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Outline

◮ Turbulence: Pictures.

◮ Turbulence: Grand Challenges.

◮ Multiscaling in homogeneous, isotropic, turbulence:
◮ Structure functions;
◮ Kolmogorov 1941 - simple scaling;
◮ multiscaling and dynamic multiscaling.

◮ Two-dimensional turbulence in soap films.

◮ Turbulence with polymer additives.

◮ Conclusions.



Turbulence in art:

Malhar, da Vinci, Hokusai:



Two-dimensional turbulence:

Flow behind a comb in a soap film.



Particle trajectories

Lagrangian trajectory in a 2D flow.



Turbulence behind obstacles:

Wake behind two cylinders (top) and homogeneous turbulence
behind a grid (bottom).



Grid turbulence

Decaying, homogeneous and isotropic fluid turbulence, behind a
grid.

Use hot-wire anemometry to measure the velocity Reynolds
number Re ≡ ℓU/ν.



Passive-scalar turbulence:

Turbulent dispersion of small particles:

Mount St. Helens on May 18,1980.
http://milou.msc.cornell.edu/lay turb.html



Turbulence on the sun:

From top to bottom, optical intensity, magnetic field and velocity
as measured by the SOHO project.
http://soi.stanford.edu



Boundary-layer turbulence:

Turbulent boundary layer near a wall (Re ≃ 4000), Falco, 1977.



Turbulence in convection:

Plumes in turbulent convection (Sparrow, et al., 1970)



Turbulence in a jet:

Instability of an axisymmetric jet (Drubka and Nagib).



Vorticity filaments in turbulence:

Images of high concentrations of vorticity in water seeded with
small bubbles for visualisation.



Direct Numerical Simulations (DNS)

Intense-vorticity isosurfaces from a 40963 simulation on the Earth
Simulator (Y. Kaneda, et al., 2003).



DNS

Enlarged view of the inner square region of the previous figure.



DNS

Enlarged view of the inner square region of the previous figure.



Challenges

◮ Engineers : Characterisation and control of turbulent flows
such as flows in pipes or over cars and aeroplanes.

◮ Mathematicians : Proofs for the smoothness, or lack thereof,
of solutions of the Navier-Stokes and related equations.

◮ Challenges also for fluid dynamicists, astrophysicists,
geophysicists, climate scientists, plasma physicists ....

We concentrate on the statistical characterisation of fluid
turbulence in three dimensions, the turbulence of passive scalars
such as pollutants, two-dimensional turbulence in thin films or soap
films, and fluid turbulence with polymer additives.



Multiscaling in Fluid and
Passive-Scalar Turbulence



Lessons

◮ We need a probabilistic description of turbulence (see, e.g., U.
Frisch):

◮ Velocity signals from turbulent flows are disorganised.

◮ They are unpredictable in their detailed behaviour.

◮ Some average properties of the signals are quite reproducible.



Lessons

◮ Large spatial scales: contain most of the energy.

◮ Small scales: Inertial and dissipation ranges.

◮ Small scales: Homogeneous and isotropic, to a good
approximation (far from boundaries, etc.)

◮ Inertial-range correlation (or structure functions) exhibit
power laws with universal exponents (reminiscent of critical
phenomena).



Multiscaling in homogeneous, isotropic, turbulence:

◮ Structure functions;

◮ Kolmogorov 1941 - simple scaling;

◮ multiscaling and dynamic multiscaling;

◮ passive-scalar turbulence.



The equations:

◮ Fluid flows are governed by the Navier-Stokes equation
augmented by the incompressibility condition

∂t~u + (~u.~∇)~u = ν∇2
~u − ~∇p/ρ+ ~f /ρ;

~∇.~u = 0.

◮ ~u: Eulerian velocity

◮ p: pressure

◮ ν: kinematic viscosity

◮ ρ: density

◮ ~f : external force



Pioneers

Leonhard Euler (1707-1783), Claude-Louis Navier (1785-1836),
and George Gabriel Stokes (1819-1903).



Equal-Time Structure Functions

Order-p, equal-time, structure functions:

Sp(r) ≡ 〈[δu‖(~x ,~r , t)]p〉 ∼ rζp ;

δu‖(~x ,~r , t) ≡ [~u(~x +~r , t) − ~u(~x , t)] · ~r
r
;

for r in the inertial range ηd << r << L;
ηd : Kolmogorov dissipation scale;
L: large length scale at which energy is injected into the system;
energy cascades from L to ηd where it is dissipated.



Scaling or multiscaling?

◮ Simple-scaling prediction of Kolmogorov: ζK41
p = p/3 (recall

critical-point phenomena).

◮ Experiments favour multiscaling: ζp a nonlinear, convex
monotone increasing function of p.



Results: Equal-Time Structure Function
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Plots of ζp vs p for statistically steady (left) and decaying
turbulence (right).
A reasonably good parametrization of experimental and numerical
data is provided by the She-Leveque formula.



Eulerian versus Lagrangian

◮ Study of turbulent flows can involve two points of view :
◮ Eulerian : A description in terms of field variables defined

with respect to a frame of reference fixed in space;
◮ Lagrangian : A description in terms of field variables defined

with respect to a frame of reference of fluid particles
co-moving with the flow.



Advantages of the Lagrangian description

◮ Sweeping effect negated – allows for calculation of
time-dependent quantities.

◮ Natural framework for describing transport, diffusion and
mixing processes.

◮ Recent advances in understanding aggregation and clustering.

◮ Useful framework for modelling.



Equations of motion

◮ Eulerian :

a =
∂u

∂t
+ u.∇u = ν∇2

u −
∇P

ρ
.

◮ Lagrangian :

v(t) =
dx(t)

dt
= u[x(t); t].



