1

2

Multiscale Motility of Molecular Motors

Reinhard Lipowsky

MPI of Colloids and Interfaces, Theory & Bio-Systems

- Introduction
- Single Molecular Motors
- Cargo Transport by Motor Teams
- Motor Traffic

Bio-Nano: From Molecules to Cells

Hierarchy of Structures, Bottom-Up:

Different Disciplines

Understanding

Crucial insight provided by physical sciences:

~1840 "Energy is conserved in organisms" Helmholtz, du Bois-Reymond, Mayer

-> End of vitalism

~1940 "Genes are molecules" Bohr, Delbrück, Schrödinger Watson + Crick

-> Beginning of Molecular Biology

Construction on Small Scales

Milestones of Human Engineering:

- Architecture
- Energy Conversion
- Information Processing

Bio-Nano:

Feynman: 'Plenty of Room at the Bottom'

Order and Disorder

- Polymer Level: Native / Denatured
- Assembly Level: Spatial Architecture

25 nm

7

Selforganization

- Assembly of Building Blocks "by themselves"
- Instructions only from local environment
- (1) Selforganization via Molecular Interactions Structure formation close to equilibrium Examples: Protein folding, Membrane assembly, ...
- (2) Selforganization via Energy Conversion Structure formation far from equilibrium Examples: Molecular motors, Filament assembly, ...

'Order by Motion'

• Intracellular patterns of organelles and vesicles:

• Spatio-temporal order created by mol motors:

Chemomechanical Coupling

- Molecular machines: Conversion of chemical energy into mechanical work
- Universal chemical energy source provided by ATP:

1.7 nm

- Hydrolysis of ATP: ATP -> ADP + P
- Synthesis of ATP: ADP + P -> ATP

"Human body hydrolyses and synthesizes 60 kg of ATP per day!"

Nucleotides

ATP, ADP, P

• Each motor makes discrete steps with fixed step size ¹¹

Hierarchy of Time Scales \neq Hierarchy of Length Scales ₁₂

Hierarchy of Force Generation

Cooperative action of many motors generates forces between 10⁻¹² und 10² Newton:

Single Motors	 Single motor experiments Chemomechanical coupling Network of motor cycles 	Discrete Steps (nm)	
	• Run length and unbinding rate		
Motor Teams	 Uni-directional cargo transport Bi-directional cargo transport Enhanced transport 	Large-Scale Transport (µm to m)	
Motor Densities	• Traffic of motors and cargos	L	

- Kinesin's center-of-mass moves by 8 nm
- Each head moves by 16 nm (hand-over-hand motion)
- Hydrolysis of one ATP per step (tight coupling)

15

[ATP] Dependence of Velocity

• Predicted by a large class of motor models RL,

RL, PRL. 85 (2000)

17

18

[ADP] and [P] Dependence

Schief ... Howard, PNAS 101 (2004)

- Motor velocity decreases slowly with increasing [P]
- Motor velocity decreases strongly with increasing [ADP]

- Kinesin generates force of about 7 pN = stall force F_s
- Kinesin makes processive backwards steps
- Mechanical steps are very fast (faster than 15 µs)

Theory: Single Motor Head

• Single head of kinesin with one nucleotide binding pocket (NBP): empty, occupied by ATP or ADP

• Chemical network with three motor states:

empty (E) occupied by ATP (T) occupied by ADP (D)

- Each edge = two directed edges = forward + backward transition
- One motor cycle = two directed cycles or dicycles

• Two motor heads with two NBPs each of which can be E, T, or D

• Chemical network with 9 motor states::

3² = 9 states EE, DE, ...
18 edges, 36 chemical transitions
More than 200 cycles !

