Statistics of Kolkata Paise Restaurant Problem

```
Bikas K Cfakrabarti, Safia Inst. Nucl. Phys., Kolkata
Collaborators:
Anindya Sundar Chakrabari (IS I)
Arnab chatterjee (ICTP)
Asim Ghosh (S INNP)
Manipusfipak Mitra (IS I)
Main Public ation:
- The kolkata paise restaurant problem and resource utilization, Pfysica
        A388 (2009)
```

- Kolkata paise restaurant problem ,Wolfram Demonstration (http:/ / demonstrations.wolfram.com/ KolkataPaiseRestaurantKPRProblem/)

Plan Of The Talk

- What is KPR ?
- Random choice case.
- Avoiding-past-crowd choice
a) Deterministic 6) Probabilistic
- Strict-rank-dependent choice.
- Summary and discussion.

What is RPR ?

- There are N agents and N equally priced but differently ranked (agreed by all) restaurants, each capable of serving lunch to only one agent each evening.
- If, on any evening, more than one person arrive at the same restaurant, one of them, chosen randomly, gets food; rest do not get food that evening.
- No interaction (paralleldiscussion among the agents).
- A repeated game.
- Information regarding the agent distributions for previous evenings are available to everyone.
- Eachagent wants to get food most evenings, and that too at the figher ranked restaurants!

The strategy chosen by eacf agent....

Let the probability to arrive at the $K^{\text {th }}$ ranked restaurant be:

$$
\begin{aligned}
& p_{k}(t)=\frac{1}{z}\left[k^{\alpha} \exp \left(-\frac{n_{k}(t-1)}{T}\right)\right] \quad z=\sum_{k=1}^{N} k^{\alpha} \exp \left(-\frac{n_{k}(t-1)}{T}\right) \\
& \alpha, T>0
\end{aligned}
$$

$\square \alpha=0, T \rightarrow \infty$ corresponds to random cfoice

- $\alpha=1, T \rightarrow \infty$ corresponds to strict rank-dependent choice
- $\alpha=0, T \rightarrow 0$ corresponds to avoiding-past-crowd choice

Random-choice...

- Here we take λN agents and N restaurants.
- Any agent selects any restaurant with probability $\mathrm{P}=\frac{1}{\mathrm{~N}}$.
- Probability that a single restaurant is chosen by m agents is given by

$$
\begin{aligned}
& D(m)=\binom{\lambda N}{m} p^{m}(1-p)^{\lambda N-m} ; p=\frac{1}{N} \\
& =\frac{\lambda^{m}}{m!} \exp (-\lambda) \quad N \rightarrow \infty
\end{aligned}
$$

- Fraction of restaurants not chosen by any agents is given $6 y$

$$
\begin{aligned}
& \tilde{f}=1-\exp (-\lambda) \\
& \simeq 0.63 \text { for } \lambda=1
\end{aligned}
$$

- The fraction of utilization will be Gaussian around this average.

Distribution D of customers
getting dinner any evening

$f:$ fraction of customers

Strict-rank-dependent
 choice

- Anagent goes to the $k_{\text {-th restaurant }}$ with probability

$$
p_{k}(t)=\frac{k^{\alpha}}{\sum k^{\alpha}} \quad[\quad T \rightarrow \infty \quad]
$$

- In this case, fraction of successful customers or restaurants is around 0.58 for $\alpha=1$.

Analytical result for strict-rank-dependent choice....

- We make $N / 2$ pairs of restaurants and each pair has restaurant ranked k and $N+1-k$ where $1 \leq k \leq N / 2$.
- An agent chooses any pair with probability $p=2 / N$, giving $\lambda=2$
- The fraction of pairs selected by the agents

$$
f_{0}=1-\exp (-\lambda) \simeq 0.86
$$

- Expected number of restaurants occupied in a pair of restaurants with rank k and $N+1-k$ by a pair of agents is

$$
E_{k}=1 \times \frac{k^{2}}{(N+1)^{2}}+1 \times \frac{(N+1-k)^{2}}{(N+1)^{2}}+2 \times 2 \times \frac{k(N+1-k)}{(N+1)^{2}}
$$

- Therefore, the fraction of restaurants occupied by pairs of agents is

$$
f_{1}=\frac{1}{N} \sum_{k=1, \ldots, N / 2} E_{k} \simeq 0.67
$$

- Actual fraction of
restaurant occupied by the agent is

$$
\tilde{f}=f_{0} . f_{1} \simeq 0.58
$$

Distribution \mathcal{D} of customers getting dinner any evening

$f: f r a c t i o n ~ o f ~ c u s t o m e r s ~$

Avoiding-past-crowd choice: a) Strict avoidance

- In this case an agent completely avoids the past crowd.
- Therefore an agent only chooses from the vacant restaurants in previous evening.
- The fraction of restaurants visited by the agents in the last evening (f) is avoided by the agents this evening.

Continued...

- Therefore in this case $N(1-\tilde{f})$ restaurants remain to choose from.
- Agents choose randomly among those restaurants with $\quad \lambda=1 /(1-\tilde{f})$
- Therefore we get the equation for \tilde{f} as

$$
(1-\tilde{f})\left[1-\exp \left(-\frac{1}{1-\tilde{f}}\right)\right]=\tilde{f}
$$

Solution of this equation gives $\tilde{f} \simeq 0.46$

continued...

- Inthis case ${ }^{T \rightarrow 0}$ and $\alpha=0$
- Simulations fave been done for $N=1000$ and ave raging over 10^{6}
f : fraction of customers time steps
continued...

Ulifization against the noise parameter.

Avoiding-Past-Crowd: 6) Probabilistic Choice

- Typical prospective customer (agent) distribution on any evening

Discussion...

- Here we consider N agents who, on every evening (t), attempt to choose form N equally priced restaurants faving well defined ranking.
- The KPRR problem has a trivial solution (dictated from out side) where eachagent gets into one of the respective restaurants.
- In KPRgame, it can be extremely difficult.
- Social Ultilization fraction is seen to be more for relatively stupid stochastic strategies (e.g. random choice or probabilistic past-crowd avoidance case) compared to all the smarter strategies considered here!

$\mathcal{T H A N K X O U L}$

