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Sorting and Search

The Goal: Store data efficiently so that the search time is minimum

Ex: A random sequence of N = 10 integers: {6, 4, 5, 8,9, 1, 2, 10, 3, 7}

S.N. Majumdar (CNRS, Université Paris-Sud)  Understanding Search Trees via Statistical Physics February 5, 2010 2/24



Sorting and Search

The Goal: Store data efficiently so that the search time is minimum

Ex: A random sequence of N = 10 integers: {6, 4, 5, 8,9, 1, 2, 10, 3, 7}

Linear Sorting: Store the data sequentially onto a linear table

{6,4,5,8,0,1,2 10,3, 7}

Search for 7: Search proceeds sequentially by comparison

tucaren = 10 ~ O(N) — BAD
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Tree Sorting: of {6, 4,5,8,9,1,2,10,3,7}
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e @ h=3 BALANCED HEIGHT

HEIGHT

Figure: Binary Search Tree with N = 10 Elements.

teearch = Depth = D. Roughly 2P ~ N implying: tyaren ~ O(log N) — BETTER
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Tree Sorting: of {6, 4,5,8,9,1,2,10,3,7}
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Figure: Binary Search Tree with N = 10 Elements.

teearch = Depth = D. Roughly 2P ~ N implying: tyaren ~ O(log N) — BETTER

e HEIGHT H = 5: Distance of the farthest node from the root= Maximum
possible time to search an element — WORST CASE SCENARIO
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Tree Sorting: of {6, 4,5,8,9,1,2,10,3,7}

&) 1

e @ h=3 BALANCED HEIGHT

HEIGHT

Figure: Binary Search Tree with N = 10 Elements.

teearch = Depth = D. Roughly 2P ~ N implying: tyaren ~ O(log N) — BETTER

e HEIGHT H = 5: Distance of the farthest node from the root= Maximum
possible time to search an element — WORST CASE SCENARIO

e BALANCED HEIGHT h = 3 : Depth upto which the tree is balanced
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Generalization to m-ary Search Trees: Muntz and

Uzgalis '70

m = 2 — Binary Tree
Random Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}
Each node can contain atmost (m — 1) elements.

4,6
h=2

1,2) (5 ] (8,9

3 ) [z [10]

H=3 no. of occupied nodes; N=7

Figure: m = 3-ary Search Tree with N = 10 Elements
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Generalization to m-ary Search Trees: Muntz and

Uzgalis '70

m = 2 — Binary Tree
Random Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}
Each node can contain atmost (m — 1) elements.

4,6
h=2

1,2) (5 ] (8,9

3 ) [z [10]

H=3 no. of occupied nodes; N=7

Figure: m = 3-ary Search Tree with N = 10 Elements

H =3 — HEIGHT.
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Generalization to m-ary Search Trees: Muntz and

Uzgalis '70

m = 2 — Binary Tree
Random Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}
Each node can contain atmost (m — 1) elements.

4,6
h=2

1,2) (5 ] (8,9

3 ) [z [10]

H=3 no. of occupied nodes; N=7

Figure: m = 3-ary Search Tree with N = 10 Elements

H =3 — HEIGHT.
h =2 — BALANCED HEIGHT.
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Generalization to m-ary Search Trees: Muntz and

Uzgalis '70

m = 2 — Binary Tree
Random Sequence: {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}
Each node can contain atmost (m — 1) elements.

4,6
h=2

1,2) (5 ] (8,9

3 ) [z [10]

H=3 no. of occupied nodes; N=7

Figure: m = 3-ary Search Tree with N = 10 Elements

H =3 — HEIGHT.
h =2 — BALANCED HEIGHT.
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Random m-ary Search Tree Model: RmST

N = 10 data elements: {1,2,3,4,5,6,7,8,9,10}
Each permutation — an m-ary tree.

