Quasispecies Dynamics on Correlated Fitness Landscapes

please see posters by

Gayatri Das

and

Sarada Seetharaman

Exact Phase Diagram of a Quasispecies Model with a Mutation Rate Modifier

Kavita Jain

J. Nehru Centre for Advanced Scientific Research

Bangalore, India

In collaboration with Apoorva Nagar (Max Planck Institute, Golm)

Phys. Rev. Lett. 102, 038101 (2009)

Quasispecies Model (Eigen, 1971)

We consider an infinitely large microbial population: neglect fluctuations

Each individual's genotype is a binary string $\sigma \equiv \{\sigma_1, ..., \sigma_L\}, \sigma_i = 0, 1$

Two basic reactions occur:

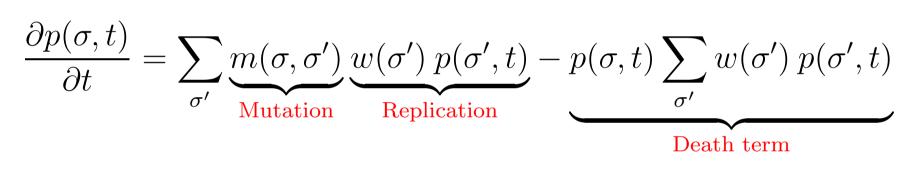
i. Replication: a genome σ produces $w(\sigma)$ copies of itself on an average $w(\sigma)$: measure of <u>fitness</u> of genome σ

ii. Mutation: due to copying errors in genome σ , genome σ' is produced If $0 \leftrightarrow 1$ with probability μ , the mutation probability

$$m(\sigma, \sigma') = \mu^{d(\sigma, \sigma')} (1 - \mu)^{L - d(\sigma, \sigma')}$$

where $d(\sigma,\sigma')$ is the Hamming distance between σ and σ'

Then the average fraction $p(\sigma, t)$ of genome σ obeys rate equation:



The death term ensures that $\sum_{\sigma} p(\sigma, t) = 1$.

Steady State of Quasispecies Model

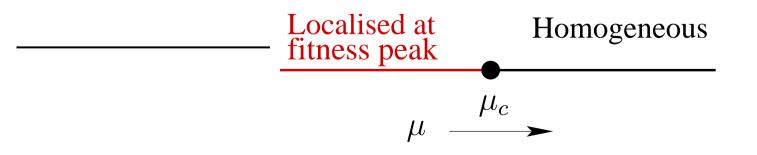
In the steady state, $p(\sigma)$ obeys a nonlinear equation

$$p(\sigma) = \frac{\sum_{\sigma'} m(\sigma, \sigma') w(\sigma') p(\sigma')}{\sum_{\sigma'} w(\sigma') p(\sigma')}$$

Phase transition occurs due to competition between replication and mutation

Example: $w(\sigma) = w_0 \delta_{\sigma,0} + (1 - \delta_{\sigma,0})$, $w_0 > 1$ (Nowak+ Schuster, 1989) In the scaling limit $\mu \to 0, L \to \infty$, it can be shown that

$$p(\mathbf{0}) = 1 - \frac{\mu}{\mu_c}, \ \mu < \mu_c = L^{-1} \ln w_0$$

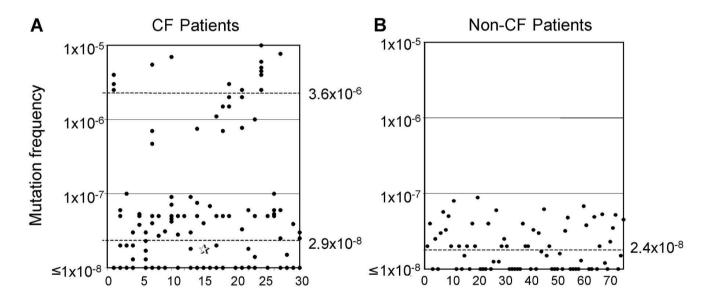


Populations with High Mutation Rates

At large times, population should have low mutation rate

But subpopulations with high mutation rates have been observed

Lung infection: 20% of bacterial population with $\times 100\mu$ (Oliver et al., 2000)



Chemostat: 0.1% - 0.5% with $\times 10 - 100\mu$ (1980s; Mao et al., 1997)

Can we predict the mutator fraction?

