Majorana modes and non-abelian anyons in spin systems

R. Shankar

The Institute of Mathematical Sciences, Chennai

Workshop on Non-equilibrium Statistical Physics 1st February, 2010. IIT Kanpur.

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

A D > A B > A B > A B >

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

A D > A P > A D > A D >

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Quantum Computation

- Physically, a computer is a dynamical system. It starts from an initial state (encoding the data), evolves in time and reaches a final state (encoding the answer).
- Computers with quantum dynamics can solve some problems much faster than computers with the classical dynamics. eg: Prime factorisation (Shor, 1994), Search algorithm (Grover),.....
- The Hilbert space for a quantum computer is formulated as a tensor product of 2-level systems (qubits).
- The time evolution is,

$$|\psi\rangle_{\it fin} = T\left(e^{-i\int_{t_1}^{t_2} dt \ H(t)}\right)|\psi\rangle_{\it in}$$

The time dependence of the hamiltonian encodes the program.

Fault Tolerance

- The environment will always interact with the system and introduce errors.
- There are both "software" and "hardware" approaches to minimize errors.
- A hardware solution can be achieved if the environment cannot cause transitions in the subspace of the Hilbert space that represents the qubits.
- One possibility is to realise qubits as the states of topological defects so that the operators in the qubit subspace correspond to non-local observables.

A D > A B > A B > A B >

Non-Abelian Anyons

- ► Vortices in the v = 5/2 FQHE states are believed to be non-abelian anyons (Moore and Read, 1991).
- There are two possible quantum states of the vortex excitation which are degenerate in energy.
- When the positions of two vortices are interchanged, the state is unitarily rotated in this degenerate subspace,

$$|ec{R}_1,ec{R}_2
angle=U|ec{R}_2,ec{R}_1
angle$$

The U matrices form a unitary representation of the Braid group.

・ロ・・ 日本・ 日本・ 日本

- Qubits: Quantum states of non-abelian anyons.
- Computational operations (gates): Braiding of the anyons.

Hence,

- Physical systems where non-abelian anyons can be realised and manipulated are of interest.
- Since spin systems can be engineered and manipulated using cold atoms, realising non-abelian anyons in in spin systems is of interest.

A D > A P > A D > A D >

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

The hamiltonian

Alexei Kitaev,"Anyons in an exactly solved model and beyond", cond-mat/0506438, Annals of Physics.

$H = J_x \sum_{\langle ij \rangle} \sigma_i^x \sigma_j^x + J_y \sum_{\langle ij \rangle} \sigma_j^y \sigma_j^y + J_z \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z$

ヘロア 人間 アメ ヨアメ ヨア

Conserved quantities

$$\begin{array}{rcl} W_{\rho} & \equiv & \sigma_1^{\mathsf{X}} \sigma_2^{\mathsf{Y}} \sigma_3^{\mathsf{Z}} \sigma_4^{\mathsf{X}} \sigma_5^{\mathsf{Y}} \sigma_6^{\mathsf{Z}} \\ [W_{\rho}, H] & = 0 = & [W_{\rho}, W_{\rho'}] \\ W_{\rho}^2 & = & 1 \end{array}$$

Conserved quantities have the properties of magnetic fluxes of a Z_2 gauge theory

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Jordan-Wigner transformation for $S = \frac{1}{2}$

The disorder variables:

$$\mu_{i_l} = \prod_{m < l} \left(\sigma_{i_m}^z \right)$$

Jordan-Wigner fermions:

$$\begin{aligned} \xi_{i_n} &= \sigma_{i_n}^{\mathsf{x}} \mu_{i_n} & \eta_{i_n} &= \sigma_{i_n}^{\mathsf{y}} \mu_{i_n} \\ \{\xi_{i_n}, \xi_{i_m}\} &= \mathbf{2}\delta_{nm} = \{\eta_{i_n}, \eta_{i_m}\} \\ \{\xi_{i_n}, \eta_{i_m}\} &= \mathbf{0} \end{aligned}$$

Majoranisation

$$H = \sum_{\langle ij \rangle} i\xi_i\xi_j + \sum_{\langle ij \rangle} i\xi_i\xi_j + \sum_{\langle ij \rangle} i\xi_i u_{ij}\xi_j$$
$$u_{ij} = i\eta_i\eta_j$$

Hamiltionian of Majorana fermions, ξ_i , interacting with Z_2 gauge fields, u_{ij} , in the gauge,

$$u_{\langle ij\rangle} = u_{\langle ij\rangle} = 1$$

The exact solution

$$H = \sum_{\langle ij \rangle} i\xi_i\xi_j + \sum_{\langle ij \rangle} i\xi_i\xi_j + \sum_{\langle ij \rangle} i\xi_i u_{ij}\xi_j$$
$$\begin{bmatrix} u_{ij}, u_{kl} \end{bmatrix} = 0$$
$$\begin{bmatrix} u_{ij}, H \end{bmatrix} = 0$$

- The Z₂ gauge fields, u_{ij}, are conserved and hence do not fluctuate.
- Hence the RVB mean field theory is exact ! The problem reduces to a quadratic theory of Majorana fermions in the background of static Z₂ gauge field configurations.