{6,4,5891,210,3, 7  {86,921534,7 10}

H=3, h=2, n=7

In the RmST model: All N! permuations are equally likely — RANDOM DATA.
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Random m-ary Search Tree Model: RmST

N = 10 data elements: {1,2,3,4,5,6,7,8,9,10}
Each permutation — an m-ary tree.

{6,4,5891,210,3, 7  {86,921534,7 10}

H=3, h=2, n=7

In the RmST model: All N! permuations are equally likely — RANDOM DATA.

Q: Statistics of HEIGHT Hp, BALANCED HEIGHT hp and the no. of
NON-EMPTY NODES ny for RANDOM data of size N7?
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
e Var(Hy) = O(1)
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
e Var(Hy) = O(1)

(2) Balanced Height hy: Depth upto which the tree is balanced.
o (hy) = cmlog(N) + dp, log(log(N)) (77) +...
e Var(hy) =~ O(1)
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
e Var(Hy) = O(1)

(2) Balanced Height hy: Depth upto which the tree is balanced.
o (hy) = cmlog(N) + dp, log(log(N)) (77) +...
e Var(hy) =~ O(1)

Binary Tree (m = 2): a, = 4.31107... and ¢, = 0.3733... (Devroye, 87).
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
e Var(Hy) = O(1)

(2) Balanced Height hy: Depth upto which the tree is balanced.
o (hy) = cmlog(N) + dp, log(log(N)) (77) +...
e Var(hy) =~ O(1)

Binary Tree (m = 2): a, = 4.31107... and ¢, = 0.3733... (Devroye, 87).

The correction terms — conjectured by Hattori and Ochiai (simulations, 2001).

Other results by Knuth, Drmota, Flajolet, Pittel, Reed, Robson, .....
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Asymptotic Results for RmST: for large data size N

(1) Height Hy:
e (Hy) =~ ap,log(N) + by, log(log(N)) (?7) +...
e Var(Hy) = O(1)

(2) Balanced Height hy: Depth upto which the tree is balanced.
o (hy) = cmlog(N) + dp, log(log(N)) (77) +...
e Var(hy) =~ O(1)

Binary Tree (m = 2): a, = 4.31107... and ¢, = 0.3733... (Devroye, 87).

The correction terms — conjectured by Hattori and Ochiai (simulations, 2001).
Other results by Knuth, Drmota, Flajolet, Pittel, Reed, Robson, .....

Q: Significance of a,, and ¢,,? Correction terms?
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Asymptotic Results for RmST: for large data size

N...continued

(3) No. of NON-EMPTY Nodes ny: No. of nodes required to store the data of
size V.

(nn) = amN +. ...
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Asymptotic Results for RmST: for large data size

N...continued

(3) No. of NON-EMPTY Nodes ny: No. of nodes required to store the data of
size V.

(nn) = amN +. ...

A striking PHASE TRANSITION occurs for the Variance: vy = ((ny — (nN>)2> .
vy ~ N for m <26
~ N2(m) for m > 26 (Chern & Hwang, 2001).
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Asymptotic Results for RmST: for large data size

N...continued

(3) No. of NON-EMPTY Nodes ny: No. of nodes required to store the data of
size V.

(nn) = amN +. ...

A striking PHASE TRANSITION occurs for the Variance: vy = ((nN — (nN>)2> )
vy ~ N for m <26
~ N2(m) for m > 26 (Chern & Hwang, 2001).

Q: Why 267 What is the mechanism of this Phase Transition and how generic is
it? Can one calculate 6(m) exactly ?
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Our Results:

e Mapping between:
Random m-ary Search Tree = Random FRAGMENTATION Process

Computer Science <= Statistical Physics (Dynamical Process)
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Our Results:
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Random m-ary Search Tree = Random FRAGMENTATION Process

Computer Science <= Statistical Physics (Dynamical Process)
e Analysis using a variety of Statistical Physics techniques