Coupled Quasispecies Model

Mutators arise due to failure of error repair system in normal strains

iii. Mutator generation: Mutation rate controlling bit $\rightarrow \sigma \equiv \{\sigma_1, ..., \sigma_L; \nu\}$

$$\{\sigma_1, ..., \sigma_L; \mu\} \xrightarrow{f} \{\sigma_1, ..., \sigma_L; \lambda\mu\}, \ \lambda > 1$$

Steady state is described by a set of coupled nonlinear equations:

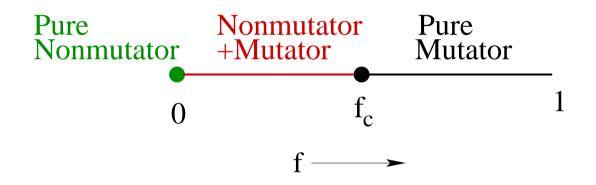
$$p(\sigma) = \frac{(1-f)\sum_{\sigma'} m(\sigma, \sigma') w(\sigma') p(\sigma')}{\sum_{\sigma'} w(\sigma') [p(\sigma') + P(\sigma')]}$$

$$P(\sigma) = \frac{\sum_{\sigma'} M(\sigma, \sigma') w(\sigma') P(\sigma') + f \sum_{\sigma'} m(\sigma, \sigma') w(\sigma') p(\sigma')}{\sum_{\sigma'} w(\sigma') [p(\sigma') + P(\sigma')]}$$

Nonequilibrium Phase Transition

- + Nonmutators favored since low mutation rate (quasispecies theory)
- Nonmutators lost due to irreversible mutator generation reaction

$$\{\sigma_1, ..., \sigma_L; \mu\} \xrightarrow{f} \{\sigma_1, ..., \sigma_L; \lambda\mu\}, \ \lambda > 1$$



Previous works (Taddei, 1997; Kessler+Levine, 1998; Johnson, 1999) did not consider the possibility of a phase transition

Reduction to Uncoupled Problem

The average fitness $\bar{w} = \sum_{\sigma} w(\sigma) \left[p(\sigma) + P(\sigma) \right]$ can be calculated Mutator phase: For $f > f_c$, $p(\sigma) = 0$ for all σ

$$\bar{w}_{>} = \sum_{\sigma} w(\sigma) P(\sigma)$$

Mixed phase: For $f < f_c$, reduce coupled equation for $p(\sigma)$ to uncoupled

$$\bar{w}_{<} = (1 - f) \sum_{\sigma} w(\sigma) \tilde{p}(\sigma)$$

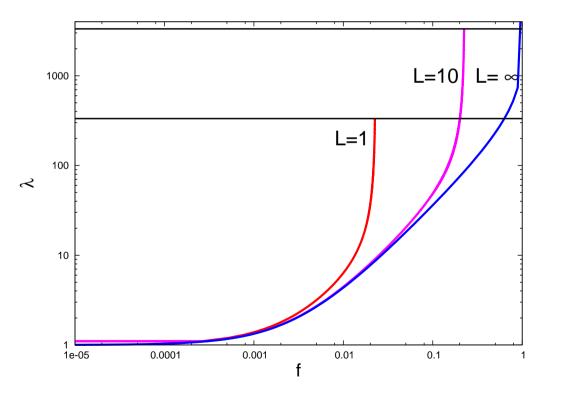
where $\tilde{p}(\sigma)$ obeys single population equation

For $w(\sigma) = \prod_{i=1}^{L} (1-s)^{\sigma_i}$, single population problem is solvable

Exact Phase Diagram

Matching $\bar{w}_{<}$ and $\bar{w}_{>}$ gives the phase boundary:

$$(1 - f_c)^{1/L} = \frac{(2 - s)(1 - \lambda\mu) + \sqrt{4\lambda^2\mu^2(1 - s) + s^2(1 - \lambda\mu)^2}}{(2 - s)(1 - \mu) + \sqrt{4\mu^2(1 - s) + s^2(1 - \mu)^2}}$$



Mutator Fraction in Mixed Phase

In scaling limit $\mu \to 0, L \to \infty$, total mutator fraction P can be computed

$$P = \frac{f(1-P)}{1-f} \sum_{m=0}^{\infty} \left(\frac{1-f_c}{1-f}\right)^m e^{\frac{(\lambda-1)\mu L(1-(1-s)^m)}{s}}$$

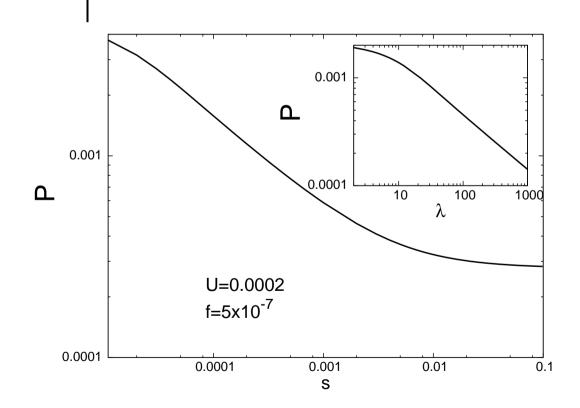
where $f_c = 1 - e^{-(\lambda - 1)\mu L}$

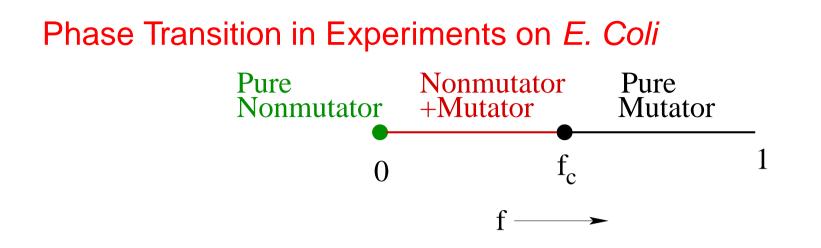
For biologically realistic situations, $f \ll s \ll (\lambda - 1)\mu L$:

$$P \approx \frac{f\sqrt{2\pi}}{f\sqrt{2\pi} + (1-f)\sqrt{(\lambda-1)\mu Ls}}$$

Mutator Fraction in Experiments on E. Coli

Genome mutation rate $U=\mu L=2 imes 10^{-4}$ (Drake et al., 1998) Probability $f=5 imes 10^{-7}$ (Ninio, 1991)





Theoretical prediction (using experimental parameters): $f_c \approx 10^{-3}$

Typical spontaneous value : $f\sim 10^{-7}$

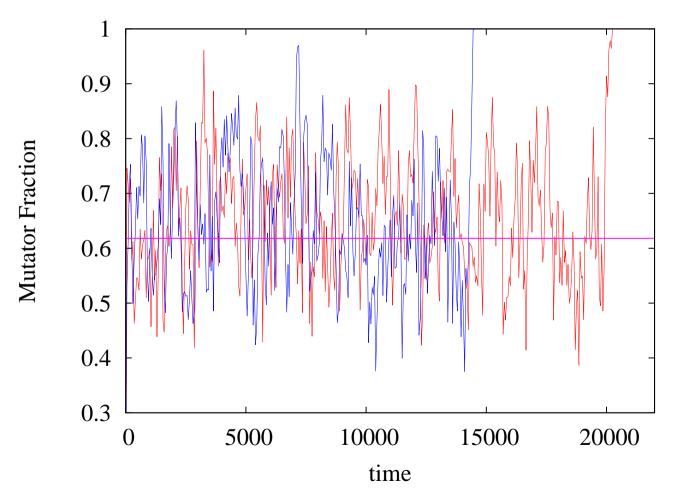
In experiments by Mao et al., 1997:

- without UV radiation, mutator fraction < 0.5% seen
- with UV radiation, mutator fraction $\sim 50\%$ seen

UV dosage $\propto f$

Stochastic Evolution

Real populations have finite size N and evolve stochastically



Stochastic Evolution

• For finite population and f > 0, we expect that:

the population always ends up in pure mutator phase in fixation time $T_{\rm fix}$ Thus there is no phase transition in steady state of stochastic model

- Before fixation, the population fraction fluctuates about an equilibrium
 Can be described by the steady state analysis of quasispecies model
- Experiments on *E. Coli* conducted at spontaneous forward rate:

Mao et al., 1997: P < 0.5%, no. of generations $\sim 10^2$

Sniegowski et al., 1997: $P \approx 1$, no. of generations $\sim 10^4$

Fixation Time

How much time does it take to enter the pure mutator phase?

The dependence of fixation time on N, f needs to be worked out...