ corresponds to strict rank-dependent choice
- $\alpha = 0, T \rightarrow 0$ corresponds to avoiding-past-crowd choice

Random-choice....

- Here we take λN agents and N restaurants.
- Any agent selects any restaurant with probability $P = \frac{1}{N}$.
- Probability that a single restaurant is chosen by *m* agents is given by $D(m) = {\binom{\lambda N}{m}} p^m (1-p)^{\lambda N-m}; p = \frac{1}{N}$

$$=\frac{\lambda^m}{m!}\exp(-\lambda) \qquad N \to \infty$$

<u>continued</u>.....

 Fraction of restaurants not chosen by any agents is given by

 $\tilde{f} = 1 - \exp(-\lambda)$ = 0.63 for $\lambda = 1$

Distribution D of customers getting dinner any evening

 The fraction of utilization will be Gaussian around this average.

f: fraction of customers

Strict-rank-dependent choice

An agent goes to the k-th restaurant with probability

$$p_k(t) = \frac{k^{\alpha}}{\sum k^{\alpha}} \qquad [\qquad T \to \infty \qquad]$$

• In this case, fraction of successful customers or restaurants is around 0.58 for $\alpha = 1$.

Analytical result for strictrank-dependent choice.....

- We make N/2 pairs of restaurants and each pair has restaurant ranked kand N+1-k where $1 \le k \le N/2$.
- An agent chooses any pair with probability p = 2/N, giving $\lambda = 2$
- The fraction of pairs selected by the agents

 $f_0 = 1 - \exp(-\lambda) \simeq 0.86$

continued....

Expected number of restaurants occupied in a pair of restaurants with rank k and N+1-k by a pair of agents is

$$E_{k} = 1 \times \frac{k^{2}}{(N+1)^{2}} + 1 \times \frac{(N+1-k)^{2}}{(N+1)^{2}} + 2 \times 2 \times \frac{k(N+1-k)}{(N+1)^{2}}$$

continued....

 Therefore, the fraction of restaurants occupied by pairs of agents is

$$f_1 = \frac{1}{N} \sum_{k=1,\dots,N/2} E_k \simeq 0.67$$

 Actual fraction of restaurant occupied by the agent is

$$\tilde{f} = f_0 \cdot f_1 \simeq 0.58$$

Distribution D of customers getting dinner any evening

f: fraction of customers

Avoiding-past-crowd choice: a) Strict avoidance

- In this case an agent completely avoids the past crowd.
- Therefore an agent only chooses from the vacant restaurants in previous evening.
- The fraction of restaurants visited by the agents in the last evening (\tilde{f}) is avoided by the agents this evening.

Continued....

- Therefore in this case $N(1-\tilde{f})$ restaurants remain to choose from.
- Agents choose randomly among those restaurants with $\lambda = 1/(1 \tilde{f})$
- Therefore we get the equation for \tilde{f} as

$$(1 - \tilde{f}) \left[1 - \exp\left(-\frac{1}{1 - \tilde{f}}\right) \right] = \tilde{f}$$

Solution of this equation gives $\tilde{f} \simeq 0.46$

continued...

Avoiding-past-crowd choice

- In this case $T \rightarrow 0$ and $\alpha = 0$
- Simulations have been done for N = 1000 and averaging over 10⁶ time steps

Distribution D of customers getting

Avoiding-Past-Crowd: b) Probabilistic Choice

Typical prospective customer (agent) distribution on any evening

Discussion...

- Here we consider N agents who, on every evening (t), attempt to choose form N equally priced restaurants having well defined ranking.
- The KPR problem has a trivial solution (dictated from out side) where each agent gets into one of the respective restaurants.
- In KPR game, it can be extremely difficult.
- Social Utilization fraction is seen to be more for relatively stupid stochastic strategies (e.g. random choice or probabilistic past-crowd avoidance case) compared to all the smarter strategies considered here!

THANK YOU