(i) Travelling Front method (for HEIGHTS and BALANCED HEIGHTS)
(ii) Backward Fokker-Planck approach (for the no. of NON-EMPTY NODES)
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— A number of asymptotically EXACT analytical results.
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Our Results:

e Mapping between:
Random m-ary Search Tree = Random FRAGMENTATION Process

Computer Science <= Statistical Physics (Dynamical Process)

e Analysis using a variety of Statistical Physics techniques
(i) Travelling Front method (for HEIGHTS and BALANCED HEIGHTS)
(ii) Backward Fokker-Planck approach (for the no. of NON-EMPTY NODES)

— A number of asymptotically EXACT analytical results.
° — A new type of Phase Transition

° —— generalization and new results for: Vector Data
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The Mapping to a Fragmentation Process

Construction of the Tree — Dynamical Fragmention Process: Split an interval
into m pieces with the break points chosen randomly. An interval can split iff it
contains atleast one point.

Ex: Consider the data: {6,4,5,8,9,1,2,10,3,7} on a (m = 3)-ary tree

TREE CONSTRUCTION FRAGMENTION PROCESS
1 2 3 4 5 6 7 8 9 10

123 | 5} 78 9w
12 3 ! 7 8 9 10
12 3 iTTm
bt s 7 10
—e— —— ——
3 7 !
—— ——

! .
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The Mapping to a Fragmentation Process

Construction of the Tree — Dynamical Fragmention Process: Split an interval
into m pieces with the break points chosen randomly. An interval can split iff it
contains atleast one point.

Ex: Consider the data: {6,4,5,8,9,1,2,10,3,7} on a (m = 3)-ary tree

TREE CONSTRUCTION FRAGMENTION PROCESS
1 2 3 4 5 6 7 8 9 10

123 | 5} 78 9w
——

12 3 ! 7 8 9 10

12 3 iTTm

bt s 7 10

—e— —— ——
3 7 !
—— ——

! .

NOTE:
No. of NONEMPTY nodes n=7= No. of SPLITTING EVENTS
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Fragmentation Process With a Stopping Time:

Continuum Limit

I R T R

@ Start with a stick of length .
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Fragmentation Process With a Stopping Time:

Continuum Limit

I R T R

@ Start with a stick of length .
@ Choose (m — 1) break points randomly and split the stick into m pieces.
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Fragmentation Process With a Stopping Time:

Continuum Limit

BRI fret

@ Start with a stick of length .
@ Choose (m — 1) break points randomly and split the stick into m pieces.

© Examine each piece and if its length > Ny = 1 = Threshold, again split it
randomly into further m pieces. Stop splitting if length < 1 =.
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Fragmentation Process With a Stopping Time:

Continuum Limit

I R T R

@ Start with a stick of length .
@ Choose (m — 1) break points randomly and split the stick into m pieces.

© Examine each piece and if its length > Ny = 1 = Threshold, again split it
randomly into further m pieces. Stop splitting if length < 1 =.

@ Repeat the process till all pieces have length < 1 and then STOP.
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DICTIONARY Between the Search Tree and the

Fragmentation Process:

m-ary SEARCH TREE = FRAGMENTATION PROCESS
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DICTIONARY Between the Search Tree and the

Fragmentation Process:

m-ary SEARCH TREE = FRAGMENTATION PROCESS

Height Hy:
e Prob[Hy < n]= Prob[ h <1, h <1, ... after n steps] ( No Stopping Time)

Balanced Height hp:
e Prob[hy > n]=Prob[ h > 1, L > 1, ... after n steps] (No Stopping Time)

Number of Nonempty Nodes ny (m > 2):

e Prob[ny = n]= Prob][there are n SPILLITING EVENTS till the end of the
Fragmentation process] (With Stopping Time)
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Analysis of HEIGHT Hy

P(n,N)= Prob[Hy < n]= Prob[h <1, h <1, ... after n steps starting with initial
length N] (No Stopping)

N
/ \
rN (1-r)N

|

Recursion: P(n, N) = l/;)l P(n—1,rN)P(n—1,(1—r)N)dr
—Nonlinear and starts with P(n,1) = 6(n — 1).
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Analysis of HEIGHT Hy
... after n steps starting with initial

P(n,N)= Prob[Hy < n]= Prob[h <1, h <1,
length N] (No Stopping)

N

(1-r)N
f

Recursion: P(n, N) = l/;)l P(n—1,rN)P(n—1,(1—r)N)dr
—Nonlinear and starts with P(n, 1)=0(n—-1).

