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1. Some classical condensation phenomena
Granular shaking:

N=100 plastic particles in box with two compartments separated by wall with slitN 100 plastic particles in box with two compartments separated by wall with slit
[Schlichting and Nordmeier ‘96, Eggers ’99, Lohse ‘02]

Gaseous state Condensed stateGaseous state                                                                    Condensed state

T T T TT > Tc T < Tc

i)       Strong shaking (fixed amplitude, 50 Hz frequency): Equal gaseous distribution
ii) Moderate shaking (same amplitude 30 Hz): Condensation (with SSB)ii)      Moderate shaking (same amplitude, 30 Hz): Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition



Granular Clustering: L=5Granular Clustering: L=5
http://stilton.tnw.utwente.nl/people/rene/clustering.html
Detlef Lohse, Devaraj van der Meer, Michel Versluis, 
Ko van der Weele, René Mikkelsen
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Single File Diffusion:

SFD: Quasi one-dimensional diffusive particle transport without passing

• diffusion in zeolites

• colloidal particles in narrow channels

• ion channels

• molecular motors and ribosomes

• gel electrophoresis

• one dimensional interface growth

Three phases of kinesin transport (Chodhury et al.)

• one-dimensional interface growth

• automobile traffic flow

• …

Polyribosome:
[http://omega.dawsoncollege.qc.ca/ray/protein/protein.htm
]]



Traffic flow:

SpaceSpace

• Condensation = traffic jam

Time density profile

Space

[Treiterer, 1965]Time density profile

• Condensation = phase separation



2. Condensation transition in the zero-range process
Zero-range process (ZRP) with symmetric nearest-neighbour hopping  [Spitzer (1970)]

2. Condensation transition in the zero range process

• Stochastic microscopic particle hopping model for large scale hydrodynamic behaviour

• Cluster of size n occupation number in ZRP

• particle flux J(nk) between compartments hopping rate in ZRP

J(nk)

k



Mapping of single-file diffusion to zero range process:

• Label particles consecutively

n1 n2 n3 n4n1 n2 n3                         n4

1                         2                       3              4

• Map particle label to lattice site

• Map discretized interparticle distance to particle numberMap discretized interparticle distance to particle number

1 2 3 41             2            3             4



Condensation transition Proposed to explain condensation phenomenaCondensation transition Proposed to explain condensation phenomena

• Granular shakingGranular shaking 

• Network rewiring

• Accumulation of wealth

Mapping to single-file dynamics (one-dimensional):

• Phase separation in multi-component systems

• Traffic flow

Generic model for condensation in complex systems



Exact grand canonical stationary distribution of zero-range process [Spitzer, (1970)]Exact grand canonical stationary distribution of zero range process [Spitzer, (1970)]

Product measure with marginals P(n) and local partition function Z

~

• Fugacity z determines (fluctuating) density

• Well defined for fugacities within radius of convergence z* (that depends on flux function)• Well-defined for fugacities within radius of convergence z* (that depends on flux function)

• Canonical ensembles for any N by projection on fixed N



Spatially homogeneous systemsSpatially homogeneous systems

1) Asymptotically vanishing flux J(n) 0:  z*=0 and hence ρc = 0 
( t d ti )

2)     Consider generic case where for large n

(strong condensation)

J(n)  = A (1 + b/nσ )

radius of convergence of partition function: z < z* = Aradius of convergence of partition function: z < z  = A  

at z* one has finite density ρc for σ < 1

For σ = 1:     P(n) ~ 1/nb 



Interpretation of critical density for b>2 or σ < 1 for canonical ensemble:Interpretation of critical density for b>2 or σ < 1 for canonical ensemble: 

• Above critical density all sites except one (background) are at critical density

• One randomly selected site carries remaining O(L) particles 

Classical analogue of Bose-Einstein condensation
[Evans ’96, Ferrari, Krug ’96, O’Loan, Evans, Cates, ’98, Jeon, March ‘00]

Single random condensation site 
[Grosskinsky, GMS, Spohn, ’05, Ferrari, Landim, Sisko ’07, Loulakis, Armendariz ‘08, 
Evans, Majumdar ‘08]]

Continuous condensation transition (ρbg = ρc)

Coarsening as precursor of condensation
[Grosskinsky, GMS, Spohn, ’05; Godreche ‘05]



Remarks:Remarks:

• Product measure stationary for ZRP on arbitrary graph

• Single-file dynamics (n = interparticle distance) 1d phase transition?

