In silico reconstitution of spindle assembly: speed and error of search and capture

Raja Paul, IACS, Kolkata

February 11, 2010

Different stages of mitosis

Search and Capture (S&C)

Dynamic Instability of MT

MT dynamics described by 4 parameters:

Basic question that we will address

What is the Fast & Accurate method of capturing all chromosomes ?

Part-I: minimal capture time

Part-II: capture accuracy

Efficient Search & Capture requires MT's dynamic instability (Holy & Leibler, PNAS, 1994)

Dynamical instability of MTs are essential for efficient search and capture.

1 MT searching for 1 KT

Search time is Minimum if :

- 1 Average length of MT = distance of the KT
- 2 MTs are not rescued when they undergo catastrophe.

Efficient chromosome capture requires a biased MT dynamics (Wollman et al. Current Biol., 2005)

Many MTs and many KTs

Unbiased versus biased S&C

- High RanGTP inside the nucleus stabilize MTs.
- MTs catastrophe is high outside the nucleus compared to inside.

Efficient chromosome capture requires a biased S&C (Wollman et al. Current Biol., 2005)

Avg. cap. time is small for biased capture.
Capture time is logarithmic in Chromosome number.
Assumption: MTs are not obstructed by Chromosomes

Previous analysis considered...

Chromosomes are transparent

Chromosomes are static

Finite volume effect of chromosome

Visibility decreases drastically with increasing chromosome number

Part-I: Optimal capture time ?

Two different S&C scenarios

Static positioning of chromosomes - chromosomes are fixed at their initial locations.

Dynamic positioning of chromosomes – chromosomes are

fixed at their initial locations.

Realistic to assume finite volume of chromosomes

Two different S&C scenarios

Random walk of chromosomes

Static positioning of chromosome - chromosomes are fixed at their initial locations.

Dynamic positioning of chromosomes – chromosomes are fixed at their initial locations.

Compare capture time between model static & dynamic positioning of chromosomes

Pathways of S&C

Are the centrosomal and chromosomal pathways of MT dynamics integrated and coordinated for accurate spindle assembly ?

Longer the KT-fiber, smaller the capture time

Biased Search & Capture DOES THE JOB! even for slow chromosomal jiggling

So far I have shown you

- Static positioning of chromosome is not efficient.
- Capture process is way more efficient for the dynamic positioning of the chromosomes.
- Biased microtubule dynamics required for fast capture.

Part-II: Accuracy

Incorrect attachment & consequence

Probability of different attachments

Probability of different attachments

Chromosome rotates after initial capture

Probability of different attachments

Probability of different attachments

Long rotation decrease correct attachments

Predicting Error-statistics for multipolar cells

Summary

 Meretolic attachment is most likely to occur for flexible MT-kinetochore attachments.

Alignment of KT axis along the MT and its stabilization rescues the captured KT to be meretolically attached. Therefore amphitelic attachment is most probable in this case.

Thank you

and thanks to:

Alex Mogilner, UC Davis Daniela Cimini, Virginia Tech Roy Wollman, Stanford William Silkworth, Virginia Tech Isaac Nardi, Virginia Tech

For details see: PNAS 106, 15708-15713 (2009)