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Introduction

Heat CONDUCTION - Heat transfer through a body from HOT to COLD region.
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Fourier’s law

Fourier’s law of heat conduction

J = −κ∇T (x)

Using Fourier’s law and the energy conservation equation

∂ε

∂t
+∇.J = 0

gives the heat DIFFUSION equation:

∂T
∂t

=
κ

c
∇2T

c = specific heat capacity.
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Fourier’s law

For small ∆T = TL − TR and system size L :

Fourier′s law implies : J ∼ κ
∆T
L

The thermal conductivity κ is an intrinsic material property.

e.g at room temperature:

κ = 0.025 W/mK air

= 429 W/mK silver

= 2000 W/mK Diamond
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Proof of Fourier’s law

Open problem:
Microscopic derivation/verification of Fourier’s law in a
realistic model with Hamiltonian dynamics.

Review article:
Fourier’s law: A challenge for theorists
(Bonetto, Rey-Bellet, Lebowitz) (2000).
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Results so far

Studies in one and two dimensional systems find that Fourier’s law is not valid.

The thermal conductivity is not an intrinsic material property.

For anharmonic systems without disorder , κ diverges with system size L as:

κ ∼ Lα 1D

∼ log L 2D

Pinned anharmonic (momentum non-conserving) systems satisfy Fourier’s law.

A.D, Advances in Physics, vol. 57 (2008).
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Implications

This is interesting not just from the point of theory but also important from the experimental point
of view.

The thermal conductivity of a 1 mm long carbon nanotube is (1000)α times
larger than that of a 1 µm long carbon nanotube !!

Recent experiments on nanotubes and graphene report diverging conductivity.
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Higher dimensional systems

What about systems in three dimensions ?
Is Fourier’s law valid ?

Consider dielectric crystals.
Heat conduction is through lattice vibrations .

Harmonic approximation:
solid can be thought of as a gas of phonons with frequencies corresponding to the vibrational
spectrum of ordered harmonic crystal.

Phonons are the heat carriers. Phonons are scattered by:
(i) Impurities
(ii) Other phonons (anharmonicity)

It is expected that thse scattering mechanisms should lead to a finite thermal conductivity κ.
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Three dimensional systems

Look at what happens in the simplest three dimensional models.

Heat conduction in a harmonic crystal with isotopic mass disorder
(At low temperatures one can neglect anharmonicity) .

Heat conduction in an anharmonic crystal.

Look at L dependence of J in nonequilibrium steady state. (J ∼ 1/L ?)
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Heat conduction in mass disordered harmonic crystal.

Nearest neighbor harmonic Hamiltonian with scalar displacements.

H =
X

x

mx

2
ż2

x +
X
x,ê

k
2

(zx − zx+ê)
2 +

X
x

ko

2
z2

x

Masses mx random.

ko = 0: Unpinned. ko > 0: Pinned.
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Kinetic theory

Phonons do a random walk. A phonon of frequency ω has a mean free path `K (ω). Thermal
conductivity is given by:

κ =

Z ωD

0
dωD(ω)ρ(ω)c(ω, T )

D(ω) = v`K (ω) = phonon diffusivity ,
v = phonon velocity ,
ρ(ω) = density of states ,
c = specific heat capacity ,
ωD = Debye frequency .
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Rayleigh scattering of phonons gives a mean free path `K (ω) ∼ 1/ωd+1.

For low frequency phonons `K
>∼ L, where L is size of system (ballistic heat transport).

ρ(ω) ∼ ωd−1 . Hence

κ =

Z ωD

1/L
dωρ(ω)v`K (ω)

∼ L1/(d+1)

1D κ ∼ L1/2 : 2D κ ∼ L1/3 : 3D κ ∼ L1/4

Thus kinetic theory predicts a divergence of the conductivity in all dimensions.
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Problems with kinetic theory

Is a perturbative result valid in the limit of weak disorder. Rayleigh scattering result for `K (ω)
is obtained for single scattering of sound waves.

Effect of Anderson localization is not accounted for since this requires one to consider
multiple scattering of phonons.

The kinetic theory result can also be derived directly from the Green-Kubo formula and `K (ω)
can be computed using normal mode eigenvalues and eigenstates.
Probably correct for normal transport.
Probably wrong for anomalous transport.
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Anderson Localization

Consider harmonic Hamitlonian:

H =
X

x

1
2

ŻxMxxŻx +
X
x,x′

1
2

Zxφxx′Zx′ .

x denotes point on a d-dimensional hypercube of size Nd .
M- Mass-matrix, φ- Force-matrix.