—— INCREASING log(N)
TRAVELLING FRONT

Understanding Search Trees via Statistical Physics

rN

P(n.N)

February 5, 2010
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

0:p(x,t) = O2P(x,t) + ¢ — ¢>  [Initial Cond: ¢(x,0) = O(—x)]
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

0:p(x,t) = O2P(x,t) + ¢ — ¢>  [Initial Cond: ¢(x,0) = O(—x)]
¢(x) =1 — STABLE Fixed point
#(x) = 0 — UNSTABLE Fixed point
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

0:p(x,t) = O2P(x,t) + ¢ — ¢>  [Initial Cond: ¢(x,0) = O(—x)]
¢(x) =1 — STABLE Fixed point
#(x) = 0 — UNSTABLE Fixed point

[

—— INCREASING t

@ (x.t)
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

0:p(x,t) = O2P(x,t) + ¢ — ¢>  [Initial Cond: ¢(x,0) = O(—x)]
¢(x) =1 — STABLE Fixed point
#(x) = 0 — UNSTABLE Fixed point

1
5 — . INCREASING t
S

X

Travelling Front: ¢(x,t) = f (x — x¢(t)) for large t, where the front position

xe(t) ~ v t+ ...
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Travelling Front in Fisher/KPP Equation

Fisher/KPP equation: Population Dynamics, Branching Process, ....

0:p(x,t) = O2P(x,t) + ¢ — ¢>  [Initial Cond: ¢(x,0) = O(—x)]
¢(x) =1 — STABLE Fixed point
#(x) = 0 — UNSTABLE Fixed point

1
5 — . INCREASING t
S

X

Travelling Front: ¢(x,t) = f (x — x¢(t)) for large t, where the front position

xe(t) ~ v t+ ...

Q: How to determine the Front Velocity v?
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Kolmogorov’s Velocity Selection Principle:

O:p(x, t) = Ro(x, t) + & — ¢

1
= — . INCREASING t
S

X

S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics
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Kolmogorov’s Velocity Selection Principle:

Oep(x, t) = 02p(x, ) + ¢ — ¢

[

—— INCREASING t

@ (x.t)

Linearize near the tail — ¢(x,t) ~ exp[—A(x — vt)]

DISPERSION RELATION: v(A) =X+ % — minimum at \* =
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Kolmogorov’s Velocity Selection Principle:

Oep(x, t) = 02p(x, ) + ¢ — ¢

1
= . INCREASING t
S

X

Linearize near the tail — ¢(x,t) ~ exp[—A(x — vt)]
DISPERSION RELATION: v(A) =X+ % — minimum at \* =

For sharp initial condition, Front velocity v = v(A\*) = 2.
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Kolmogorov’s Velocity Selection Principle:

Oep(x, t) = 02p(x, ) + ¢ — ¢

1
= . INCREASING t
S

X

Linearize near the tail — ¢(x,t) ~ exp[—A(x — vt)]
DISPERSION RELATION: v(A) =X+ % — minimum at A" = 1.
For sharp initial condition, Front velocity v = v(A\*) = 2.

More generally, ¢(x, t) ~ exp[—A(x — x¢(t))]

S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics

February 5, 2010



Kolmogorov’s Velocity Selection Principle:

Oep(x, t) = 02p(x, ) + ¢ — ¢

1
= . INCREASING t
S

X

Linearize near the tail — ¢(x, t) ~ exp[—A(x — vt)]

DISPERSION RELATION: v(\) = A+ 1 — minimum at \* = 1.
For sharp initial condition, Front velocity v = v(A\*) = 2.

