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Quantum Computation

I Physically, a computer is a dynamical system. It starts from
an initial state (encoding the data), evolves in time and
reaches a final state (encoding the answer).

I Computers with quantum dynamics can solve some
problems much faster than computers with the classical
dynamics. eg: Prime factorisation (Shor, 1994), Search
algorithm (Grover),.....

I The Hilbert space for a quantum computer is formulated as
a tensor product of 2-level systems (qubits).

I The time evolution is,

|ψ〉fin = T
(

e−i
R t2

t1
dt H(t)

)
|ψ〉in

The time dependence of the hamiltonian encodes the
program.



Fault Tolerance

I The environment will always interact with the system and
introduce errors.

I There are both "software" and "hardware" approaches to
minimize errors.

I A hardware solution can be achieved if the environment
cannot cause transitions in the subspace of the Hilbert
space that represents the qubits.

I One possibility is to realise qubits as the states of
topological defects so that the operators in the qubit
subspace correspond to non-local observables.



Non-Abelian Anyons

I Vortices in the ν = 5/2 FQHE states are believed to be
non-abelian anyons (Moore and Read, 1991).

I There are two possible quantum states of the vortex
excitation which are degenerate in energy.

I When the positions of two vortices are interchanged, the
state is unitarily rotated in this degenerate subspace,

|~R1, ~R2〉 = U|~R2, ~R1〉

I The U matrices form a unitary representation of the Braid
group.



Topological Quantum Computation

I Qubits: Quantum states of non-abelian anyons.
I Computational operations (gates): Braiding of the anyons.

Hence,

I Physical systems where non-abelian anyons can be
realised and manipulated are of interest.

I Since spin systems can be engineered and manipulated
using cold atoms, realising non-abelian anyons in in spin
systems is of interest.
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The hamiltonian

Alexei Kitaev,“Anyons in an exactly solved model and beyond", cond-mat/0506438, Annals of Physics.

H = Jx
∑
<ij>

σx
i σ

x
j + Jy

∑
<ij>

σy
i σ

y
j + Jz

∑
<ij>

σz
i σ

z
j



Conserved quantities

Wp ≡ σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6

[Wp,H] = 0 = [Wp,Wp′ ]

W 2
p = 1

Conserved quantities have the properties of magnetic fluxes of
a Z2 gauge theory



Jordan-Wigner transformation for S = 1
2

The disorder variables:

µil =
∏
m<l

(
σz

im

)
Jordan-Wigner fermions:

ξin = σx
inµin ηin = σy

inµin

{ξin , ξim} = 2δnm = {ηin , ηim}
{ξin , ηim} = 0



Majoranisation

H =
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiuijξj

uij = iηiηj

Hamiltionian of Majorana fermions, ξi , interacting with Z2 gauge
fields, uij , in the gauge,

u〈ij〉 = u〈ij〉 = 1



The exact solution

H =
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiuijξj

[uij ,ukl ] = 0
[uij ,H] = 0

I The Z2 gauge fields, uij , are conserved and hence do not
fluctuate.

I Hence the RVB mean field theory is exact !
The problem reduces to a quadratic theory of Majorana
fermions in the background of static Z2 gauge field
configurations.



The phase diagram

I The Chern number, ν, distinguishes the two phases. ν = 0
in gapped phase, ν = ±1 in gapless phase. Gapless
excitations are Majorana fermions (spinons).

I Vortices (flux in one plaquette flipped) are anyonic
excitations. Abelian in gapped phase and non-abelian in
gapless phase.



A toy model for frustrated quantum magnets

I Infinitely degenerate classical ground state manifold like
the Heisenberg model on Kagome and Pyrochlore lattices
G. Baskaran, Diptiman Sen and R. Shankar, Phys. Rev. B 78 115116 (2008). D. Dhar, Kabir and Samarth

Chandra (unpublished)

I A spin liquid ground state: Only non-zero 2-spin
correlators:

〈w |σx
i σ

x
i+x̂ |w〉 〈w |σ

y
i σ

y
i+ŷ |w〉 〈w |σ

z
i σ

z
i+ẑ |w〉

G. Baskaran, Saptarshi Mandal and R. Shankar, PRL 98, 247201 (2007)

I Low lying excitations are fermions (spinons).