Quasi-Lagrangian

Quasi-Lagrangian velocity field: Defined with respect to the
Lagrangian particle, which was at the point ~r0 at time t0:

uql(~x , t |~r0, t0) = ~u(~x + ~ρ(t |~r0, t0), t)

where ~u denotes the Eulerian velocity.

◮ Equal-time exponents equal to Eulerian ones.

◮ No sweeping effect: Dynamic exponents equal to those for
Lagrangian velocities.



Time-Dependent Structure Functions

◮ The order-p, time-dependent longitudinal structure function:

Fp(r , {t1, . . . , tp}) ≡ 〈[δu‖(~x , t1, r) . . . δu‖(~x , tp, r)]〉

For simplicity we consider t1 = t and t2 = . . . = tp = 0.

◮ Given F(r , t), different ways of extracting time scales yield
different exponents that are defined via dynamic-multiscaling
ansätze:

Tp(r) ∼ r zp .



Integral Time Scale

◮ From the longitudinal, time-dependent, order-p structure
functions, the order-p, degree-M, integral time scale is defined
as,

T I
p,M(r) ≡

[

1

Sp(r)

∫∞

0

Fp(r , t)t
(M−1)dt

](1/M)

◮ The integral dynamic multiscaling exponent z I
p,M is defined as

T I
p,M(r) ∼ r

z I
p,M .



Derivative Time Scale

◮ Similarly, the order-p, degree-M derivative time scale is
defined as

T D
p,M(r) ≡

[

1

Sp(r)

∂MFp(r , t)

∂tM

](−1/M)

◮ The derivative dynamic multiscaling exponent zD
p,M is defined

as
T D

p,M(r) ∼ r
zD
p,M .



Theoretical Prediction

◮ The multifractal model predicts the following bridge relations:

z I
p,M = 1 +

[ζp−M − ζp]

M
;

zD
p,M = 1 +

[ζp − ζp+M ]

M
.



Integral Time Scales
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Log-log plots of integral times for statistically steady (left)
and decaying (right) turbulence for order-p structure
functions; the slopes of these graphs yield z I

p,1. The
integration is carried out over time 0 to tu, where we choose
tu such that Fp(n, tu) (or Qp(n, tu)) = α for all n and p.



Derivative Time Scales

1 1.5 3.5 4
−2

−1.5

0

0.5

log
10

(k
n
)

lo
g

1
0
(T

D 3
,2

(n
))

zD
3,2

 = 0.73

(d) 

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

log
10

(k
n
)

lo
g

1
0
[T

D 4
,2

] zD
4,2

 = 0.76 

The analogue of the previous figure for derivative time scales
yields zD

p,1. We use a centered, sixth-order, finite-difference
scheme by extending Fp(n, t) (or Qp(n, t)) to negative t via
Fp(n,−t)(or Qp(n,−t)) = Fp(n, t)(or Qp(n, t)) to obtain the
derivative time scales.



Principal Results: Fluid Turbulence

◮ Simple dynamic scaling for Eulerian-velocity structure
functions (zE

p = 1).

◮ Dynamic multiscaling is obtained for Lagrangian or
Quasi-Lagrangian structure functions.

◮ Dynamic multiscaling exponents zp depend on how Tp(r) is
extracted.

◮ zp is related to the equal-time exponents via bridge relations.

◮ Universality of dynamic exponents: the same for decaying and
statistically steady turbulence.



Possible Experimental Verification

◮ Eulerian velocity : u(x , t)

◮ Lagrangian velocity : v(x , t0|t)

◮ Define :
δv(r , t0|t) = v(x + r , t0|t) − v(x , t0|t)

◮ Construct the time-dependent structure function :
Fp(r , t0, t1, ...tp) ≡ 〈δv(r , t0|t1)...δv(r , t0|tp)〉

◮ 〈...〉 denote averaging over different pairs of particles; the
position of each pair at time t0 is characterised by xi and
xi + r , where i runs from 1 to N (the number of particles).



Passive Scalars

◮ Passively advected scalars are governed by the
advection-diffusion equation

∂θ

∂t
+ ~u.~∇θ = κ∇2θ + fθ.

◮ We use two different kinds of velocity fields in the
advection-diffusion equation for both statistically steady and
decaying turbulence:

◮ Model A : The Kraichnan ensemble where each component of
u is a zero-mean, delta-correlated Gaussian random variable.

◮ Model B : Velocities from the GOY shell model.



Model A

◮ The covariance of the field is

< ui(x, t)uj (x + r, t ′) >= 2Dijδ(t − t ′)

In the limits L −→ ∞ and η −→ 0, Dij in real space is

Dij(r) = D0δij −
1

2
dij(r))

where,

dij = D1r
ξ
[

(d − 1 + ξ)δij − ξ
ri rj

r2

]

◮ This model shows multiscaling for equal-time passive-scalar
structure functions for 0 < ξ < 2.

◮ No dynamic multiscaling.



Dynamic Multiscaling in Passive-Scalars

Multifractal model predicts:

◮ zD
p,M = 1 − ζu

M/M

◮ z I
p,M = 1 − |ζu

−M |/M

◮ Breakdown of simple scaling.

◮ Do structure functions with negative exponents exists?



Results: Equal-Time Structure Functions
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Results: Equal-Time Structure Functions
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The panel shows plots of ζp vs p for model B for statistically
steady (right) and decaying (left) turbulence. For
comparison, on the left we plot equal-time exponents for
both the velocity field (ζu

p) and the passive-scalar field (ζθ
p).



Model A: Numerical Results
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A plot of the fourth-order structure function (ξ = 0.6) vs

time for statistically steady turbulence. The scaling exponent
is extracted from the decay constant of the curves.



Model B: Numerical Results
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Model B: Integral Time Scale
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decaying turbulence. The linear fit gives us the scaling
exponent z I
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Derivative Time Scale
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Two-dimensional turbulence in
soap films.