Equation for qth normal mode, q = 1, 2, ..., Nd .

mx Ω2
q aq(x) =

X
x′

φxx′ aq(x′) .

Normal mode frequency: Ωq
Normal mode wave-function: aq(x)
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Normal modes

Consider N uncoupled oscillators.

N localized normal modes each with Ωq = (ko/m)1/2.

Now couple the oscillators by springs with k << ko .

We get N extended plane wave states with:

aq(l) = sin kq l

Ω2
q =

„
ko

m
+

4k
m

sin2 kq/2
«

kq = qπ/(N + 1) .

(RRI) February 2010 16 / 43



Localized modes

Consider N uncoupled oscillators with random masses (m1, m2).

N localized normal modes with Ωq = (ko/m1)
1/2, (ko/m2)

1/2.

Now couple the oscillators by springs with k << ko .

Degenerate states of strings of equal masses linearly combine to form new states.

All normal modes are localized.
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Character of normal modes

In general normal modes can be of three types:
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Predictions from Renormalization group theory

S. John, H. Sompolinsky, and M.J. Stephen

For unpinned system:

In 1D all modes with ω > 1/N1/2 are localized.

In 2D all modes with ω > [log(N)]−1/2 are localized.

In 3D there is a band of low frequency non-localized states
between 0 − ωL

c where ωL
c is independent of system-size.

System size dependence of current ??
Nature of non-localized states ?? -
Ballistic OR Diffusive OR .....
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Nature of phonon modes

Localization theory tells us that low frequency modes are extended.

At low frequencies the effect of disorder is weak and so expect kinetic theory to be accurate.

Setting `K (ω) = N gives us the frequency scale ωK
c below which modes are ballistic. Since

`K (ω) = 1/ωd+1 this gives

1D : ωK
c ∼ N−1/2

2D : ωK
c ∼ N−1/3

2D : ωK
c ∼ N−1/4
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Nature of phonon modes for unpinned system

Kinetic theory and localization theory gives us two frequency cut-offs: ωK
c and ωL

c :

ω ωL
c

K
c

Ballistic LocalizedDiffusive

ω

1D : ωK
c ∼ ωL

c ∼ N−1/2

2D : ωK
c ∼ N−1/3, ωL

c ∼ [ln N]−1/2

3D : ωK
c ∼ N−1/4, ωL

c ∼ N0

Try to estimate the N dependence of J.
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Heuristic theory

Nonequilibrium heat current is given by the Landauer formula:

J =
∆T
2π

Z ∞

0
dωT (ω) ,

where T (ω) is the transmission coefficient of phonons.

Phonons can be classified as:

Ballistic: Plane wave like states with T (ω) independent of system size.

Diffusive: Extended disordered states with transmission decaying as T (ω) ∼ 1/N.

Localized states: T (ω) ∼ e−N/`L .

Find contribution to J of different types of modes and estimate the asymptotic size
dependence.

Ballistic contribution to current depends on boundary conditions.
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Boundary conditions

Free BC: T (ω) ∼ ωd−1

ω → 0

Fixed BC: T (ω) ∼ ωd+1

ω → 0

Pinned system: No low-frequency
ballistic modes.
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Analytical predictions of heuristic theory

1D unpinned fixed BC: J ∼ N−3/2

1D unpinned free BC: J ∼ N−1/2

1D pinned: J ∼ exp(−bN)

These agree with rigorous results.

2D unpinned fixed BC: J ∼ N−1(ln N)−1/2

2D unpinned free BC: J ∼ N−2/3

2D pinned: J ∼ exp(−bN)

3D unpinned fixed BC: J ∼ N−1

3D unpinned free BC: J ∼ N−3/4

3D pinned: J ∼ N−1

We now check these predictions numerically.
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Disordered harmonic crystal driven by Langevin heat baths at
different temperatures.

Equations of motion:

mxz̈x = −
X

ê
(zx − zx−ê)− kozx {+fx from heat baths }

{mx} chosen from a random distribution.

fx is force from heat baths and acts only on boundary particles.
We choose white noise Langevin baths:

fx = −γżx + (2γT )1/2ηx(t)

〈ηx(t)ηx′ (t
′) = δ(t − t ′)δx,x′

Periodic boundary conditions in transverse directions.
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Measured quantities

In the nonequilibrium steady state we measure the energy current and temperature profile. These
are given by the following time-averages (1D):

J =
1

N − 1

NX
l=2

〈zl−1żl 〉 ,

Tl = ml 〈ż2
l 〉 .