A D > A B > A B > A B >

The phase diagram

- The Chern number, ν, distinguishes the two phases. ν = 0 in gapped phase, ν = ±1 in gapless phase. Gapless excitations are Majorana fermions (spinons).
- Vortices (flux in one plaquette flipped) are anyonic excitations. Abelian in gapped phase and non-abelian in gapless phase.

A toy model for frustrated quantum magnets

 Infinitely degenerate classical ground state manifold like the Heisenberg model on Kagome and Pyrochlore lattices

G. Baskaran, Diptiman Sen and R. Shankar, Phys. Rev. **B 78** 115116 (2008). D. Dhar, Kabir and Samarth

Chandra (unpublished)

A spin liquid ground state: Only non-zero 2-spin correlators:

$$\langle w | \sigma_i^{\mathsf{X}} \sigma_{i+\hat{\mathsf{X}}}^{\mathsf{X}} | w \rangle \langle w | \sigma_i^{\mathsf{Y}} \sigma_{i+\hat{\mathsf{Y}}}^{\mathsf{Y}} | w \rangle \langle w | \sigma_i^{\mathsf{Z}} \sigma_{i+\hat{\mathsf{Z}}}^{\mathsf{Z}} | w \rangle$$

G. Baskaran, Saptarshi Mandal and R. Shankar, PRL 98, 247201 (2007)

Low lying excitations are fermions (spinons).

Physics of Kitaev's Honeycomb Model similar to that expected in physically realisable frustrated quantum anti-ferromagnets.

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Majorana operators

Consider a system of N fermions,

$$\begin{cases} \boldsymbol{c}_i, \boldsymbol{c}_j^{\dagger} \\ \boldsymbol{c}_i, \boldsymbol{c}_j \end{cases} = \boldsymbol{\delta}_{ij} \\ \begin{cases} \boldsymbol{c}_i, \boldsymbol{c}_j \\ \boldsymbol{c}_i^{\dagger}, \boldsymbol{c}_j^{\dagger} \end{cases} = \boldsymbol{0}$$

Define 2N hermitian Majorana operators,

$$\begin{array}{rcl} \xi_{i1} & \equiv & \displaystyle \frac{1}{2} \left(c_i + c_i^{\dagger} \right) \\ \xi_{i2} & \equiv & \displaystyle \frac{1}{2i} \left(c_i - c_i^{\dagger} \right) \\ \left\{ \xi_{ia}, \xi_{jb} \right\} & = & \displaystyle 2 \delta_{ij} \delta_{ab} \end{array}$$

General Hamiltonian

$$H = \sum_{ij} rac{i}{2} \xi_{ia} A_{ia,jb} \xi_{jb}$$

 $A^*_{ia,jb} = A_{ia,jb} = -A_{jb,ia}$

The eigenvalues of A are purely imaginary and come in pairs,

$$A\phi^n = i\epsilon_n\phi^n, \qquad A(\phi^n)^* = -i\epsilon_n(\phi^n)^*, \quad n = 1, \dots N$$

$$\phi^{n} = \phi^{nR} + i\phi^{nI}$$
$$\left(\phi^{nR}\right)^{T} \phi^{mR} = \delta_{nm} \left(\phi^{nR}\right)^{T} \phi^{mI} = 0 \left(\phi^{nI}\right)^{T} \phi^{mI} = \delta_{nm}$$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Diagonalisation

$$\xi_{ia} = \sum_{n} \left(\alpha_{n} \phi_{ia}^{nR} + \beta_{n} \phi_{ia}^{nI} \right)$$
$$\alpha_{n} = \sum_{ia} \phi_{ia}^{nR} \xi_{ia} \qquad \beta_{n} = \sum_{ia} \phi_{ia}^{nI} \xi_{ia}$$
$$H = \sum_{n} \epsilon_{n} \left(i\beta_{n} \alpha_{n} \right)$$
$$\left(i\beta_{n} \alpha_{n} \right)^{2} = 1$$

Ground state:

$$i\beta_n \alpha_n |GS\rangle = -|GS\rangle, \ \forall n \neq 0$$

If N₀ of the ε_ns are zero, the ground state is 2^N fold degenerate, corresponding to iβ_{0n}α_{0n} = ±1

Unpaired modes

The eigenfunctions of \(\epsilon = 0\) modes can always be chosen to be real

$$A\phi^{0l} = 0, \ \left(\phi^{0l}\right)^* = \phi^{0l}, \ l = 1, \dots, 2N_0$$

The degenerate ground state manifold corresponds to different ways of "pairing" the zero modes

$$\gamma_{l}\equiv\sum_{ia}\phi_{ia}^{0l}\xi_{ia}$$

Since there is no fixed way of pairing the zero modes, we will refer to them as unpaired modes.