Two-dimensional turbulence:

◮ Study of high-Reynolds-number solution of the incompressible
Navier-Stokes equations:

Dtu = −∇p + ν∇2
u, (1)

∇.u ≡ 0

or

Dtω = ν∇2ω, (2)

∇2ψ = ω,

ω ≡ ∇× u,

ux = −∂yψ,

uy = ∂xψ.

◮ No vortex stretching, ω.∇u is absent.



Conservation laws:

◮ Energy conservation in the inviscid, unforced limit.

∂tE = −2νΩ, (3)

E = 1/2

∫

x∈R3

|u|2,

Ω = 1/2

∫

x∈R3

|ω|2,

(4)

◮ Enstrophy conservation in the inviscid, unforced limit.

∂tΩ = −2νP , (5)

P = 1/2

∫

x∈R3

|∇×ω|2.

(6)



Cascades

[Kraichnan, Phys. Fluids, 10, (1967a), Batchelor, Phys. Fluids
Suppl. II , 12, (1969)]

◮ Energy injected at a length scale linj will inverse-cascade to
large length scales with E (k) ∼ k−5/3.

◮ Energy injected at a length scale linj will forward-cascade to
small length scales with E (k) ∼ k−3.



Electromagnetically forced soap films

[M. Rivera, Ph.D. Thesis, arXiv:physics/010305v1]

◮ Soap film: 400ml distilled water + 40ml glycerol + 5ml

commercial liquid detergent,

◮ The soap film is suspended on a rectangular frame,

◮ The magnetic array produces a Kolmogorov forcing
Fx = F0sin(kyy).



Modelling soap films: Incompressible limit

[Chomaz et al., PRA, 41, (1990), Chomaz, JFM, (2001), P. Fast,
arXiv:physics/0511175v1, (2005).]

◮ Mach Number Me ≡ urms/c , where c is the speed of the
sound in the soap films. For the experiments with
electromagnetically forced soap films Me ∼ 0.06.

◮ To leading order soap-film behaviour is governed by the
Navier-Stokes(NS) equations in two dimensions + an air drag

Dtu = ν∇2
u − ∇p − αu,

∇ · u = 0.

◮ Dt ≡ ∂t + u · ∇, p ≡ pressure, and u ≡ the velocity



Direct Numerical Simulation(DNS)

◮ Vorticity-streamfunction formulation:

Dtω = ν∇2ω− αω,

∇2ψ = ω,

ux = −∂yψ, uy = ∂xψ.

◮ Incompressibility satisfied by construction.

◮ No-slip boundary condition on the walls.



DNS for forced soap films:

◮ Impose the Kolmogorov forcing Fy = F0 sin(kxx) at all times.

◮ Study the evolution of the energy E and the dissipation rate ǫ
with α and ν.

◮ Study velocity and vorticity structure functions.

◮ Study the topological properties via PDFs of the Weiss
parameter Λ.



Evolution of energy and dissipation

Time evolution of E (t)/E ′ [(a) and (b)], ǫ(t)/ǫ′ [(c) and (d)] ,
and ǫe(t)/ǫ

′ [(e) and (f )].

In (a), (c), and (d) we keep G fixed and vary γ (γ = 0.25(red lines
with circles) and γ = 0.71(black line)). In (b), (d), and (f ) we
maintain Re ≃ 21.2 and vary γ (γ = 0.25(red lines with circles)
and γ = 0.71(black line with squares)).



Pseudocolor plots

Pseudocolor plots of (a) S2(rc,R), for rc = (2, 2), (b) S2(R)

(average of S2(rc,R) over rc), (c) Sω
2 (rc,R), for rc = (2, 2), and

(d) Sω
2 (R) (average of Sω

2 (rc,R) over rc).



Velocity Structure Functions
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Vorticity Structure Functions
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Distribution of centers and saddles

A. Okubo, Deep-Sea Res. 17, 17 (1970),
J. Weiss, Physica, 48D, 273 (1991).

◮ Local flow topology determined by

Λ ≡
∣

∣

∣

∣

∂xux ∂xuy

∂yux ∂yuy

∣

∣

∣

∣

and

D ≡ ∇ · u
◮ For incompressible flows, D = 0

◮ Λ = (ω2 − σ2)/4, ω2 ≡
∑

i,j(∂iuj − ∂jui )
2/2,

σ2 ≡ ∑
i,j(∂iuj + ∂jui )

2/2.

◮ At a point (x , y), Λ(x , y) > 0 =⇒ centers, and
Λ(x , y) < 0 =⇒ saddles.



ψ and Λ

◮ Contours of ψ overlayed on the pseudocolor plot of Λ.

◮ Λ > 0(centers)

◮ Λ < 0(saddles)



PDF of Λ: fixed Re

◮ runs R4 and R6

◮ Left: Our DNS. γ = 0.25(red), γ = 0.71(blue).

◮ Right: Experiments. γ = 0.28(diamond), γ = 0.56(triangle),
γ = 0.97(circle).



PDF of Λ: fixed Re
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◮ runs R4 and R6

◮ PDF normalized by Λrms .

◮ Left: Our DNS. γ = 0.25(red), γ = 0.71(blue).

◮ Right: Experiments. γ = 0.28(diamond), γ = 0.56(triangle),
γ = 0.97(circle).



PDF of Λ: Comparison with Experiments

◮ Our DNS: Red dotted line.

◮ Experiments: Black dots (op. cit. Rivera et al.).



Multiscaling and quasi-Lagrangian Structure Functions

◮ Multiscaling in equal-time, Eulerian vorticity structure
functions.

◮ Investigating dynamic-multiscaling in time-dependent,
quasi-Lagrangian vorticity structure functions.

◮ Tracking a single particle in a 2D flow with Ekman friction to
generate quasi-Lagrangian fields.