Physics of Kitaev’s Honeycomb Model similar to that expected
in physically realisable frustrated quantum anti-ferromagnets.
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Majorana operators

Consider a system of N fermions,{
ci , c

†
j

}
= δij{

ci , cj
}

= 0{
c†i , c

†
j

}
= 0

Define 2N hermitian Majorana operators,

ξi1 ≡ 1
2

(
ci + c†i

)
ξi2 ≡ 1

2i

(
ci − c†i

)
{
ξia, ξjb

}
= 2δijδab



General Hamiltonian

H =
∑

ij

i
2
ξiaAia,jbξjb

A∗ia,jb = Aia,jb = −Ajb,ia

The eigenvalues of A are purely imaginary and come in pairs,

Aφn = iεnφn, A (φn)
∗

= −iεn (φn)
∗
, n = 1, . . .N

φn = φnR + iφnI(
φnR

)T
φmR = δnm

(
φnR

)T
φmI = 0

(
φnI
)T

φmI = δnm



Diagonalisation

ξia =
∑

n

(
αnφ

nR
ia + βnφ

nI
ia

)
αn =

∑
ia

φnR
ia ξia βn =

∑
ia

φnI
ia ξia

H =
∑

n

εn (iβnαn)

(iβnαn)
2 = 1

Ground state:

iβnαn|GS〉 = −|GS〉, ∀n 6= 0

I If N0 of the εns are zero, the ground state is 2N fold
degenerate, corresponding to iβ0nα0n = ±1



Unpaired modes

I The eigenfunctions of ε = 0 modes can always be chosen
to be real

Aφ0l = 0,
(
φ0l
)∗

= φ0l , l = 1, . . . ,2N0

I The degenerate ground state manifold corresponds to
different ways of "pairing" the zero modes

γl ≡
∑

ia

φ0l
iaξia

I Since there is no fixed way of pairing the zero modes, we
will refer to them as unpaired modes.
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Unpaired Majorana modes in the Kitaev Honeycomb
Model

I Ground state of the Kitaev model corresponds to
Wp = +1, ∀p

I Wp = −1 ≡ vortex at plaquette p.
I Each vortex has an trapped unpaired Majorana mode.
I If there is only one vortex, the second unpaired mode is at

the edge of the sample.
I If the system is gapped (by modifying the model), the

unpaired mode is localised.



Non-Abelian Anyons

Consider a situation with 4 unpaired modes, two in the bulk,
γ1, γ2 and two at the edge, γ1∞, γ2∞.
If the ground state is,

iγ1γ1∞ |00〉 = |00〉, iγ2γ2∞ |00〉 = |00〉



The exchange operation

U ≡ e
π
4 γ1γ2

U†γ1U = γ2

U†γ2U = −γ1

U|00〉 =
1√
2

(|00〉+ |11〉)

UU|00〉 = |11〉
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Motivation

(Abhinav Saket, S.R. Hassan and R. Shankar)

I It is of interest to find ways to create and manipulate
unpaired modes.

I Kitaev model can be generalised in a variety of ways to get
similar (Z2 gauge theories with conserved fluxes) exactly
solvable models any dimension.

I 1-d models are easier to play around with.
I So construct and explore 1-d models with unpaired

Majorana fermions.



The Model

H = −Jx
∑
<ij>

σx
i σ

x
j − Jy

∑
<ij>

σy
i σ

y
j − Jz

∑
<ij>

σz
i σ

z
j

Conserved fluxes:

W L = σx
1σ

z
2σ

y
3 W R = −σx

4σ
y
2σ

z
3

H =
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiξj +
∑
〈ij〉

iξiuijξj



Local Symmetry and Degeneracy

Local Symmetry at Jy = Jz :

σa
2 ↔ σa

3

σy
i → σz

i , σz
i → −σ

y
i

Implies every eigenstate is 2Np fold degenerate

Degeneracy can be lifted, in fact any flux sector can be made
the ground state by adding "chemical potential" terms,

H = H + Hw Hw =
∑

n

(
µL

nW L
n + µR

n W R
n

)



Ground state

I At Jx = Jy = Jz = 1 and µL,R
p = 0 the ground state is in the

flux sector, W L
p = 1, W R

p = −1 (and symmetry related
sectors).

I Numerically checked by explicit evaluation in all sectors for
the 20 site system.

I Numerically checked for 800 site system for translationally
invariant states.

I Fermionic sector gapped with a gap of 0.25



Defects



Unpaired Modes

No zero energy modes for 0 Defects.
1 zero energy mode for 1 Defects.



Unpaired Modes

No zero energy modes for 0 Defects.
1 zero energy mode for n 6= 0 Defects.



Eigenvectors with 5 defects



Eigenvectors with 35 defects



Eigenvectors with 65 defects



Eigenvectors with 95 defects



Eigenvectors with all defects



Defect energy



Conclusions

Results:

I The tetrahedral model has localised unpaired Majorana
modes.

I These modes can be moved around by tuning the local
chemical potential which correspond to 3-spin operators.

Ongoing work:

I Can these results be understood analytically ?
I Can the local chemical potential arise as effective

interactions from a magnetic field term ?



THANK YOU !
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