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Sorting and Search

The Goal: Store data efficiently so that the search time is minimum

Ex: A random sequence of N = 10 integers: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}

Linear Sorting: Store the data sequentially onto a linear table

{6, 4, 5, 8, 9, 1, 2, 10, 3, 7}

Search for 7: Search proceeds sequentially by comparison

tsearch = 10 ∼ O(N) → BAD
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Tree Sorting: of {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}

6

4 8

1 5 7 9

2

3

10

H=5

h=3

HEIGHT 

BALANCED HEIGHT

Figure: Binary Search Tree with N = 10 Elements.

tsearch = Depth = D. Roughly 2D ∼ N implying: tsearch ∼ O(log N) → BETTER

• HEIGHT H = 5: Distance of the farthest node from the root= Maximum
possible time to search an element → WORST CASE SCENARIO

• BALANCED HEIGHT h = 3 : Depth upto which the tree is balanced
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Generalization to m-ary Search Trees: Muntz and
Uzgalis ’70

m = 2 → Binary Tree
Random Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}
Each node can contain atmost (m − 1) elements.

4, 6

1, 2 8, 9

3

5

7 10
H=3

h=2

no. of occupied nodes: n=7

Figure: m = 3-ary Search Tree with N = 10 Elements

H = 3 → HEIGHT.

h = 2 → BALANCED HEIGHT.

No. of NON-EMPTY nodes: n = 7 → No. of nodes required to store the data
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Random m-ary Search Tree Model: RmST

N = 10 data elements: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Each permutation → an m-ary tree.

{6, 4, 5, 8, 9, 1, 2, 10, 3, 7} {8, 6, 9, 2, 1, 5, 3, 4, 7, 10}

4, 6

1, 2 5 8,9

1073

6,8

1, 2 7 9,10

3, 5

4

H=3, h=2, n=7 H=4, h=2, n=6

In the RmST model: All N! permuations are equally likely → RANDOM DATA.

Q: Statistics of HEIGHT HN , BALANCED HEIGHT hN and the no. of
NON-EMPTY NODES nN for RANDOM data of size N?
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Asymptotic Results for RmST: for large data size N

(1) Height HN :

• 〈HN〉 ≈ am log(N) + bm log(log(N)) (??) +. . .

• Var(HN) ≈ O(1)

(2) Balanced Height hN : Depth upto which the tree is balanced.

• 〈hN〉 ≈ cm log(N) + dm log(log(N)) (??) +. . .

• Var(hN) ≈ O(1)

Binary Tree (m = 2): a2 = 4.31107 . . . and c2 = 0.3733 . . . (Devroye, 87).

The correction terms → conjectured by Hattori and Ochiai (simulations, 2001).

Other results by Knuth, Drmota, Flajolet, Pittel, Reed, Robson, .....

Q: Significance of am and cm? Correction terms?
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S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics February 5, 2010 6 / 24



Asymptotic Results for RmST: for large data size N

(1) Height HN :

• 〈HN〉 ≈ am log(N) + bm log(log(N)) (??) +. . .

• Var(HN) ≈ O(1)

(2) Balanced Height hN : Depth upto which the tree is balanced.

• 〈hN〉 ≈ cm log(N) + dm log(log(N)) (??) +. . .

• Var(hN) ≈ O(1)

Binary Tree (m = 2): a2 = 4.31107 . . . and c2 = 0.3733 . . . (Devroye, 87).

The correction terms → conjectured by Hattori and Ochiai (simulations, 2001).

Other results by Knuth, Drmota, Flajolet, Pittel, Reed, Robson, .....

Q: Significance of am and cm? Correction terms?
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Asymptotic Results for RmST: for large data size
N...continued

(3) No. of NON-EMPTY Nodes nN : No. of nodes required to store the data of
size N.

〈nN〉 ≈ αmN +. . ..

A striking PHASE TRANSITION occurs for the Variance: νN = 〈
(
nN − 〈nN〉

)2〉 .
νN ∼ N for m ≤ 26
∼ N2θ(m) for m > 26 (Chern & Hwang, 2001).