More generally, ¢(x, t) ~ exp[—A(x — x¢(t))]

xe(t) = v(A*)t — 5 logt + ...

(Bramson, van Saarloos, Brunet & Derrida, . ....)
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)

e Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):

P(n,N)= [} P(n—1,rN)P(n—1,(1 - r)N)dr
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)
e Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):
P(n,N)= [} P(n—1,rN)P(n—1,(1 - r)N)dr

e Asymptotically P(n, N) = Prob[Hy < n] — f[n — nf(N)] — FRONT
log N =t — plays the role of ‘time’ and n = x — ‘space’
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)
e Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):
P(n,N)= [} P(n—1,rN)P(n—1,(1 - r)N)dr

e Asymptotically P(n, N) = Prob[Hy < n] — f[n — nf(N)] — FRONT
log N =t — plays the role of ‘time’ and n = x — ‘space’

e Linearize near the tail: P(n,N) =1 —exp[—A(n— v(\)log N)]

— DISPERSION RELATION: v()) = 2¢=1
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)
e Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):
P(n,N)= [} P(n—1,rN)P(n—1,(1 - r)N)dr
e Asymptotically P(n, N) = Prob[Hy < n] — f[n — nf(N)] — FRONT
log N =t — plays the role of ‘time’ and n = x — ‘space’
e Linearize near the tail: P(n,N) ~1—exp[—X(n— v(\)logN)]
— DISPERSION RELATION: v(\) = 2e 1

)
e Minimize v(\) — \* = 0.76804. . ..
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Travelling Front Solution to Search Tree Height:

e Kolmogorov principle — more general (not just for the Fisher/KPP equation)
e Apply the same strategy to the Nonlinear Tree Recursion Relation (m = 2):

P(n,N)= [} P(n—1,rN)P(n—1,(1 - r)N)dr
e Asymptotically P(n, N) = Prob[Hy < n] — f[n — nf(N)] — FRONT
log N =t — plays the role of ‘time’ and n = x — ‘space’
e Linearize near the tail: P(n,N) ~1—exp[—X(n— v(\)logN)]

— DISPERSION RELATION: v(\) = %
e Minimize v(\) — \* = 0.76804. . ..

(Hn) = ne(N) = v(\*) log(N) - 3= log (log(N)) + ...

—  a=v(\*) =4.31107... and b, = —53. = —1.95303...
e Similarly one gets a,, and b,, for all m
e Same strategy holds for the Balanced Height hy
(P.L. Krapivsky & S.M., D.S. Dean and S.M., 2000-2006)
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No of Non-Empty Nodes:

N

LN BN N fm-N _'mN

r1+r2+r3+ ...... +rm =1
No. of Non-empty nodes n(N) in the tree = Total no. of Splitting Events in the
fragmentation process till the Stopping Time, starting with the initial length N/

Recursion:
n(N) = n(rN) + n(rN) + n(rsN) + - - - + n(r,N) + 1; Sirn=1

The marginal distribution of any fragment: 7,,(r) = (m — 1)(1 — r)™2
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Integral Equations for Average and Variance:

e Mean: p(N) = (n(N)) satisfies an integral equation:
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Integral Equations for Average and Variance:

e Mean: p(N) = (n(N)) satisfies an integral equation:
1
p(N) = m [}, (rN)nm(r)dr + 1

where 1,,(r) = (m — 1)(1 — r)™ 2 — marginal distribution of the fraction r.
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Integral Equations for Average and Variance:

e Mean: p(N) = (n(N)) satisfies an integral equation:
1
p(N) = m [}, (rN)nm(r)dr + 1

where 1,,(r) = (m — 1)(1 — r)™ 2 — marginal distribution of the fraction r.

e Variance: v(N) = ((n(N) — (N))?) satisfies another integral equation:

v(N) = m [}y v(rN)n(r)dr + (S = (S))?)

where the Source Function S = Y7 1u(r;N).

