Steering Chiral Swimmers

Frank Jülicher Max Planck Institute for the Physics of Complex Systems Dresden, Germany

Edward Mills Purcell

Life at low Reynolds number

E. M. Purcell

Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138 (Received 12 June 1976) Am. J. Phys. 45 (1977)

Max Planck Institute for the Physics of Complex Systems

Amit Chattopadhyay Andreas Hilfinger Benjamin Friedrich

S. Grill

Max Planck Institute of Molecular Cell Biology and Genetics

J. Howard I. Riedel-Kruse J. Pecreaux J.-C. Röper A. Hyman

Max Planck Institute of Molecular Cell Biology and Genetics Dresden

U.B. Kaupp (Bonn)

J. Prost (Paris) J.-F. Joanny (Paris) A.Vilfan (Lubljana)

Ciliar motility

Sperm

Chlamydomonas

Paramecium

Stirring fluids

Ciliar stroke

Metachronal waves

Swimming

Bull sperm

20Hz

Ingmar Riedel-Kruse Jonathon Howard

Cilia as sensory elements

Mechanosensors

- Insect mechanosensors
- Chemosensors
 - Olfactory neurons
 - Sperm chemotaxis

Ciliar structure: the axomene

9+2 Axoneme

Paramecium

Chlamydomonas

Antagonistic motors

Two groups of motors that act in opposition

Enhanced collective effects and instabilities

Instability and bistability

Nonlinear oscillator

Effective dynamics

Jülicher and Prost, PRL (1997) Grill, Kruse, Jülicher PRL (2005)

Pecreaux et. al., Current Biology (2006)

$$G = \int_0^L ds \left(\frac{\kappa}{2}\dot{\psi}^2 + f(s)x(s)\right)$$

 $x(s) = x_0 + a\psi(s)$

Bending energy + work term

x(s) motor displacement

f(s) motor force density

Dynamic equations

$$\partial_{t}\mathbf{r} = -\left(\frac{1}{\xi_{\perp}}\mathbf{n}\mathbf{n} + \frac{1}{\xi_{\parallel}}\mathbf{t}\mathbf{t}\right)\frac{\delta G}{\delta \mathbf{r}}$$
$$\mathbf{n} \qquad \mathbf{\xi}_{\perp} \qquad \mathbf{\xi}_{\parallel} \qquad \mathbf{t} = \dot{\mathbf{r}}$$

Linearized dynamics

$$\psi(s)$$

force density of dynein motors f(s,t)local angle of cilium $\psi(s,t)$

Shape equation for the flagellar beat

$$\xi_{\perp} \partial_t \psi \simeq -\kappa \partial_s^4 \psi + a \partial_s^2 f$$
friction
$$\int_{\text{bending elasticity}}^{\uparrow} \psi = a \partial_s^2 f$$
motor forces

Sliding control of motors

Active material

Linear response

$$\tilde{f} \simeq \chi(\omega)\tilde{x}$$

Frequency dependent susceptibility

$$\chi = k + i\lambda\omega$$

 $x(s) = x_0 + a\psi(s)$

Camalet and Jülicher, NJP 2 (2000)

Nonlinear oscillator

Effective dynamics

Jülicher and Prost, PRL (1997) Pecreaux et. al., Current Biology (2006) Riedel, Hilfinger, Howard, Jülicher, HFSP J. (2007)

Motor response function

linear motor response

Jülicher and Prost, PRL (1997) Pecreaux et. al., Current Biology (2006) Riedel, Hilfinger, Howard, Jülicher, HFSP J. (2007)

Linear wave equation

Experimental results

I. Riedel-Kruse, A. Hilfinger, J. Howard, F. Jülicher, HFSP Journal 3 (2007)

Theory-Experiment

Sliding control

 $\psi(s,t) = \tilde{\psi}(s)e^{i\omega t}$

Basal sliding

Basal sliding

$$x(s) = x_0 + a\psi(s)$$

basal sliding $x_0(t)$ $|\tilde{x}_0| \simeq 160 \mathrm{nm}$

basal compliance

Ciliar beat in three dimensions

Chirality

Rotating waves

A. Hilfinger and F. Jülicher, Physical Biology 5 (2008)

Rotating waves

Y. Okada et al. Cell, 121(4): 633 (2005); S. Nonaka et al. Cell, 95 (6): 829 (1998)

left-right asymmetry

Y. Okada et al. Cell, 121(4): 633 (2005); S. Nonaka et al. Cell, 95 (6): 829 (1998)

left-right asymmetry

R

Y. Okada et al. Cell, 121(4): 633 (2005); S. Nonaka et al. Cell, 95 (6): 829 (1998)

G.I. Taylor Proc. Roy Soc. A (1951)