Q: Why 26? What is the mechanism of this Phase Transition and how generic is
it? Can one calculate θ(m) exactly ?
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Our Results:

• Mapping between:

Random m-ary Search Tree ≡ Random FRAGMENTATION Process

Computer Science ⇐⇒ Statistical Physics (Dynamical Process)

• Analysis using a variety of Statistical Physics techniques

(i) Travelling Front method (for HEIGHTS and BALANCED HEIGHTS)

(ii) Backward Fokker-Planck approach (for the no. of NON-EMPTY NODES)

−→ A number of asymptotically EXACT analytical results.

• −→ A new type of Phase Transition

• −→ generalization and new results for: Vector Data
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The Mapping to a Fragmentation Process

Construction of the Tree → Dynamical Fragmention Process: Split an interval
into m pieces with the break points chosen randomly. An interval can split iff it
contains atleast one point.

Ex: Consider the data: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} on a (m = 3)-ary tree

TREE CONSTRUCTION FRAGMENTION PROCESS

4, 6

1,2 5 8,9

3 7 10

1 2 3 4 5 6 7 8 9 10

109875321

1 2 3 7 8 9 10

1 2 3 7 10

73 10

3 7

7

NOTE:
No. of NONEMPTY nodes n=7= No. of SPLITTING EVENTS
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Fragmentation Process With a Stopping Time:
Continuum Limit

N

1 Start with a stick of length N.

2 Choose (m − 1) break points randomly and split the stick into m pieces.

3 Examine each piece and if its length > N0 = 1 = Threshold, again split it
randomly into further m pieces. Stop splitting if length < 1 =.

4 Repeat the process till all pieces have length < 1 and then STOP.
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DICTIONARY Between the Search Tree and the
Fragmentation Process:

m-ary SEARCH TREE ≡ FRAGMENTATION PROCESS

Height HN :

• Prob[HN < n]= Prob[ l1 < 1, l2 < 1, . . . after n steps] ( No Stopping Time)

Balanced Height hN :

• Prob[hN > n]=Prob[ l1 > 1, l2 > 1, . . . after n steps] (No Stopping Time)

Number of Nonempty Nodes nN (m > 2):

• Prob[nN = n]= Prob[there are n SPILLITING EVENTS till the end of the
Fragmentation process] (With Stopping Time)
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Analysis of HEIGHT HN

P(n,N)= Prob[HN < n]= Prob[l1 < 1, l2 < 1, . . . after n steps starting with initial
length N] (No Stopping)

N

r N (1−r)N

Recursion: P(n,N) =
∫ 1

0
P (n − 1, rN) P (n − 1, (1− r)N) dr

−→Nonlinear and starts with P(n, 1) = θ(n − 1).

n

P(
n,

N
)

INCREASING   log(N)

TRAVELLING   FRONT 
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

∂tφ(x , t) = ∂2
xφ(x , t) + φ− φ2 [Initial Cond: φ(x , 0) = θ(−x)]

φ(x) = 1→ STABLE Fixed point

φ(x) = 0→ UNSTABLE Fixed point

x

1

(x
,t) INCREASING  t

φ

Travelling Front: φ(x , t) = f (x − xf (t)) for large t, where the front position

xf (t) ∼ v t+ . . ..

Q: How to determine the Front Velocity v?
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S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics February 5, 2010 13 / 24



Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

∂tφ(x , t) = ∂2
xφ(x , t) + φ− φ2 [Initial Cond: φ(x , 0) = θ(−x)]

φ(x) = 1→ STABLE Fixed point

φ(x) = 0→ UNSTABLE Fixed point

x

1

(x
,t) INCREASING  t

φ

Travelling Front: φ(x , t) = f (x − xf (t)) for large t, where the front position

xf (t) ∼ v t+ . . ..

Q: How to determine the Front Velocity v?
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Kolmogorov’s Velocity Selection Principle:

∂tφ(x , t) = ∂2
xφ(x , t) + φ− φ2

x

1
(x

,t) INCREASING  t

φ

Linearize near the tail → φ(x , t) ∼ exp[−λ(x − vt)]

DISPERSION RELATION: v(λ) = λ+ 1
λ → minimum at λ∗ = 1.