Movie



Equal-time Structure Functions for Eulerian and

quasi-Lagrangian Fields
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◮ Left : Third-order, equal-time vorticity structure functions for
Eulerian and quasi-Lagrangian fields.

◮ Middle : Sω
3 (R) for the quasi-Lagrangian field, obtained by

averaging over the centers rc .

◮ Right : Scaling exponents for equal-time, vorticity structure
functions, for both the Eulerian and quasi-Lagrangian fields.



Time-dependent Structure Functions
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Conclusions

◮ The 2D Navier-Stokes equations with Ekman friction is a
good model to describe 2D turbulence in soap-films.

◮ The topological properties of 2D turbulence in our DNS are
the same as those observed in experiments.

◮ Differences between constant G and constant Re ensembles

explored.



Turbulence induced melting



Statistical Physics: Phase transition

◮ Solid: Atoms arranged on an lattice.

◮ Liquid: No ordering of atoms.

◮ Increasing temperature leads to a transition from solid to a
liquid phase. Crystalline phase destroyed on increasing
temperature.

Crystal Liquid
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◮ We use the above ideas to study a similar nonequilibrium
transition.



Equilibrium Melting

ρ is a periodic function of r:

ρ(r) =
∑

G

ρG exp(ιG · r);

◮ G: of the reciprocal lattice vectors.

◮ RY Theory: ρG are the order parameters.



Equilibrium Melting

◮ Spatial correlations: G (r) = 〈ρ(x)ρ(x + r)〉, where angular
brackets denote Gibbsian thermal averages and the overline
denotes spatial averaging.

◮ The Fourier transform of G (r) is related to the static
structure function S(k).



Motivation
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◮ Λ field in the laminar state.

◮ Λ field in the turbulent state.



Experiments: Transition to turbulence

[N.T. Ouellete and J.P. Gollub, Phys. Rev. Lett. 99, 194502
(2007).]

◮ Figs. [(a), (b), and (c)] are the snapshots of the
stream-function obtained by particle tracking.

◮ At Reynolds number Re ≤ Rec , two-dimensional lattice with a
lattice-spacing of forcing magnets is formed.



Experiments: Transition to turbulence

[N.T. Ouellete and J.P. Gollub, Phys. Rev. Lett. 99, 194502
(2007).]

◮ On increasing the Re > Rec , the fluid undergoes transition
and the lattice distorts.

◮ At very high Reynolds number Re >> Rec , turbulence sets in
and the underlying lattice is completely destroyed.



Experiments: Transition to turbulence

[N.T. Ouellete and J.P. Gollub, Phys. Rev. Lett. 99, 194502
(2007).]

◮ Use local-curvature of the Lagrangian trajectories and the
Weiss criterion to find the saddles and the centers of the
flow Figs. [(d)], (e) and (f)].



Experiments: Transition to turbulence

[N.T. Ouellete and J.P. Gollub, Phys. Rev. Lett. 99, 194502
(2007).]

◮ Crsytalline state(Fig. (a)): Particles remain localized.

◮ Fig. (b): The particles start to fluctuate around their mean
positions as Re increases.

◮ Melt state (Fig. (c)): In turbulent state, particles are not
localized.



Experiments: Transition to turbulnece

[N.T. Ouellete and J.P. Gollub, Phys. Rev. Lett. 99, 194502
(2007).]

Pair-correlation of the topological special points.

◮ g(r) = V
N2 〈

∑
i

∑
j 6=i δ(r − rij)〉, where V is the volume, and

N are the number of particles.

◮ Laminar(Red square), Intermediate(Green circles), and
Chaotic regime (Blue triangle).



Earlier Numerical Simulations

Braun et al.

◮ Equation: Dtω = ∇2ω + 2fk sin(kx)sin(ky), k = 8,

◮ Observe formation of large scale structures,

◮ Control parameter f (Grashof number),

◮ Boundary condition: Periodic.



Earlier Numerical Simulations

[M. Brons, A. Skajaa, and O. Skovgaard, arXiv:0806.4757v1]

◮ Closely mimic the experiments of Ouellete et al., ibid.; circular
domain with no-slip boundaries.

◮ Forcing: Eight stirrer with forcing amplitudes f = K 3r0r
2

r3
0 +2r3

where r0 is the width of the stirrer, r is the distance from the
stirrer, and K is the forcing strength.

◮ Simulation done using Finite-element code
COSMOL(http://www.comsol.com/).



Our Direct Numerical Simulation(DNS)

◮ Vorticity-streamfunction formulation

◮ f = f0[sin(kx) + sin(ky)]

◮ Normalization

Dtω =
1

Ω
∇2ω −

n2γ

Ω
ω +

n2

Ω
f ,

∇2ψ = ω,

u = (−∂yψ, ∂xψ).

◮ x
′ → kx/n, t ′ → f0t/(nkν), ω′ → (nkν/f0)ω, and

u
′ → (νk2/f0)u.

◮ Ω ≡ nf0/(ν
2k3) ≡ nRe.

◮ Incompressibility satisfied by construction.



Our Goal

◮ Study the transition to turbulence as a function of n and Ω.

◮ Use the Weiss parameter (Λ) as an analog of the crystal
density field (ρ) in a conventional crystal.

◮ Study the two-dimensional spectrum EΛ(k) = ΛkΛ−k is our
analog of S(k).

◮ Study the autocorrelation function G (r) = 〈Λ(x)Λ(x + r)〉 in
laminar and chaotic regime.

◮ We also use non-linear dynamics measures such as the
Poincare section and the power spectrum of the time-series to
characterize the transition.



Direct Numerical Simulation(DNS)

◮ Time marching by second-order Runge-Kutta scheme.

◮ Derivative and convolution using pseudo-spectral method.