These integral equations can be solved analytically ~ (Dean & S.M.)
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Mechanism of Phase Transition: Eigenvalue Crossing

For large N:
o Mean: u(N) ~ ag+ arN + > 77, ax N
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For large N:
o Mean: u(N) ~ ag+ arN + > 77, ax N
where \,'s are zeros of: mfol rm(r)dr = 1 with

nm(r) = (m—1)(1 — r)™ 2 — marginal distribution of the fraction r.
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where \,'s are zeros of: mfol rNm(r)dr = 1 with

nm(r) = (m—1)(1 — r)™ 2 — marginal distribution of the fraction r.

e Variance: v(N)= BiN + 8o N2 + B3 N?X2 4 35 NYoF22
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where \,'s are zeros of: mfol rNm(r)dr = 1 with

nm(r) = (m—1)(1 — r)™ 2 — marginal distribution of the fraction r.
e Variance: v(N)= BiN + 8o N2 + B3 N?X2 4 35 NYoF22

As one tunes m, the dominant term is either N (for m < m,) or N2(ReX2) (for
m > me):

for large N: v(N) ~ N for m < m.

~ N29(m)  for m > my.
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As one tunes m, the dominant term is either N (for m < m,) or N2(ReX2) (for
m > me):

for large N: v(N) ~ N for m < m.
~ N29(m)  for m > my.
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where \,'s are zeros of: mfol rNm(r)dr = 1 with

nm(r) = (m—1)(1 — r)™ 2 — marginal distribution of the fraction r.
e Variance: v(N)= BiN + 8o N2 + B3 N?X2 4 35 NYoF22

As one tunes m, the dominant term is either N (for m < m,) or N2(ReX2) (for
m > me):

for large N: v(N) ~ N for m < m.
~ N29(m)  for m > my.

The critical value m.:  Find Ay(m) from the root (closest to 1) of:
m(m—-1)B(A+1,m—-1)=1
Then set: Re[Ao(m = m.) =1/2]
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Mechanism of Phase Transition: Eigenvalue Crossing

For large N:

o Mean: p(N) ~ ag+arN + Y 0, ax N

where \,'s are zeros of: mfol rNm(r)dr = 1 with

nm(r) = (m—1)(1 — r)™ 2 — marginal distribution of the fraction r.
e Variance: v(N)= BiN + 8o N2 + B3 N?X2 4 35 NYoF22

As one tunes m, the dominant term is either N (for m < m,) or N2(ReX2) (for
m > me):

for large N: v(N) ~ N for m < m.
~ N29(m)  for m > my.

The critical value m.:  Find Ay(m) from the root (closest to 1) of:
m(m—-1)B(A+1,m—-1)=1
Then set: Re[Ao(m = m.) =1/2]

For m > m. = 26.0461..., 0(m) = Xo(m)  (Dean and S.M., 2002).
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Generalization to Vector Data

Vector Data: Quadtree Structure (Finkel and Bentley, Flajolet and Richmond)
Scalar Sequence: {6,4,5,8,9,1,2,10,3,7}
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Vector Data: Quadtree Structure (Finkel and Bentley, Flajolet and Richmond)
Scalar Sequence: {6,4,5,8,9,1,2,10,3,7}
Vector Sequence: {(6,4),(4,3),(5,2),(8,7)...} — D = 2 vector.

Mapping to the Fragmentation Process: Break a hypercube into 2P parts.

* -+ —e splitting due to (6, 4)
z
_!_ _o splitting due to (4, 3)
7 i
6
5 6,4)
4 1 — e  QUAD-TREE
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Scalar Sequence: {6,4,5,8,9,1,2,10,3,7}

Vector Sequence: {(6,4),(4,3),(5,2),(8,7)...} — D = 2 vector.

Mapping to the Fragmentation Process: Break a hypercube into 2P parts.