For sharp initial condition, Front velocity v = v(λ∗) = 2.

More generally, φ(x , t) ∼ exp[−λ(x − xf (t))]

xf (t) ≈ v(λ∗)t − 3
2λ∗ log t + . . .

(Bramson, van Saarloos, Brunet & Derrida, . ....)
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Travelling Front Solution to Search Tree Height:

• Kolmogorov principle → more general (not just for the Fisher/KPP equation)

• Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):

P(n,N) =
∫ 1

0
P (n − 1, rN) P (n − 1, (1− r)N) dr

• Asymptotically P(n,N) = Prob[HN < n]→ f [n − nf (N)] → FRONT

log N ≡ t → plays the role of ‘time’ and n ≡ x → ‘space’

• Linearize near the tail: P(n,N) ≈ 1− exp [−λ (n − v(λ) log N)]

−→ DISPERSION RELATION: v(λ) = 2eλ−1
λ

• Minimize v(λ) → λ∗ = 0.76804 . . ..

〈HN〉 ≈ nf (N) ≈ v(λ∗) log(N) - 3
2λ∗ log (log(N)) + . . .

−→ a2 = v(λ∗) = 4.31107 . . . and b2 = − 3
2λ∗ = −1.95303 . . .

• Similarly one gets am and bm for all m

• Same strategy holds for the Balanced Height hN

(P.L. Krapivsky & S.M., D.S. Dean and S.M., 2000-2006)
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S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics February 5, 2010 15 / 24



Travelling Front Solution to Search Tree Height:

• Kolmogorov principle → more general (not just for the Fisher/KPP equation)

• Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):

P(n,N) =
∫ 1

0
P (n − 1, rN) P (n − 1, (1− r)N) dr

• Asymptotically P(n,N) = Prob[HN < n]→ f [n − nf (N)] → FRONT

log N ≡ t → plays the role of ‘time’ and n ≡ x → ‘space’

• Linearize near the tail: P(n,N) ≈ 1− exp [−λ (n − v(λ) log N)]

−→ DISPERSION RELATION: v(λ) = 2eλ−1
λ

• Minimize v(λ) → λ∗ = 0.76804 . . ..

〈HN〉 ≈ nf (N) ≈ v(λ∗) log(N) - 3
2λ∗ log (log(N)) + . . .

−→ a2 = v(λ∗) = 4.31107 . . . and b2 = − 3
2λ∗ = −1.95303 . . .

• Similarly one gets am and bm for all m

• Same strategy holds for the Balanced Height hN

(P.L. Krapivsky & S.M., D.S. Dean and S.M., 2000-2006)
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No of Non-Empty Nodes:

N

r1N r2N r3N rm−1N rmN

r1 + r2 + r3 + ...... + rm = 1

No. of Non-empty nodes n(N) in the tree ≡ Total no. of Splitting Events in the
fragmentation process till the Stopping Time, starting with the initial length N

Recursion:
n(N) ≡ n(r1N) + n(r2N) + n(r3N) + · · ·+ n(rmN) + 1;

∑n
i ri = 1

The marginal distribution of any fragment: ηm(r) = (m − 1)(1− r)m−2
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Integral Equations for Average and Variance:

• Mean: µ(N) = 〈n(N)〉 satisfies an integral equation:

µ(N) = m
∫ 1

1/N
µ(rN)ηm(r)dr + 1

where ηm(r) = (m − 1)(1− r)m−2 → marginal distribution of the fraction r .

• Variance: ν(N) = 〈(n(N)− µ(N))2〉 satisfies another integral equation:

ν(N) = m
∫ 1

1/N
ν(rN)η(r)dr + 〈(S − 〈S〉)2〉

where the Source Function S =
∑m

i=1 µ(riN).

These integral equations can be solved analytically (Dean & S.M.)
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Mechanism of Phase Transition: Eigenvalue Crossing

For large N:

• Mean: µ(N) ∼ α0 + α1N +
∑∞

k=2 αKNλk

where λk ’s are zeros of: m
∫ 1

0
rληm(r)dr = 1 with

ηm(r) = (m − 1)(1− r)m−2 → marginal distribution of the fraction r .