Direct Numerical Simulation(DNS)

◮ N = 64, 128, 256

◮ Set γ = 0 unless specified otherwise.

◮ Vary Ω for fixed n and monitor the transition to turbulence.



Results



Results for n=4



Route to Chaos

n Ω Comments

R4 − 1 4 Ω < Ωs Square array

R4 − 2 4 Ωs < Ω ≤ 6.5 Steady state, large structures

R4 − 3 4 Ω = 8.202 Periodic orbit

R4 − 4 4 9.05 < Ω < 15.3 Steady state, large structures

R4 − 5 4 15.3 < Ω < 17.3 Periodic orbits

R4 − 6 4 Ω = 17.8 Quasi − periodic + chaos

R4 − 7 4 Ω ≥ 18.3 Chaotic

Table: Table indicating the values of Ω and the route to chaos observed
in our simulations.



Ω = 6.5: ψ, Λ, and EΛ
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◮ Steady state.

◮ Pseudocolor plots of ψ(Left), Λ(Middle), and EΛ(Right).

◮ Note the formation of large scale structure in ψ.



Ω = 8.2: E (t), and Poincare sections

1 2 3

x 10
4

0.4739

0.474

0.4741

t

E
(t

)

(a)

0 1000 2000 3000

−2000

−1000

0

1000

2000

3000

Re ω(1,0)

Im
 ω

(1
,0

)

(c)

◮ The time evolution of the energy E (t).

◮ Plot of projection of the trajectory on the Fourier plane made
by velocities Re[ω̂(1, 1)] versus Im[ω̂(1, 1)].



Ω = 8.2: ψ, Λ, and EΛ
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Pseudocolor plots of:

◮ the streamfunction field

◮ the Λ field with superimposed contour lines

◮ the reciprocal space energy spectrum EΛ.



Ω = 11.3: ψ, Λ, and EΛ
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◮ New steady state.

◮ (Left) Pseudocolor plot of ψ.

◮ (Middle) Pseudocolor plot of Λ.

◮ (Right) Pseudocolor plot of the reciprocal space energy
spectrum EΛ.



Ω = 15.3: E (t), E (f ), and Poincare section
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◮ New periodic state.

◮ (Left) The time evolution of the energy,

◮ (Middle) The frequency spectrum of the energy, and

◮ (Right) The plot of projection of the trajectory on the Fourier
plane made by velocities Re[ûy (1, 1)] versus Im[ûy (1, 1)].



Ω = 15.3: ψ, Λ

◮ (Left) Pseudocolor plot of ψ.

◮ (Right) Pseudocolor plot of Λ.



Ω = 15.3: EΛ
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◮ (Left) EΛ at the minima of E (t).

◮ (Right) EΛ at the maxima of E (t).



Interbeat interval 15.3 ≤ Ω ≤ 17.3
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◮ (Left) Plot of the beat index versus the interbeat interval Tt

for Ω = 15.3(red curve), Ω = 15.8(black curve),
Ω = 16.3(purple curve), Ω = 16.8(green curve), and
Ω = 17.3(blue curve).

◮ (Right) Plot of the time averaged Tt for different values of Ω.



Ω = 17.8: E (t), E (f ), and Poincare sections
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◮ (Left) The time evolution of the energy.

◮ (Middle) The frequency spectrum of the energy shows
signature of quasi-periodic orbit + chaos.

◮ (Right) The plot of projection of the trajectory on the Fourier
plane made by velocities Reûy (1, 1) versus Imûy (1, 1) shows
formation of a new attractor.



Ω = 17.8: Interbeat interval
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◮ Although E (t) looks periodic, interbeat interval clearly shows
a non-periodic behavior.



Ω = 50: E (t), E (f ), and Poincare section
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◮ (Left) E (t) becomes chaotic.

◮ (Middle) E (f ) shows large number of frequencies getting
excited.

◮ (Right) plot of projection of the trajectory on the Fourier
plane made by velocities Re[ûy (1, 1)] versus Im[ûy (1, 1)].



Ω = 50: ψ, Λ, and EΛ
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◮ (Left) The streamfunction field.

◮ (Middle) The Λ field with superimposed contour lines.

◮ (Right) The plot of the reciprocal space energy spectrum EΛ.



Auto-correlation function

G (r) = 〈Λ(x)Λ(x + r)〉 (7)

◮ Crystalline state: Peaks at lattice spacings.

◮ Liquid state: Peaks flatten.



Auto-correlation function

◮ Plots of G (r) :
◮ (a) crystalline state : n = 4; Ω < Ωs,n;
◮ (c) circularly averaged in the turbulent state: n = 4;
Ω = 20.81.



Results for n=10



Route to chaos

n Ω Comments

R10 − 1 10 Ω < Ωs Square array

R10 − 2 10 Ωs < Ω < 22.6 Steady state

R10 − 3 10 24 < Ω < 28 Periodic orbits

R10 − 4 10 Ω ≥ 29 Chaotic

Table: Table indicating the values of Ω and the route to chaos observed
in our simulations.



Ω = 22.62: ψ, Λ, and EΛ

0 2 4 6
0

1

2

3

4

5

6
(a)

x

y

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 2 4 6
0

1

2

3

4

5

6

x
y

(b)

 

 

−40

−20

0

20

40

60

k
x

k y

(c)

 

 

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

0.5

1

1.5

2

2.5

3

3.5

x 10
8

◮ First steady state after Ω > Ωc

◮ Pseudocolor plot of the streamfunction field.

◮ Pseudocolor plot of the Λ field.

◮ Contour plot of the reciprocal space energy spectrum EΛ.



Ω = 24: E (t), E (f ), and Poincare section
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◮ (Left) The time evolution of the energy.

◮ (Middle) The frequency spectrum of the energy.