* -+ —e splitting due to (6, 4)
z
,:,, _o splitting due to (4, 3)
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6
5 6,4)
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Q: What are the statistics of Height Hy, Balanced Height hy and the no. of
Non-empty nodes ny for a given vector data of N D-tuples?
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Generalization to Vector Data

Vector Data: Quadtree Structure (Finkel and Bentley, Flajolet and Richmond)
Scalar Sequence: {6,4,5,8,9,1,2,10,3,7}

Vector Sequence: {(6,4),(4,3),(5,2),(8,7)...} — D = 2 vector.

Mapping to the Fragmentation Process: Break a hypercube into 2P parts.

* -+ —e splitting due to (6, 4)
z
,:,, _o splitting due to (4, 3)
7
6
5 6,4)
4 1 — e  QUAD-TREE
3 |mimemems e
2 4,3)!
I
1 i
i
1234567 N,—e

Q: What are the statistics of Height Hy, Balanced Height hy and the no. of
Non-empty nodes ny for a given vector data of N D-tuples?

Is there a PHASE TRANSITION in the variance of ny?

February 5, 2010 19 / 24

S.N. Majumdar (CNRS, Université Paris-Sud) Understanding Search Trees via Statistical Physics



Exact Results for Vector Data of N D-tuples for

Large N:

Height Hy :
o (Hy) =~ 4.31107 ... log(N) -193%- |og (D log(N)) +...
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Exact Results for Vector Data of N D-tuples for

Large N:

Height Hy :

o (Hy) =~ 4.31107 ... log(N) -193%- |og (D log(N)) +...

Balanced Height hy :

o (hy) ~ 0.37336...log(N) + %8957 |og (D log(N)) + ...

No. of Non-empty Nodes ny : (ny) =~ 3V where V = NP.
Variance vy has a Phase Transition:
vy ~ V for D < D,
~ V2(D) for D > D,
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Exact Results for Vector Data of N D-tuples for

Large N:

Height Hy :

o (Hy) =~ 4.31107 ... log(N) -193%- |og (D log(N)) +...

Balanced Height hy :

o (hy) ~ 0.37336...log(N) + %8957 |og (D log(N)) + ...

No. of Non-empty Nodes ny : (ny) =~ 3V where V = NP.
Variance vy has a Phase Transition:
vy ~ V for D < D,
~ V2(D) for D > D,

D, = ﬁ = 8.69362. ..

arcsin(

Sl
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Exact Results for Vector Data of N D-tuples for

Large N:

Height Hy :
o (Hy) =~ 4.31107 ... log(N) -193%- |og (D log(N)) +...

Balanced Height hy :
o (hy) ~ 0.37336....log(N) + %82 |og (D log(N)) + ...

No. of Non-empty Nodes ny : (ny) =~ 3V where V = NP.
Variance vy has a Phase Transition:
vy ~ V for D < D,
~ V2(D) for D > D,

D= —T  —869362...
aI’CSIn(%)
(D) = 2cos(25) — 1 — increases continuously with D for D > D,
(D.S. Dean & S.M, 2002)
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Probability Distribution of the no. of Non-Empty

Nodes ny:

P[nn] — GAUSSIAN for D < D, = 8.69362 . ..
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Further work in Computer Science: Janson '2005-'2008, Chern et. al. 2007,
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Exact vs. Rigorous

Chern et. al., ACM Trans. on Algorithms, 3, 1-51 (2007)

Phase Changes in Random Fragmentation Models. The same phase change phe-
nomenon as leaves in random quadtrees was first observed in Dean and Majumdar
[2002]; where they proposed random continuous fragmentation models to explain
heuristically the phase changes in random search trees. Their continuous model
corresponding to quadtrees is as follows. Pick a point in [0, x]? uniformly at ran-
dom (x > 1), which then splits the space into 2¢ smaller hyperrectangles. Continue
the same procedure in the subhyperrectangles whose volumes are larger than unity.
The process stops when all subhyperrectangles have volumes less than unity. They
argue heuristically that the total number of splittings undergoes a phase change:
“While we can rigorously prove that the distribution is indeed Gaussian in the sub-
critical regime [d < 8], we have not been able to calculate the full distribution in
the super-critical regime [d > 9]”; see Dean and Majumdar [2002].