• Variance: ν(N)= β1N + β2 N2λ2 + β3 N2λ∗2 + β3 Nλ2+λ∗2 + . . .

As one tunes m, the dominant term is either N (for m < mc) or N2(Reλ2) (for
m > mc):

for large N: ν(N) ∼ N for m ≤ mc

∼ N2θ(m) for m > mc .

The critical value mc : Find λ2(m) from the root (closest to 1) of:

m(m − 1)B(λ+ 1,m − 1) = 1
Then set: Re[λ2(m = mc) = 1/2]

For m > mc = 26.0461..., θ(m) = λ2(m) (Dean and S.M., 2002).
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Generalization to Vector Data

Vector Data: Quadtree Structure (Finkel and Bentley, Flajolet and Richmond)

Scalar Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}

Vector Sequence: {(6, 4), (4, 3), (5, 2), (8, 7) . . . } → D = 2 vector.

Mapping to the Fragmentation Process: Break a hypercube into 2D parts.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

N

N
2

1

QUAD−TREE

(6, 4)

(4, 3)

splitting due to (6, 4)

splitting due to (4, 3)

Q: What are the statistics of Height HN , Balanced Height hN and the no. of
Non-empty nodes nN for a given vector data of N D-tuples?

Is there a PHASE TRANSITION in the variance of nN?
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Exact Results for Vector Data of N D-tuples for
Large N:

Height HN :
• 〈HN〉 ≈ 4.31107 . . . log(N) - 1.95303...

D log (D log(N)) +. . .

Balanced Height hN :
• 〈hN〉 ≈ 0.37336 . . . log(N) + 0.89374...

D log (D log(N)) + . . .

No. of Non-empty Nodes nN : 〈nN〉 ≈ 2
D V where V = ND .

Variance νN has a Phase Transition:

νN ∼ V for D ≤ Dc

∼ V 2θ(D) for D > Dc

Dc = π

arcsin
“

1√
8

” = 8.69362 . . .

θ(D) = 2 cos( 2π
D )− 1 → increases continuously with D for D > Dc

(D.S. Dean & S.M, 2002)
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S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics February 5, 2010 20 / 24



Probability Distribution of the no. of Non-Empty
Nodes nN:

P[nN ] → GAUSSIAN for D < Dc = 8.69362 . . .

P[nN ] → NON-GAUSSIAN for D > Dc = 8.69362 . . .

90 190 290 390
n(x) (with x= 1000)

0

0.01

0.02

0.03

p(
n(

x)
)

D=10

D=8

Further work in Computer Science: Janson ’2005-’2008, Chern et. al. 2007,...
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S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics February 5, 2010 21 / 24



Probability Distribution of the no. of Non-Empty
Nodes nN:

P[nN ] → GAUSSIAN for D < Dc = 8.69362 . . .

P[nN ] → NON-GAUSSIAN for D > Dc = 8.69362 . . .

90 190 290 390
n(x) (with x= 1000)

0

0.01

0.02

0.03
p(

n(
x)

)

D=10

D=8

Further work in Computer Science: Janson ’2005-’2008, Chern et. al. 2007,...
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Exact vs. Rigorous

Chern et. al., ACM Trans. on Algorithms, 3, 1-51 (2007)
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Summary and Conclusion:

• Analysis of m-ary search trees via techniques of statistical physics → Exact
asymptotic results.

• Going beyond Random m-ary search trees...Digital Search Trees.. interesting
connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also
to the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

• Application of the Travelling Front techniques to computer science problems.

• A simple mechanism for the peculiar Phase Transition in the fluctuation of the
number of non-empty nodes

→ A rather Generic phase transition → New Exact Results for Vector Data.

The same mechanism is also responsible for the phase transition in a Growing
Tree Model of Aldous & Shields (1988)...Explicit Results (Dean and S.M, 2006).

Perspectives: Lots of beautiful open problems in Sorting and Search that may be
possible to resolve using a variety of statistical physics techniques.
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