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Systems with long range interactions

in d  dimensions
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and the energy is not extensive

for σ<0 



self gravitating systems    (1/r)                    σ=-2

ferromagnets                                               σ=0

2d vortices                       log(r)                   σ=-2

driven systems out of thermal equilibrium 
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TSEF Free Energy:

VSVE d      ,  /1 
since
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the entropy may be neglected in the

thermodynamic limit.

In finite systems, although E>>S, if T is high enough

E may be comparable to TS, and the full free energy

need to be considered. (Self gravitating systems, e.g.

globular clusters)



Globular clusters are gravitationally bound concentrations

of approximately ten thousand to one million stars, spread

over a volume of several tens to about 200 light years in 

diameter. 
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E may be comparable to TS  
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For a typical cluster (M2)

N=150,000 stars

R= 175 light years 
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One may implement the large T limit by rescaling

the Hamiltonian
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Ferromagnetic dipolar systems
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D is the shape dependent demagnetization factor
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Models of this type, although they look extensive,

are non-additive.

(for ellipsoidal samples)
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>0 σ≤2 weak long-range interactions

σ<0         strong long-range interactions     
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For σ>0 the energy is additive, however long-range

effects show up in the thermodynamic functions for 

>0 σ≤2
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1 mean-field exponents

short-range 

exponents

long range exp.

non-additive

interactions with σ>0, although additive, affect the

thermodynamic properties of the system  



Long-range interactions (whether weak or strong)

tend to suppress fluctuations and enhance long-range 

order.

For example while there is no long-range order in d=1

in systems with short range interactions, it can take

place when long range interactions are present.



Strong long-range interactions: σ<0

features which result from non-additivity

Thermodynamics

Dynamics

Negative specific heat in microcanonical ensemble 

Inequivalence of microcanonical (MCE) and

canonical (CE) ensembles

Temperature discontinuity in MCE 

Similarly, inequivalence between CE and GCE,

discontinuity in chemical potential in CE.

Breaking of ergodicity in microcanonical ensemble

Slow dynamics, diverging relaxation time



Systems with short range interactions- S is concave

On the other hand in systems with long range interactions

(non-additive), in the region  E1<E<E2

S

1E
2E E

The entropy may thus follow the homogeneous

system curve, the entropy is not concave. and

the microcanonical specific heat becomes

negative  CV<0.
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S0 = xS1 +(1-x)S2



Ising model with long- and short-range interactions.
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d=1 dimensional geometry, ferromagnetic long range 

interaction J>0

The model has been analyzed within the canonical 

ensemble Nagel (1970), Kardar (1983)
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Canonical (T,K) phase diagram
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Microcanonical analysis
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U  = number of broken bonds in a configuration

U/2 (+) segments    U/2 (-) segments

DM, Ruffo, Schreiber (2005)



The number of ways to divide       spins into U/2 groups
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s=S/N ,   =E/N , m=M/N , u=U/N
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continuous transition:

discontinuous transition:

In a 1st order transition there is a discontinuity in T, and thus there

is a T region which is not accessible.
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Microcanonical phase diagram



canonical microcanonical
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The two phase diagrams differ in the 1st order region of the canonical diagram

Ruffo, Schreiber, Mukamel (2005)





second order

first order

possible phase diagram - I (critical end point)

second order

first order

canonical microcanonical

critical end point



possible phase diagram  - II

canonical microcanonical



Dynamics

Systems with long range interactions exhibit slow 

relaxation processes.

This may result in quasi-stationary states (long lived

non-equilibrium states whose relaxation time to the 

equilibrium state diverges with the system size).

Non-additivity may facilitate breaking of ergodicity

which could lead to trapping of systems in non-

Equilibrium states. 



Slow Relaxation

In systems with short range interaction, typically the relaxation time

from an unstable (or metastable) state to a stable one is finite

(independent of the system size).
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free energy gain of a droplet

critical radius above which the droplet grows.

free energy



Since the critical radius is finite, the relaxation time scale in

systems with short range interactions is finite.

This is not the case in systems with long range interactions.

relaxation processes are typically slow, with relaxation time

which grows with the system size.

In the case of the Ising model, the relaxation time is

found to grow  as logN.

In other cases it is found to grow with a power of N.

This results in non-equilibrium, quasi-stationary states.