◮ (Right) The plot of projection of the trajectory on the Fourier
plane made by velocities Reûy (1, 1) versus Imûy (1, 1).



Ω = 24: ψ, Λ, and EΛ
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◮ Pseudocolor plot of the streamfunction field.

◮ Pseudocolor plot of the Λ field.

◮ Contour plot of the reciprocal space energy spectrum EΛ.



Interbeat interval
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◮ The interbeat interval < Tt > first decreases on increasing Ω
and then increase mildly at Ω = 28.

◮ At Ω = 28 the time-series is till periodic but now primary
frequency around f = 1 and frequency at f = 2, 3 are also
excited.

◮ Ω = 24 the large structures in the streamfunction make
oscillations around their mean positions.

◮ For Ω = 25 to Ω = 28 a travelling wave type solution is
observed in the time evolution of the streamfunction.



Ω = 225: E (t), E (f ), and Poincare section
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◮ (Left) The time evolution of the energy.

◮ (Middle) The frequency spectrum of the energy.

◮ (Right) Plot of projection of the trajectory on the Fourier
plane made by velocities Re[ûy (1, 1)] versus Im[ûy (1, 1)].



Auto-correlation function

◮ Plots of G (r) :
◮ (b) crystalline state : n = 10; Ω < Ωs,n;
◮ (d) circularly averaged in the turbulent state: n = 4; Ω = 225.



Conclusions

◮ Transition to turbulence can be characterized by measures
from density functional theory, non-linear dynamics, and
turbulence.

◮ We have mapped in detail the transition to turbulence for
these nonequilibrium systems.



Polymer Additives in Turbulent
Flow



Drag Reduction

◮ Toms (1946): Monochlorobenzene with 0.25% (by weight) of
polymethylmethacrylate

◮ Reduction in the pressure gradient across the pipe, on the
addition of polymers, for the same volumetric flow rate

◮ Drag Reduction(in percentage) DR ≡
(

∆Ps−∆Pp

∆Ps

)

× 100



Reduction of small scale structures

◮ Turbulent jet of water with 50ppm polyethylene oxide at
Re ∼ 225
[Turbulence structure in a water jet discharging in air, J.W.
Hoyt and J.J. Taylor, Phys. Fluids, 20, S253 (1977).]



Eigenvalues of the strain tensor

[A. Liberzon, et al., Phys. Fluids, 17, 031701 (2005).]

◮ Length:140mm, Width:120mm, Disk Dia.:40mm, Observation
volume:10 × 10 × 10mm, Reλ = 38.

◮ Regions of large strains reduced on the addition of polymers.



Structure function: S2(r)

N.T. Ouellette, H. Xu, and E. Bodenschatz, ICTR website, (2007).

◮ c = 5ppm,Reλ = 290,Wi = 3.5,

◮ Small scale structures are modified on the addition of
polymers.



Polymer Properties

Typical drag-reducing polymer:
Polyethylene oxide N×[-CH2-CH2-O-]

◮ Degree of polymerization (N) ≃ 104

◮ Molecular weight ≃ 4 × 106 amu

◮ Zimm relaxation time ≃ 10−4s

◮ RMS end-to-end distance at maximal extension ≃ 34µm



Modelling polymer solutions

◮ Navier-Stokes(NS) with Polymer Additives:
3D, unforced, incompressible, NS with additional stress
because of polymers:

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2

u + ∇ · T ,

where
◮ u(x, t): fluid velocity; point x; time t;
◮ ν: Kinematic viscosity of the fluid;
◮ T : polymer contribution to the fluid stress;

∇ · u = 0 enforces incompressibility.



Modelling polymer solutions:

◮ Polymer idealized as an elastic dumbbell with the non-linear
force-extension relation

F =
H(L2 − 3)

(L2 − r2)
R, r2 < L2,

where
◮ R: end-to-end displacement vector;
◮ r2 = 〈R · R〉; 〈〉 indicates an average over polymer

configurations;
◮ H : spring constant;
◮ L: maximum polymer extension.



Modelling polymer solutions:

◮ Polymer contribution to fluid stress

Tαβ =
µ

τpoly

( L2 − 3

L2 − Cγγ

)

(Cαβ − δαβ)

[Cαβ ≡ 〈RαRβ〉]

where
◮ τpoly : polymer relaxation time;
◮ µ: polymer viscosity parameter;
◮ µ/τpoly = nkBT/N ;
◮ n: number of polymers per unit volume;
◮ N : number of monomer units constituting the polymer;
◮ kB : Boltzmann constant; T is the temperature;
◮ L: Maximum polymer extension.



Modelling polymer solutions:

◮ Finitely Extensible Nonlinear Elastic-Peterlin(FENE-P) model

∂Cαβ

∂t
+ (uγ∂γ)Cαβ = (∂γuα)Cγβ + Cαγ(∂γuβ) −

1

µ
Tαβ.

[”Dynamics of polymeric liquids”, Bird, et al.]

◮ c = µ/(ν+ µ); c = 0.1 ≃ 100ppm of PEO

◮ We = τpoly

√

(ǫ(tm)/ν); tm is the time corresponding to the
peak in ǫ for c = 0

[Vaithianathan, et al., JCP, 187, 1 (2003).]



Direct Numerical Simulation(DNS)

Solve NS and FENE-P numerically

∂uα

∂t
+ (uγ∂γ)uα = −∂αp + ν∂γγuα + ∂γTαγ,

∂γuγ = 0,

∂Cαβ

∂t
+ (uγ∂γ)Cαβ = (∂γuα)Cγβ + Cαγ(∂γuβ) −

1

µ
Tαβ.