| Recently, Janson [2005] showed that the same type of phase change can be
constructed by considering the number of nodes at distance £ satisfying £ = j mod
d,0 < j < d, in random binary search trees, or equivalently, the number of
nodes using the (£ + 1)-st coordinate as discriminators in random k-d trees, where

¢ = j mod 4. In all these problems, periodicity plays a key role in phase changes.

February 5, 2010 22 /24

Understanding Search Trees via Statistical Physics

S.N. Majumdar (CNRS, Université Paris-Sud)



Exact vs. Rigorous

Chern et. al., ACM Trans. on Algorithms, 3, 1-51 (2007)

Phase Changes in Random Fragmentation Models. The same phase change phe-
nomenon as leaves in random quadtrees was first observed in Dean and Majumdar
[2002]; where they proposed random continuous fragmentation models to explain
heuristically the phase changes in random search trees. Their continuous model
corresponding to quadtrees is as follows. Pick a point in [0, x]? uniformly at ran-
dom (x > 1), which then splits the space into 2¢ smaller hyperrectangles. Continue
the same procedure in the subhyperrectangles whose volumes are larger than unity.
The process stops when all subhyperrectangles have volumes less than unity. They
argue heuristically that the total number of splittings undergoes a phase change:
“While we can rigorously prove that the distribution is indeed Gaussian in the sub-
critical regime [d < 8], we have not been able to calculate the full distribution in
the super-critical regime [d > 9]”; see Dean and Majumdar [2002].

| Recently, Janson [2005] showed that the same type of phase change can be
constructed by considering the number of nodes at distance £ satisfying £ = j mod
d,0 < j < d, in random binary search trees, or equivalently, the number of
nodes using the (£ + 1)-st coordinate as discriminators in random k-d trees, where

¢ = j mod 4. In all these problems, periodicity plays a key role in phase changes.

February 5, 2010 22 /24

Understanding Search Trees via Statistical Physics

S.N. Majumdar (CNRS, Université Paris-Sud)



Summary and Conclusion:

e Analysis of m-ary search trees via techniques of statistical physics — Exact
asymptotic results.
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Summary and Conclusion:

e Analysis of m-ary search trees via techniques of statistical physics — Exact
asymptotic results.

e Going beyond Random m-ary search trees...Digital Search Trees.. interesting
connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also
to the Lempel-Ziv Data Compression Algorithm (S.M., 2003).
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Summary and Conclusion:

e Analysis of m-ary search trees via techniques of statistical physics — Exact
asymptotic results.

e Going beyond Random m-ary search trees...Digital Search Trees.. interesting
connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also
to the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

e Application of the Travelling Front techniques to computer science problems.

e A simple mechanism for the peculiar Phase Transition in the fluctuation of the
number of non-empty nodes

— A rather Generic phase transition — New Exact Results for Vector Data.

The same mechanism is also responsible for the phase transition in a Growing
Tree Model of Aldous & Shields (1988)...Explicit Results (Dean and S.M, 2006).
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e Going beyond Random m-ary search trees...Digital Search Trees.. interesting
connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also
to the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

e Application of the Travelling Front techniques to computer science problems.

e A simple mechanism for the peculiar Phase Transition in the fluctuation of the
number of non-empty nodes

— A rather Generic phase transition — New Exact Results for Vector Data.

The same mechanism is also responsible for the phase transition in a Growing
Tree Model of Aldous & Shields (1988)...Explicit Results (Dean and S.M, 2006).

Perspectives: Lots of beautiful open problems in Sorting and Search that may be
possible to resolve using a variety of statistical physics techniques.
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