Thermally activated jumps: J(n) ~ exp( -βE(n)) ~ exp(b/nσ) 

E(n) = a + b/nσ + ...   Long range interaction in 1d!

• Basic mechanism of condensation: 

Growth of large domains on the expense of small domains

A i ll d i J( ) i h i i l d 1Asymptotically decaying J(n) with critical decay exponent σ = 1

In this case, condensation depends on interaction strength b



3. Non-Markovian ZRP dynamicsy

Complex systems: Markovian property (lack of memory) may be unjustified

(e.g. colloidal particles in a fluid: power law tail in velocity autocorrelation) 

Introduce memory term (on microscopic level)Introduce memory term (on microscopic level)

Is condensation stable w r t memory?Is condensation stable w.r.t. memory?

Can memory induce condensation?

Example: AHR model for probe particle in a driven fluid:

- strongly correlated non-Markovian jumps with effective jump rate

- domain size distribution (distance between probes) identical to ZRP

- no condensation, but “almost” (huge mean domain size)



Our approach to model non-Markovian dynamics:

• make jump rates dependent on “age” of site i (integer clock τi)
==> u(n,τ)

• age measured since last arrival (reset τ(k) =0 at arrival of particle)

• discrete increments  τi -->  τi + 1 at exponential random times

• clock increment independent of ni, but in general depending on 
other clocks

Joint dynamics (n(k),τ(k)) is Markovian

Particle hopping n(k) by itself is non-Markovian and zero range



1) Special case: On-off model with interaction of clocks

• Consider on-off case τ = 0,1

A t i t i hb j• Asymmetric nearest neighbour jumps

• Clock increment depending on target site• Clock increment depending on target site

• Exact results:

- Stationary distribution factorizes into-site marginals P(n) = P0(n) + P1(n)

- P(n) same form as Markovian ZRP with effective hopping rateP(n) same form as Markovian ZRP with effective hopping rate

ueff(n) = c u(n) / (c + u(n))

==>  Shift in critical b for condensation



2) Generic model without clock interaction 

• make jump rates dependent on “age” of site i (integer clock τi)
==> u(n,τ)

• age measured since last arrival (reset τ(k) =0 at arrival of particle)

• discrete increments  >  + 1 at exponential random times• discrete increments  τi -->  τi + 1 at exponential random times
(independent of ni and other clocks)

Consider two cases:

A) Mean field dynamics: Uniform random target site j (fully connectedA) Mean field dynamics: Uniform random target site j (fully connected 
graph)

B) Totally asymmetric nearest neighbour dynamics (1-d periodic lattice)) y y g y ( p )



A) Mean field dynamics:

• Uniform random target site j: Mean Field (MF) dynamics

• approximate factorization for large L

• focus on single site with incoming “mean-field” current J

with average occupation number 

and currentand current 



Stationary distribution:

• set time-derivative to zero

• define mean hopping rate

==> single-site marginal

Same form as usual Markovian ZRP with hopping rate u(n)

and current J=zand current J z



Shift of condensation transition:

• Critical current

==>  b has to be larger than 2, condensation transition for

Memory destroys condensation for b close to 2Memory destroys condensation for b close to 2



On-off model:

• Consider on-off case τ = 0,1

• Mean hopping rate

==> for generic Markovian rates u ~ 1 + b/n

Same form as usual Markovian ZRP with interaction parameter beff



B) Totally asymmetric on-off model with periodic boundary conditions:

• mean field approximation not good

• condensate typically occupies two sites

• condensate movescondensate moves



Motion of condensate:

• position of most occupied site

mostly on                   off

• occupation of most occupied site

==> slinky motion speed v = 1/(N-N ) ~ 1/L> slinky motion, speed  v  1/(N Nc)  1/L



Conclusions

1. Construction of family ZRP with memory

2. Exactly solvable case with coupled clocks: product measure, modified 
ZRP hopping rates that affect condensation 

3. General mean field dynamics with uncoupled clocks: modified ZRP 
hopping rates that affect condensation (large L)

4. Totally asymmetric On-off model with nearest neighbour hopping in 
one dimension:
- condensate occupies two sitescondensate occupies two sites
- slinky motion with finite velocity ~ 1/L

Similar conclusions for heterogeneous Single-File Diffusion with 
long range interaction g g
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