19

Chemomechanical Networks

- Mechanical transitions = Spatial displacement x along filament
- Discrete step size ℓ defines lattice of motor positions:

- Mechanical transitions from chemical state at site x_n to chemical state at site x_{n+1}
- Specific motor governed by certain sub-network

21

CM Networks for Kinesin

- Sub-network with seven motor states
- Mechanical stepping from DE to ED = broken edge

Extended network

Compact network

Liepelt and RL , Phys. Rev. Lett. 98 (2007) $_{22}^{220}$

CM Network for Myosin V

V. Bierbaum

- Sub-network with six motor states
- Two types of mechanical steps (red lines):

23

Motor Dynamics

- Markov process on on CM network with motor states i
- Master equation for probabilities P_i :

$$d P_i / dt = -\sum_j [P_i \omega_{ij} - P_j \omega_{ji}]$$

Transition rates ω_{ij}

- Local excess fluxes $\Delta J_{ij} = P_i \omega_{ij} P_j \omega_{ji}$ for steady state determine motor properties as measured in single mol exp
- Example 1: Motor velocity v = $\sum_{ij}^{f} \ell_{ij} \Delta J_{ij}$
- Example 2: Hydrolysis rate $h = \sum_{ij}^{h} \Delta J_{ij}$
- Operation modes, efficiency, ..,

Classification of Motor Cycles

• Each directed cycle C_v^d , balance condition:				
$k_{\rm B}T \ln(\Xi_{\rm v}^{\rm d}) = \mu(\mathbf{C}_{\rm v}^{\rm d}) - W(\mathbf{C}_{\rm v}^{\rm d})$				
Transition rates	Chemical	Mechanical		
Classification of cycles:	energy	WOIK		
• Detailed balance:	$\mu(\mathbf{C}_{v}^{d}) = 0 \text{ and }$	$W(\mathbf{C}_{v}^{d}) = 0$		
• Mech nonequilibrium:	$\mu(\mathbf{C}_{v}^{d}) = 0 \text{ and }$	$W(C_v^d) \neq 0$		
• Chem nonequilibium:	$\mu(\mathbf{C}_{v}^{d}) \neq 0$ and	$W(\mathbf{C}_{v}^{d}) = 0$		

• Chemomech coupling: $\mu(C_v^{d}) \neq 0$ and $W(C_v^{d}) \neq 0$

25

Kinesin: Several Motor Cycles

Liepelt and RL, Phys. Rev. Lett. 98 (2007)

Three chemomechanical motor cycles

Dominat cycle depends on Concentration of ATP, ADP, and P

- Small ADP and P, small load force F: dicycle |25612>
- Small ADP and P, large load force F: dicycle |52345>
- Large ADP, small load force F: dicycle |25712>

Kinesin: Theory + Experiment

27

Stepping Process

Valleriani et al, EPL 82 (2008)

- Experiments can resolve forward and backward mechanical steps but cannot distinguish different chemical transitions
- Markov process on motor network generates mechanical stepping process that is non-Markovian
- Four different pairs ff, fb, bf, and bb of successive steps => four dwell time distributions

All dwell time distributions are non-exponential

Thermal Noise and Run Length

- Molecular motor has finite binding energy
- Thermal noise leads to unbinding from filament
- Unbinding is a stochastic process: at each step, unbinding probability ε
- Motor has finite run length (or walking distance) Single kinesin: about 100 steps or 800 nm

RL et al , J. Stat. Phys. 135 (2009)

Composite Motor Walks

• Single kinesin makes about 100 steps before it unbinds from filament

• Length scales >> run length : Alternating sequence of directed stepping and unbound diffusion

RL et al, *Phys. Rev. Lett.* 87 (2001) Nieuwenhuizen et al, EPL 58 (2002)

• Different compartments:

Intracellular Cargo Transport

• Example: Neuron, Axon, and Synapse

- Cargo transport by several motors:
 - Uni-directional transport by one motor team
 - Bi-directional transport by two motor teams
 - Enhanced transport by another motor team

Cargo Transport by one Motor Team

- N identical motors firmly attached to cargo particle (vesicle, organelle)
- Thermal noise:
 - Each motor unbinds and rebinds from filament
 - ⇒ Number k≤ N of active motors is not fixed but fluctuates