Integrating the NS equation

◮ Use second-order Adams-Bashforth scheme for time marching

◮ Integrate viscous term exactly in Fourier space

◮ Non-linear terms calculated in velocity-vorticity formulation

◮ The polymer contribution to the fluid stress added to the
non-linear terms

◮ Use 2/3-dealiasing method to remove the aliasing error

un+1 = exp(−νk2δt)un +
1 − exp(−νk2δt)

νk2
Pij [(3/2)N

n − (1/2)Nn−1]

where
◮ n: iteration number;
◮ N : sum of the non-linear and the polymer stress term

(u ×ω) + ∇ · T in Fourier space;
◮ Pij = (δij − kikj/k

2)

[A. Vincent and M. Meneguzzi, JFM, 225, 1 (1991).]



Integrating the FENE-P equation

◮ A second-order Adams-Bashforth scheme is used for time
marching

◮ Use sixth-order centered finite-difference scheme for
calculating derivatives in space



Integrating the FENE-P equation: Errors

◮ Loss of SPD nature of C during numerical integration ⇒
negative eigenvalues(Hadamard instability)

◮ Because of numerical errors r2can become ≥ L2. This leads to
numerical blowup of the elements of C.



Integrating the FENE-P equation: Remedies

Conserving SPD nature of C, Cholesky decomposition:

◮ Define J = L2−3
L2−r2 C

◮ Define J = LLT where L is a lower-triangular matrix with
elements ℓij

◮ Solve
Dtℓi1 =

∑
k Γki ℓk1 + 1

2

[

(q − s)ℓi1 + (−1)(i mod 1) sℓi1

ℓ2
11

]

+

(δi,3 + δi,2)
ℓi1+1

ℓ11

∑
m>1 Γm1ℓm2+

δi,3Γi1
ℓ2
33

ℓ11
, for i ≥ 1;



Integrating the FENE-P equation: Remedies

Dtℓi2 =
∑

m>2 Γmi ℓm2 −
ℓi2−1

ℓ11

∑
m>2 Γm1ℓm2+

1
2

[

(q − s)ℓi2 + (−1)(i+2)s ℓi2

ℓ2
22

(

1 +
ℓ2
21

ℓ2
11

)]

+

δi,3

[

ℓ2
33

ℓ22

(

Γ32 − Γ31
ℓ21

ℓ11

)

+ s ℓ21ℓ31

ℓ2
11ℓ22

]

, for i ≥ 2;

Dtℓ33 = Γ33ℓ33 − ℓ33

[∑
m<3

Γ3mℓ3m

ℓmm

]

+ Γ31ℓ32ℓ21ℓ33

ℓ11ℓ22
−

s ℓ21ℓ31ℓ32

ℓ2
11ℓ22ℓ33

+ 1
2

[

(q − s)ℓ33+

s
ℓ33

(

1 +
∑

m<3
ℓ2
3m

ℓ2
mm

)

+
sℓ2

21ℓ
2
32

ℓ2
11ℓ

2
22ℓ33

]

.

SPD nature of C guaranteed by construction.



Integrating the NS and FENE-P equations: Remedies

◮ s = (L2 − 3 + j2)/(τpolyL2),

◮ q = [d/(L2 − 3) − (L2 − 3 + j2)(j2 − 3)/(τpolyL2(L2 − 3))],

◮ j2 ≡ Tr(J ), and d = Tr [J .(∇u) + (∇u)T .J ].
[Vaithianathan, et al., op. cit.]

◮ Increase of r2 beyond L2: Controlled only by reducing the
time-step.



CPU Resources and Memory requirements

◮ MPI-version of the code developed.

◮ A complete 2563 decaying DNS generates 120GB of data.

◮ A 5123 DNS of NS+FENE-P requires 21GB of RAM.

Memory Requirements

◮ DNS of NS+FENE-P: Requires 3 times more RAM than the
DNS of NS.

◮ Estimated RAM for 20483 DNS of NS+FENE-P: 1344GB!



Results: Initial Condition

◮ Start from an initial energy spectrum with energy
concentrated in the first few Fourier modes and the polymers
unstretched

◮ Monitor the decay of the energy dissipation rate and the
energy spectrum for the fluid with and without polymer
additives.



Energy Dissipation Rate

N = 256, ν = 10−3, τpoly = 1
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◮ The energy dissipation rate ǫ(t) as a function of time t for
different values of c .

◮ The peak in ǫ(t) decreases as c increases.



Dissipation Reduction(DR)
N = 96, ν = 10−2
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◮ Natural definition of dissipation-reduction

%DR =
(

ǫf ,m−ǫp,m

ǫf ,m

)

× 100;

◮ f and p stand, respectively, for the fluid without and with
polymers.

◮ An increase in c enhances the dissipation reduction DR (cf.,
earlier shell-model study).

◮ DR decreases marginally with an increase in We.



Fluid energy spectrum

N = 192, ν = 10−2, τpoly = 1
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◮ Ef (k) =
∑

k−1/2<k ′<k+1/2 |u(k ′)|2 at tm for polymer
concentrations c = 0(o-), c = 0.1(–) and c = 0.4(-).

◮ Energy spectrum at cascade completion changes significantly
for large Fourier modes.

◮ This had not been resolved by earlier, high-Re simulations!



Scale-dependent viscosity

N = 192, ν = 10−2, τpoly = 1
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◮ The change in the spectra and ǫ can be understood in terms
of an additional, effective, scale-dependent viscosity ∆ν(k) ≡
−µ

∑
k−1/2<k ′≤k+1/2 uk ′ · (∇ · J )−k ′/[τpolyk ′2Ep,m(k ′)].

◮ Since ∆ν becomes negative, polymers pump energy into the
fluid around k ≃ 10.



Structure Functions

Order-p equal-time, longitudinal velocity structure function.

Sp(r) ≡ 〈δu(r , t)p〉,
δu||(r , t) ≡ [~u(~x +~r , t) − ~u(~x , t)] · (~r/r).