We use two approaches:

1. Numerical evaluation of phonon transmission and using the Landauer formula to find J.

2. Nonequilibrium Simulations to find J.
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The Landauer formula

Linear equations: Can be solved by Fourier transforms.

z̃(ω) = G(ω)η̃(ω)

G(ω) = [−Mω2 + φ− Σ(ω)]−1

Steady state quantities of interest are expectation values of quadratics and can be evaluated
using properties of noise correlations.

Final result for current can be expressed in terms of the transmission coefficient T (ω).

This gives the Landauer formula.

T (ω) can be written in terms of the phonon Green’s functions G(ω).
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Landauer formula in 1D

J=
∆T
2π

Z ∞

0
dωT (ω) ,

where
T (ω)=4γ2ω2|G1N |2 ,

and

G = [−ω2M + Φ− Σ]−1

=

0BBB@
a1 − iγω −1 0 ... 0
−1 a2 −I 0 ... 0
... ... ... ... ...
0 ... 0 −1 aN−1 −1
0 ... 0 −1 aN − iγω

1CCCA
−1

,

al = 2 + ko − mlω
2.
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Product of random matrices

Transmission function T (ω) can be expressed in terms of a product of random matrices.

Then G1N = (1 − iγ) T̂N T̂N−1... T̂1

„
1
iγ

«

where T̂l =

„
2 − mlω

2 −1
1 0

«

Generalization to higher dimensions (Nd lattice):
T (ω) can be expressed in terms of a product of 2Nd−1 × 2Nd−1 random
matrices (Anupam Kundu).

We implement this numerically for d = 2, 3.
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Numerical and simulation results

Open system. We look at:

• Disorder averaged transmission: T (ω) = [T (ω)]

Nd−1

• Current: J ∼
R∞

0 dω T (ω).

Closed system without heat baths.
For the normal modes find:

• Density of states: ρ(ω) = 1
Nd

P
q δ(ω − Ωq)

• Inverse participation ratio: P−1 =
P

x a4
x

(
P

x a2
x)2 .

IPR is large (∼ 1) for localized states, small (∼ N−d ) for extended states.

Binary mass distribution: m1 = 1 + ∆, m2 = 1 −∆ ∆ = Disorder strength.
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J-versus-N plots: 2D
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J-versus-N plots: 3D
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Comparision with numerical results

Analytic prediction (Numerical result)
2D unpinned fixed BC: J ∼ N−1(ln N)−1/2 [∼ N−0.75]

2D unpinned free BC: J ∼ N−2/3 [ ∼ N−0.6]

2D pinned: J ∼ exp(−bN) [∼ N−3.7 ]

3D unpinned fixed BC: J ∼ N−1 [∼ N−0.75]

3D unpinned free BC: J ∼ N−3/4 [∼ N−0.75]

3D pinned: J ∼ N−1 [∼ N−1]

Look at Phonon transmission T (ω).
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Phonon transmission: pinned 2D
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Phonon transmission: pinned 3D
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Transmission: Unpinned 2D
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Transmission: Unpinned 3D
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Fixed and Free BCs: 2D

Define effective mean free path: leff through:

NT (ω)/2π = v(ω)leff(ω)ρ(ω)
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Fixed and Free BCs: 3D
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Conclusions

Unpinned system:

Results sensitive to boundary conditions.

Fourier’s law valid for generic boundary conditions (fixed BC).

Numerical verification requires larger system sizes.

Pinned system (closer to the electron localization problem):

First numerical verification of Fourier’s law in a 3D system.

Absence of transtion to insulating phase on increasing disorder.

Direct verification of a 2D heat insulator.
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Future questions

Analytic results

Improving numerical methods and study larger system sizes.

Absence of conductor-insulator transition: Connection to percolation ?

Landauer and Green-Kubo formulas.

NT (ω)/2π? = ?D(ω)ρ(ω) (PROOF)

In systems with normal and anomalous transport.

What happens in real systems ? Effect of anharmonicity, other degrees of freedom.

[Heat transport in model jammed solids: Nagel etal]
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Heat Conduction in a Three Dimensional Ordered Anharmonic
Crystal

Fermi-Pasta-Ulam interactions. Interparticle potential= x4.
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Phonon conduction: differences with electron conduction.

Phonons at all frequencies participate in heat transport. In electron case only electrons near
Fermi-level contribute to electrical current.

In phonon case, low-frequency modes are unaffected by disorder and are the main carriers of
heat.
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