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Many different forMs of glasses

Slide from
Sri Sastry



Glass: Disordered solid-like state obtained by 
rapidly cooling a liquid to a temperature lower than 

the equilibrium crystallization temperature

The glassy state is metastable

Examples:
Oxide glasses (silica, Germania glass,….)
 Chalcogenide glasses (GeSbTe, AgInSbTe,…..)
Metallic glasses (Fe-Cr-Mo-C-B, Mg-Cu-Tb,….)
 Polymer glasses (polystyrene, poly-vinyl-acetate,..)
 Colloidal glasses
 Simple molecular glasses (ortho-terphenyl, salol,..)



Viscosity increases by 14-16 orders of magnitude as 
the temperature  of a supercooled liquid is decreased by 

about 100 degrees 

Arrhenius behaviour: “strong” liquid

Vogel-Fulcher-Tammann  (VFT) Form
“Fragile”  liquid

Viscosity =         poise at the experimentally defined glass transition 
temperature, 

The “excess entropy”, defined as the difference between the entropy of 
the  supercooled liquid and the crystalline solid, extrapolates to zero at 
the “Kauzmann Temperature”          which is close to 

Adam-Gibbs Relation



Viscosity as a function of temperature: 
“Angell Plot”

From: C. A. Angell, J. Non-cryst. Solid, 131-133 , 13 (1991)



Kauzmann “Paradox”: Experimental data

From:  R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016  (1998)



Experimental demonstration of  the validity of the 
Adam-Gibbs relation

From:  R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016  (1998)



Multi-step relaxation in supercooled liquid

E. Flenner and G. Szamel, Phys. Rev. E 72, 011205 (2005)

Short time:     relaxation
Long time:     relaxation







• Disordered liquid 
structure implies many 
local energy minima. 

• Lowering temperature, 
the local minima 
sampled get deeper, 
and it gets harder to go 
from one to the other. 

• Increasing viscosity.
• Configurational 

entropy ~ logarithm of 
number of  sampled 
local  energy minima From Srikanth Sastry

Energy landscape picture





Existence of a growing length scale near 
the glass transition??

Adam-Gibbs theory postulates the existence of a 
growing length scale that represents the size of 
“cooperatively rearranging regions”.

Recently, many experimental, numerical and theoretical 
studies have investigated the existence of a length scale
associated with dynamical heterogeneity that describes
the spatial heterogeneity of the local relaxational kinetics
in supercooled liquids. 



Dynamical heterogeneity in the 
spatial distribution of  

“propensity for motion”

From: A. Widmer-Cooper and P. Harrowell, 
Phys. Rev. Lett. 93, 135701 (2004).

Particles color-coded according to
the distance moved  



Dynamic Heterogeneity:





Finite size scaling

In a system with a dominant, large correlation length       , 
(e.g. near the critical point of systems exhibiting a second 
order phase transition), the dependence of thermodynamic  
quantities on the system size L is determined by          .

Finite size dynamic scaling:



Molecular Dynamics Simulations

Analogous to the “self”-part of the two-point density correlation function



Results of MD simulations

Relaxation of overlap  function

VFT Fit for the temperature 
dependence of the relaxation time

“Mode-coupling” fit:
= 0.3



Inset: 
Time-dependence
of       at different

temperatures
(N=1000)





Binder Cumulant

Inset: Probability Distribution of       

Finite-size scaling 
of the 

Binder Cumulant





decreases with increasing N for small values of N !

This behaviour is inconsistent with standard 
finite-size dynamical scaling

Dependence of 
the     relaxation 
time on T and N

Expected finite-size
scaling form:

with g(x) increasing with x



Does the relaxation time scale with the same correlation length?

A plot of                       vs.               for different T and N should collapse to 
a single scaling curve

does not 
scale  with correlation
length 



A different way of determining the correlation length 

Ornstein-Zernike Form:

Berthier (2004),
Berthier  et al (2007)



FSS results for the correlation
length scaled down by 1.4%

Values of 
scaled down by 1.45 (?)

Good agreement with the 
results obtained from

finite-size scaling



Calculation of the configurational entropy

Determination of the Kauzmann 
temperature

Verification of Adam-Gibbs 
relation

is the entropy of the liquid at temperature T

is the entropy of vibrations in the basin of  an “inherent structure”



Adam-Gibbs Relation

The dependence of the     relaxation time on both T and N is 
well described by the Adam-Gibbs relation



Random First Order Transition (RFOT) Theory
[Wolynes, Kirkpatrick, Thirumalai, Biroli, Bouchaud, ….]



In the “entropic nucleation” picture, 
the “mosaic scale” is given by

The values of     and      are
close to those obtained by
Capaccioli  et al (2008) from
analysis of experimental data
near the laboratory glass
transition temperature.

?

Interpretation according 
to RFOT Theory



Does the Adam-Gibbs relation work in other dimensions?

Kob-Andersen model in four dimensions

RFOT  Theory:



Kob-Andersen model in two dimensions

Adam-Gibbs relation does not work !
New physics from the formation of crystalline patches?



Is there a characteristic time scale in glassy dynamics 
that exhibits dynamic finite-size scaling with the 
correlation length        ?

Multi-step decay of
density correlation function

Short-time     relaxation:  ‘caging’  regime.
Transient formation of ‘cages’ by the neighbors of a particle.



Time scale of     relaxation:  Time at the minimum of 
[Stein and Andersen, PRL 101, 267802 (2008) ]



Dependence of       ,the time scale 
of      relaxation, on T and L

Strong dependence
on system size at
low temperatures



Finite-size scaling for 



Length scale is the same
as that obtained from the
finite-size scaling analysis
of  

First  clear demonstration of 
dynamic  finite-size scaling

in the dynamics of a realistic 
glass-forming liquid.



Conclusions

1. The dependence of             on T and N exhibits the expected 
finite-size scaling behaviour, confirming the existence of a 
growing dynamical correlation length.

2. The dependence of              on T and N is not consistent with 
the expected finite-size scaling behaviour, indicating that the 
growth of the relaxation time is not governed solely by the 
growing correlation length.

3. The dependence of the relaxation time on the configurational
entropy is well described by the Adam-Gibbs relation as both
T and N are varied, indicating that the configurational entropy 
plays a crucial role in determining the relaxation time even for 
T much higher than the mode-coupling transition temperature. 



Conclusions (contd.)

4. Dynamics in the  short-time,      - relaxation regime is 
governed by a growing dynamic length scale.
This length scale is the same as the dynamic correlation 
length obtained from the finite-size scaling of              , 
suggesting a close connection between short-time 
dynamics and dynamic heterogeneity at the time scale 
of     relaxation.

Need to combine aspects of mode coupling theory
and  “activated dynamics” for a complete picture.
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