Second order structure function S2(r)

Experiments(Ouellette, et al.) Our DNS

Figure: c = 5ppm, Reλ = 290,
and We = 3.5
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Figure: N = 128, ν = 0.01, and
τP = 1.5



Hyperflatness:

N = 192, ν = 10−2, τpoly = 1
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◮ Hyperflatness: F6(r) =
S6(r)

(S2(r))3
.

◮ Polymers slow down the unbounded growth in F6(r) at small
r , i.e., small-scale intermittency decreases.



PDF of |ω|
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◮ Probability distribution of the modulus of the
vorticity(P(|ω|)) at cascade completion(c=0, c=0.4).

◮ Addition of polymers leads to a decrease in the regions of
large vorticity.



Isosurfaces of |ω|

N = 256, ν = 10−3, τpoly = 1

◮ Iso-|ω| surfaces for |ω| = 〈|ω|〉 + 2σ for c = 0(left) and
c = 0.4(right) at tm.

◮ Small-scale structures are suppressed on the addition of
polymers.



PDF of Λ1
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◮ PDF of the largest eigenvalue(Λ1) of the rate of strain
tensor(Sij = (∂iuj + ∂jui )/2) at cascade completion(c=0,
c=0.4).

◮ The addition of polymers leads to a decrease in the regions of
large strains.



Stretching of Polymers:Cumulative distribution(CDF)

N = 256, ν = 10−3, τpoly = 1
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◮ c = 0.1(dashed line), c = 0.4(line).

◮ An increase in c leads to a decrease in the polymer extension.

◮ A decrease in ν leads to turbulent flows and large polymer
extensions.



Forcing

◮ Stochastic forcing of V. Eswaran and S.B. Pope, Computers
and Fluids, 16, 257 (1988)

◮ Force all the Fourier modes with k ≤
√

2

◮ Forcing is done by a vector-valued Ornstein-Uhlenbeck
stochastic diffusion process with variance σ2 and time-scale TL

◮ 〈f̃(k, t)〉 = 0

◮ 〈f̃(k, t)f̃∗(k, t + s)〉 = 2σ2
I exp(−s/TL)

◮ Here the angular brackets denote ensemble averages, an
asterisk denotes complex conjugate, I is the identity tensor



Energy dissipation rate

N = 64, Reλ = 9.91, L = 100
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◮ Time-averaged ǫ decreases with an increase in the polymer
concentration(c = 0(–), c = 0.1(.–), and c = 0.33(—-))), at
fixed We = 1.17

◮ Small-time behavior same as for decaying turbulence



Time evolution of E and ǫ

N = 512, Reλ ≃ 23, We = 1.5
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◮ Time averaged E decreases with an increase in c

◮ Time averaged ǫ decreases with an increase in c

◮ In agreement with our studies on decaying turbulence



Dissipation Reduction
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◮ Natural definition of dissipation reduction
%DR ≡ ǭf −ǭp

ǭf
× 100: the overbar indicates time averaging

◮ f and p stand, respectively, for the fluid without and with
polymers.

◮ DR increases with an increase in: (a) c at fixed We; (b) We

at fixed c



Energy spectrum

Left: N = 64 Right: N = 512
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◮ Unlike earlier studies we have a fully resolved deep-dissipation
range

◮ Energy spectra are similar to those in our DNS of decaying
turbulence



Second order Structure function S2(r)
Experiments(Ouellette et al.) Our DNS

Figure: c = 5ppm,
Reλ = 290, and
We = 3.5
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Figure: N = 64,
Reλ = 9.09, and
We = 1.17
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Figure: N = 512,
Reλ ≃ 23, and
We = 1.5

◮ S2(r) ≡
∫∞

0
(1 − sin(kr)/kr)E (k)dk

◮ Compensated structure function:
Sc

2 (r) = [(3/4)S2(r)/2.13]
3/2/(ǫr)

◮ Note similarity with experiments.



Cumulative distribution function of s2 and ω2

N = 64, Reλ = 9.09, and We = 1.17
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◮ ω2 ≡ ∑
i,j ωijωij , s2 ≡ ∑

i,j sijsij , s = (∇u + (∇u)T )/2,
ω = ∇× u

◮ Regions of large strain and vorticity decrease on the addition
of polymers



PDF of |ω|

N = 512, Reλ ≃ 23, We = 1.5, c = 0.1
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◮ Probability distribution of the modulus of the
vorticity(P(|ω|)) (c=0, c=0.1).

◮ Addition of polymers leads to a decrease in the regions of
large vorticity.



PDF of Λ

N = 512, Reλ ≃ 23, We = 1.5, c = 0.1
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◮ Regions of large strain reduced on the addition of polymers.



Polymer extensions
N = 64
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◮ We = 2.34, c = 0.1(.–); We = 1.17, c = 0.1(dashed line);
We = 1.17, c = 0.33(line)

◮ Polymer extensions larger in comparison to decaying
turbulence

◮ At fixed c , polymer extension increases with an increase in We

◮ At fixed We, polymer extension decreases with an increase in c



Conclusions

◮ Turbulence is complex in several ways.

◮ Turbulence displays emergent behaviour in the form of
coherent structures.

◮ It exhibits complicated, disordered spatiotemporal behaviours.

◮ Equal-time and time-dependent structure functions show
power-law behaviours like correlation functions at a critical
point in, say, a magnet.

◮ Simple scaling, as in most critical phenomena, must be
replaced by multiscaling.



Conclusions

◮ Velocity structure functions in two-dimensional turbulence
show simple scaling but their vorticity counterparts display
multiscaling.

◮ Polymer additives lead to drag and dissipation reduction in
turbulent flows.

◮ They also suppress small-scale structures.

◮ State-of-the-art experiments, high-performance computing,
and theory must go hand-in-hand to characterise the
complexity of turbulence.