Microcanonical Monte Carlo Ising dynamics:

)1(
2

)(
2

1

1

2

1

 



 i

N

i

i

N

i

i SS
K

S
N

J
H



Microcanonical Monte Carlo dynamics:
Creutz (1983)

In this algorithm one probes the microstates of the

system with energy      E

This is implemented by adding an auxiliary variable,

called a demon such that
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system’s energy                   demon’s energy
SE 0DE



Creutz algorithm:

1. Start with

2. Attempt to flip a spin: 

accept the move if energy decreases

and give the excess energy to the demon.

if energy increases, take the needed energy from the

demon. Reject the move if the demon does not have

the needed energy.
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Yields the caloric curve T(E).

N=400, K=-0.35

E/N=-0.2416



To second order in ED the demon distribution is

And it looks as if it is unstable for CV < 0

(particularly near the microcanonical tricritical point where CV vanishes).

However the distribution is stable as long as the entropy

increases with E  (namely T>0) since the next to leading term is

of order 1/N.
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Relaxation of a state with a local minimum of the entropy

(thermodynamically unstable)

0 ms

One would expect the relaxation time of the m=0

state to remain finite for large systems (as is the case

of systems with short range interactions..
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M=0 is a minimum of the entropy
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One may understand this result by considering the following

Langevin equation for m:
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Fokker-Planck Equation:
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This is the dynamics of a particle moving in a double well

potential V(m)=-s(m), with T~1/N starting at m=0.
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This equation yields at large t
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Taking for simplicity   s(m)~am2,   a>0, the problem becomes that of a 

particle moving in a potential V(m) ~ -am2 at temperature T~D~1/N

Since D~1/N the width of the distribution is aNem at /22 
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The anisotropic XY model 

with Hamiltonian, deterministic dynamics
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slow relaxation with algebraically increasing  time scale

Yamaguchi, Barre, Bouchet, Dauxois, Ruffo (2004)

Jain, Bouchet, Mukamel, J. Stat. Mech. (2007)

)sin(
1

m   ,   )cos(
1

y   jjx
NN

m 



m=0

m≠0

Phase diagram
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Vlasov equation

initial distribution (for the homogeneous case)
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stationary state!
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Dynamical phase diagram of the anisotropic XY model

Relaxation of the thermodynamically unstable m=0 state 

One would expect the relaxation time of the m=0

state to remain finite for large systems (as is the case

of systems with short range interactions.

Yamaguchi, Barre, Bouchet, Dauxois, Ruffo (2004)

Jain, Bouchet, Mukamel, J. Stat. Mech. (2007)
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N=500

N=10000

Relaxation of the quasi-stationary m=0 state:



Relaxation in the presence of stochastic dynamical processes.
Baldovin, Orlandini, Chavanis;

Gupta, Mukamel

HMF model with mixed dynamics: 

1. the model evolves by the usual deterministic dynamics

for some time interval.

2. This evolution is interrupted with probability r (typically 

small) and microcanonical Monte Carlo sweep is carried 

out.
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Breaking of Ergodicity in Microcanonical dynamics.

Borgonovi, Celardo, Maianti, Pedersoli (2004); Mukamel, Ruffo, Schreiber (2005).

Systems with short range interactions are defined on a convex

region of their extensive parameter space.
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If there are two microstates with magnetizations M1 and M2

Then there are microstates corresponding to any magnetization

M1 < M < M2

.



This is not correct for systems with long range interactions

where the domain over which the model is defined need not

be convex.
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Ising model with long and short range interactions
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Ising model with long and short range interactions

m=M/N= (N+ - N-)/N

u =U/N = number of broken bonds per site in a configuration

MNNUNN    2   has one   for   

corresponding to isolated down spins

+ + + - + + + + - + + - + + + + - + + 
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Local dynamics cannot make the system cross from 

one segment to another.

Ergodicity is thus broken even for a finite system.
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Summary

Long range interactions are not additive, resulting in 

uncommon properties 

Negative specific heat in microcanonical ensembles; ensembles 

are not equivalent particularly near first order transitions.

Breaking of ergodicity in microcanonical dynamics due to

non-convexity of the domain over which the model exists.

Long time scales, diverging with the system size.

Quasi-staionary states in the case of deterministic dynamics.

The results were derived for mean field long range interactions

but they are expected to be valid for algebraically decaying

potentials.
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