Klumpp, RL, PNAS 102 (2005)

Ashkin et al. Nature 348 (1990)

- State space: 1-dimensional lattice of cargo states
- \bullet Unbinding rates ϵ and binding rates π define Markov process⁷

- Kinesin: Average run length $<\Delta x_b > \sim 5^N / N \mu m$ => N = 7 motors lead to run length of centimeters!
 - Kinesin: Run length distribution

Comparison of Experiment and Theory

> Beeg et al, *Biophys. J.* **94** (2008)

External Load Force F

Axonal Cargo Transport

• Example: Transport of viruses in chick neurons Virus capsid labeled by GFP

Smith et al, *PNAS*. **98** (2001)

41

Bi-Directional Transport

Müller et al, *PNAS* **105** (2008) *J. Stat. Phys.* **133** (2008)

• Cargo with two antagonistic types of motors:

Green minus motors pull to the left Red plus motors pull to the right

- Experimental observations reveal complex behavior: Different types of trajectories with and without pauses Changing one motor type affects both directions!
- Two proposals: Tug-of-war or coordination complex ?

Stochastic Tug-of-War

- Thermal noise: # of minus and plus motors fluctuates in time
- Cargo states with (n_{-}, n_{+}) active motors, $n_{-} \le N_{-}$ and $n_{+} \le N_{+}$ Example: $(N_{-}, N_{+}) = (2,2)$

force ratio f

43

- Uni-directional transport for $N_{-} = 0$ or $N_{+} = 0$
- All cargo states with $n_{-} > 0$ and $n_{+} > 0$:

force ratio f

Plus motors pull on minus motors and vice versa => nontrivial force balance

Müller et al, PNAS 105 (2008)

Example: 4 against 4 Motors

• Steady state distributions:

All experimental observations can be explained by small changes in single motor parameters !

Single Motors	• Single motor experiments	
	Chemomechanical coupling	Discrete Steps (nm)
	• Network of motor cycles	
	• Run length and unbinding rate	
Motor Teams	• Uni-directional cargo transport	Large-Scale Transport (µm to m)
	• Bi-directional cargo transport	
	Enhanced transport	
Motor Densities	• Traffic of motors and cargos	

Example: Tube Geometries

RL et al, *Phys. Rev. Lett.* **87** (2001) Klumpp, RL, *J. Stat. Phys.* **113** (2003)

• Axon-like tube compartment:

• Tube length >> run length:

Motors (plus cargoes) completely unbind from filament, undergo unbiased diffusion, and eventually rebind to filament

- Repulsive motor-motor interactions: Simple exclusion processes
- Importance of boundary conditions

Traffic in a half open tube

Müller et al, J. Phys. CM 17 (2005)

- Axon-like boundary condition = half open tube left boundary open, reservoir of motors = 'cell body' right boundary closed = 'Synapse'
- (+) Motors (kinesins) moving to the right:
- (-) Motors (dyneins) moving to the left

Jam length L_{*}

traffic

49

More Traffic Phase Transitions

- Tube with two open boundaries: TP transitions related to ASEP phases
- Traffic of two motor species in tubes: Symmetry breaking TP transition
- Traffic of filaments along substrates: Isotopic nematic TP transition

J. Stat. Phys. 113 (2003)

Europhys. Lett. 66 (2004)

Phys. Rev. Lett. 96 (2006)

Coworkers

Stepping Motors, Theory:

Neha Awasthi Florian Berger Veronika Bierbaum Yan Chai Corina Keller Volker Knecht Stefan Klumpp Aliaksei Krukau Steffen Liepelt Melanie Müller Angelo Valleriani Stepping Motors, Experiment:

Janina Beeg Rumiana Dimova Karim Hamdi

Actin Filaments:

Jan Kierfeld Pavel Kraikivski Xin Li Thomas Niedermayer