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Unpaired Majorana modes in the Kitaev Honeycomb Model

- ► Ground state of the Kitaev model corresponds to W_p = +1, ∀p
- $W_p = -1 \equiv \text{vortex at plaquette } p$.
- Each vortex has an trapped unpaired Majorana mode.
- If there is only one vortex, the second unpaired mode is at the edge of the sample.
- If the system is gapped (by modifying the model), the unpaired mode is localised.

Non-Abelian Anyons

Consider a situation with 4 unpaired modes, two in the bulk, γ_1 , γ_2 and two at the edge, $\gamma_{1\infty}$, $\gamma_{2\infty}$. If the ground state is,

 $i\gamma_1\gamma_{1_{\infty}}|00
angle=|00
angle, \qquad i\gamma_2\gamma_{2_{\infty}}|00
angle=|00
angle$

The exchange operation

$$U \equiv e^{\frac{\pi}{4}\gamma_1\gamma_2}$$

$$U^{\dagger}\gamma_1 U = \gamma_2$$

$$U^{\dagger}\gamma_2 U = -\gamma_1$$

$$U|00\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$UU|00\rangle = |11\rangle$$

NURNURRNERNER E 🧉

Outline

Topological Quantum Computation

Kitaev's Honeycomb Model

Majorana Fermions

Unpaired Majorana Modes and Non-Abelian Anyons

The Tetrahedral Chain

Motivation

(Abhinav Saket, S.R. Hassan and R. Shankar)

- It is of interest to find ways to create and manipulate unpaired modes.
- Kitaev model can be generalised in a variety of ways to get similar (Z₂ gauge theories with conserved fluxes) exactly solvable models any dimension.
- 1-d models are easier to play around with.
- So construct and explore 1-d models with unpaired Majorana fermions.

A D > A B > A B > A B >

The Model

$$H = -J_{X} \sum_{\langle ij \rangle} \sigma_{i}^{X} \sigma_{j}^{X} - J_{Y} \sum_{\langle ij \rangle} \sigma_{j}^{Y} \sigma_{j}^{Y} - J_{Z} \sum_{\langle ij \rangle} \sigma_{i}^{Z} \sigma_{j}^{Z}$$

Conserved fluxes:

$$W^L = \sigma_1^x \sigma_2^z \sigma_3^y \quad W^R = -\sigma_4^x \sigma_2^y \sigma_3^z$$

Local Symmetry and Degeneracy

Local Symmetry at $J_y = J_z$:

$$\sigma_2^a \leftrightarrow \sigma_3^a$$

$$\sigma_i^y \to \sigma_i^z, \quad \sigma_i^z \to -\sigma_i^y$$

Implies every eigenstate is 2^{N_p} fold degenerate

Degeneracy can be lifted, in fact any flux sector can be made the ground state by adding "chemical potential" terms,

$$H = H + H_{w} \quad H_{w} = \sum_{n} \left(\mu_{n}^{L} W_{n}^{L} + \mu_{n}^{R} W_{n}^{R} \right)$$

Ground state

- At $J_x = J_y = J_z = 1$ and $\mu_p^{L,R} = 0$ the ground state is in the flux sector, $W_p^L = 1$, $W_p^R = -1$ (and symmetry related sectors).
- Numerically checked by explicit evaluation in all sectors for the 20 site system.
- Numerically checked for 800 site system for translationally invariant states.
- Fermionic sector gapped with a gap of 0.25

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Defects

Unpaired Modes

No zero energy modes for 0 Defects. 1 zero energy mode for 1 Defects.

ヘロア ヘロア ヘビア・

э

Unpaired Modes

No zero energy modes for 0 Defects. 1 zero energy mode for $n \neq 0$ Defects.

• • • • • • • • • • •

Eigenvectors with 5 defects

Eigenvectors with 35 defects

Eigenvectors with 65 defects

Eigenvectors with 95 defects

Image: A matrix

Eigenvectors with all defects

《曰》《聞》《臣》《臣》 [편]

Defect energy

ヘロト ヘ回ト ヘヨト ヘヨト

Conclusions

Results:

- The tetrahedral model has localised unpaired Majorana modes.
- These modes can be moved around by tuning the local chemical potential which correspond to 3-spin operators.

Ongoing work:

- Can these results be understood analytically ?
- Can the local chemical potential arise as effective interactions from a magnetic field term ?

A D > A B > A B > A B >

THANK YOU !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの