

Anatoly B. Kolomeisky

Department of Chemistry

SPATIAL FLUCTUATIONS AFFECT DYNAMICS OF MOTOR PROTEINS

Motor Proteins

Enzymes that convert the chemical energy into mechanical work

Functions: cell motility, cellular transport, cell division and growth, muscles, ...

Courtesy of Marie Curie Research Institute, Molecular Motor Group

Motor Proteins: Structure

Motor Proteins

Fundamental Problems:

- 1) How the chemical energy is transformed into the mechanical motion?
- How many different mechanisms of motor proteins motion? Universality, "Physicists *versus* biologists"
- 3) <u>How spatial fluctuations might influence the</u> <u>overall dynamics of motor proteins?</u>
- 4) Why many motor proteins are complexes of already functional subunits?
- 5) Interactions with linear tracks (microtubules, etc.)

Motor Proteins. Experiments <u>Single-Molecule Experiments</u>:

Optical-trap spectrometry reso

FRET – fluorescence resonance energy transfer

Thermal Ratchet Models

J. Prost, G. Oster, F. Julicher, S. Sean, A. Mogilner, T. Elston and many others contributed

DISCRETE STOCHASTIC MODELS

Fisher and ABK and coworkers, Hong Qian, R. Lipowsky, etc.

j=0,1,2,...,N-1 – intermediate biochemical states N=4 model

OUR THEORETICAL APPROACH

Multi-State Chemical Kinetic (Stochastic) Models

OUR THEORETICAL APPROACH

our model periodic hopping model on 1D lattice

exact expressions for asymptotic (long-time) properties

for any N! in terms of the rate constants

Derrida, J. Stat. Phys. **31** (1983) 433-450 drift velocity $V = V(\{u_j, w_j\}) = \lim_{t \to \infty} \frac{d}{dt} \langle x(t) \rangle,$ dispersion $D = D(\{u_j, w_j\}) = \frac{1}{2} \lim_{t \to \infty} \frac{d}{dt} [\langle x^2(t) \rangle - \langle x(t) \rangle^2]$

x(t) – spatial displacement along the motor track <u>Rate constants</u> – can be obtained from independent chemical kinetic bulk experiments

Single-Molecule Experiments:

Large variability and fluctuations in dynamic properties of motor proteins

Step-size distributions for myosins-V PNAS 2000, **97**, 9482

Spatial Fluctuations

- Fluctuations are real larger than spatial precision of measurments.
- Contain important biochemical and biophysical information

Valuable tool for understanding mechanisms of motor proteins

However, very few theoretical efforts:

- 1) ABK and M.E. Fisher, *Biophys. J.* 2003, 84, 1642;
- 2) J.W. Shaevitz, S.M. Block and M.J. Schnitzer, *Biophys. J.*, 2005, **89**, 2277;
- 3) A. Vilfan, *Biophys. J.*, 2005, **88**, 3792;
- 4) G. Lan and S.X. Sun, *Biophys. J.*, 2005, **88**, 999.

Previous Theoretical Efforts:

 $d_0 = 36 \text{ nm}$ $d_0 = 36 \text{ nm}$

Previous Theoretical Efforts J.W. Shaevitz, S.M. Block and M.J. Schnitzer, *Biophys. J.*, 2005, 89, 2277;

Moment-generating functions method

 $=\frac{2D}{dV}$

r_{steptimes}

It is argued that this is a general result $r = r_{stepsizes} + r_{steptimes}$ for the system with $r_{stepsizes} = \frac{\left\langle d^2 \right\rangle - \left\langle d \right\rangle^2}{\left\langle d \right\rangle^2}$ spatial fluctuations It means that spatial fluctuations are $=rac{\left\langle au^{2}
ight
angle -\left\langle au
ight
angle ^{2}}{\left\langle au
ight
angle ^{2}}$ independent from stochastic

2

B

Problems: irreversibility in biochemical transitions

randomnessdimensionless measure of fluctuations

Previous Theoretical Efforts

V A. Vilfan, *Biophys. J.*, 2005, **88**, 3792; G. Lan and S.X. Sun, *Biophys. J.*, 2005, **88**, 999

Mechanical models: combine mechanical properties of motor proteins with ATP hydrolysis kinetics **Problems:**

- depend on potentials of interactions and on choice of mechanical parameters
- 2) Requires numerical solutions and/or Monte Carlo simulations

Our Approach

microtubules

Spectrum of step sizes for motor proteins most probably discrete!

Our Approach

- It is assumed that fluctuations are discrete and symmetric; 3 possible step sizes: $d_{-}=d-a$ – with probability p $d_0 = d$ –with probability (1-2p) $d_{+}=d+a$ – with probability p d- average step size (36 nm for myosin-V) *a*-amplitude of spatial
- fluctuations (5.5 nm for myosin-V

General schematic picture for discrete-state stochastic model with 3 step sizes

- Parallel-chain kinetic models can be solved by Derrida's method
- A.B. Kolomeisky, J. Chem. Phys. 2001, 115, 7253

OUR APPROACH

Effect of an external load *F*:

Our Approach

Illustrative Example: *N***=1 model**

$$V = d_0(u_0 - w_0)$$

Velocity- independent of spatial fluctuations

$$D = \frac{d_0^2}{2}(u_0 + w_0) + pa^2(u_0 + w_0)$$

Spatial fluctuations strongly affect dispersion

p –probability to fluctuatuate, reflects different energies of binding sites

Our Approach

Illustrative Example: *N***=1 model**

randomness parameter

$$r = \frac{u_0 + w_0}{u_0 - w_0} + 2p(\frac{a}{d})^2 + 4p(\frac{a}{d})^2 \frac{w_0}{u_0 - w_0}$$
stochastic
fluctuations in
transition rates

$$r = r_{steptimes} + r_{stepsizes} + r_{corr}$$

$$w_0$$

In contrast to predictions from J.W. Shaevitz, S.M. Block and M.J. Schnitzer, *Biophys. J.*, 2005, **89**, 2277;

Analysis of Myosin-V Dynamics

- We utilize *N*=2 model from ABK and M.E. Fisher, *Biophys. J.* 2003, **84**, 1642;
- with d_0 =36 nm, a=5.5 nm, p=0.3 Also assumed:
- 1) Fluctuations are symmetric
- Kinetic rates are independent from the pathways

Analysis of Myosin-V Dynamics Force-velocity curves

Step-size fluctuations affect the velocity only close to stall forces Theoretical fit obtained for *PNAS*, 2000, **97**, 9482; and compared with another exp. results from *Nature Struct. Mol. Biol.*, 2004, **9**, 877

Increasing the resistance force lowers the

dispersion

dispersion: Stochasticity in each pathway is reduced by decreasing the forward rates stronger than increasing the backward

- For *F*=0 dispersion is
- increasing function of p –
- more channels lead to more fluctuations
- For F=1.5 pN dispersion is decreasing function – because increase in p leads to the particle motion in the
- to the particle motion in the channel with lower stochasticity

dispersion

- Non-monotonous behavior for *F*=2.2 pN:
- Increasing p opens new pathways and it increases fluctuations For larger p the particle mostly in the pathways with lower stochasticity, and it lowers D

randomness

For small *p* randomness is the increasing function of *F*

Surprising behavior at larger *p*: a minimum close *F*=2 pN

$$r = \frac{2D}{dV}$$

relative stall force

$$V = V_{+} + V_{0} + V_{-}$$

For p>0 F_S is a dynamic quantity

Spatial fluctuations decrease stall forces

Degree of Fluctuations

p- degree of spatial fluctuations;Can be modified by changing the number of IQ motifs in the lever arm regions

CONCLUSIONS

- A theoretical approach that allows to estimate the effect of spatial fluctuations on dynamics of motor proteins is developed
- For *F*=0 symmetric spatial fluctuations do not change the velocity, but strongly influence the dispersion
- Theory is applied for analyzing dynamics of myosins-V
- With external forces spatial fluctuations start to affect the velocity only near stall forces, complex behavior for the dispersion
- Non-monotonous behavior of randomness
- **Spatial and stochastic fluctuates are coupled!**
- Spatial fluctuations decrease the effective stall force

Acknowledgements:

- **Financial Support:** National Science Foundation, The Welch Foundation
- Work done: Rahul Das

- **Discussions:** M.E.Fisher, S.M. Block
- R.K. Das and A.B.Kolomeisky, *J. Phys. Chem. B* 2008, **112**, 11112