Gray and Hancock, J. Exp. Biol. (1955)

Plane of flagellar beat

weakly twisted

Translation $\mathbf{v} = v_0 \mathbf{t}$ Rotation $\mathbf{\Omega} = \omega_{\parallel} \mathbf{t} + \omega_{\perp} \mathbf{b}$

generated by flagellar beat

Curvature $\kappa = \omega_{\perp}/v_0$

Torsion $\tau = \omega_{\parallel}/v_0$

Cilium as sensory antennae

Chemical gradient guides sperm to the egg

Motility controlled by chemical signals

Signaling system

T. Strünker et al. Nature Cell Biology 8 (2006)

Steering towards a chemical signal

Experiments: optical uncaging of chemoattractant

Sea urchin sperm

Sperm swim towards high concentration of chemoattractant

Single molecule detection

L. Dai, L. Alvarez, U.B. Kaupp, caesar research center, Bonn Böhmer et al. EMBO J. (2005)

Confinement: planar geometry

Swimming on circular paths

$$\kappa_0 = 1/r_0$$

Signaling in linear response

linear response function

adaptation

 $\Delta c/c$

$$\tilde{\kappa}(\omega) = \chi_{\kappa}(\omega)\tilde{c}(\omega)$$

$$\chi_{\kappa} = \rho e^{i\phi}$$

 $\rho \sim 1/c$

 $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$

radial concentration field

spiralling motion to the center

$$\alpha = \frac{3\pi}{2} - \phi$$

 $\chi'_{\kappa} < 0$

Motion in 3-d space

periodic concentration signal

$$c(t) \simeq R \nabla_{\perp} c \, \sin(\omega t)$$

periodic modulation of $~~\mathcal{K}$

 ${\mathcal T}$

$$\chi_{\kappa}(\omega) \quad \chi_{\tau}(\omega)$$

Motion in 3-d space

Helix bending

$$\dot{\psi} = -\beta \sin \psi$$

$$\beta = (\epsilon_{\tau} \chi_{\tau}' - \epsilon_{\kappa} \chi_{\kappa}') |\nabla c|$$

$$\epsilon_{\kappa} = \omega_0 r_0 h_0 / 2 \quad \epsilon_{\tau} = \omega_0 r_0^2 / 2$$

Radial concentration in 3-d

Nonlinear dynamics on superhelical swimming paths

$$\dot{R} = -\omega h \cos \psi - \gamma \sin^2 \psi$$
$$\dot{\psi} = -\sin \psi \left(\beta - \frac{1}{R}(\omega h - \gamma \cos \psi)\right)$$

Radial concentration in 3-d

Nonlinear dynamics on superhelical swimming paths

$$\dot{R} = -\omega h \cos \psi - \gamma \sin^2 \psi$$
$$\dot{\psi} = -\sin \psi \left(\beta - \frac{1}{R}(\omega h - \gamma \cos \psi)\right)$$

Shot noise

Single molecule detection

$$c(t) = \sum_{n} \delta(t - t_n)$$

Stochastic differential geometry

Robust steering: drift + diffusion

Shot noise

Stochastic simulations of chemotaxis

B. Friedrich F. Jülicher, NJP 10 (2008)

Chemotaxis with noise

B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. (2009)

Chemotaxis with noise

Noise strength

$$D = \omega_0^2 (h_0^2 \tilde{S}_{\kappa}(\omega_0) + r_0^2 \tilde{S}_{\tau}(\omega_0) - 2r_0 h_0 \tilde{S}_{\kappa,\tau}(\omega_0))/2$$

Persistence time

 $t_P = (2D)^{-1}$

B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. (2009)

$$P_0(\cos\psi) \sim \exp(\cos\psi\beta/D)$$
$$\langle\cos\psi\rangle = \coth(\frac{\beta}{D}) + \frac{D}{\beta}$$

B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. (2009)

$$P_0(\cos\psi) \sim \exp(\cos\psi\beta/D)$$
$$\langle\cos\psi\rangle = \coth(\frac{\beta}{D}) + \frac{D}{\beta}$$

Summary Outlook

- Self-organization of motors generates chiral sperm beat
- Chiral swimming provides a mechanism for steering
- Robust under noisy conditions
- Chiral swimming: general principle for target search

chemotaxis phototaxis

r(t)

200 µm

c(**x**)

Max Planck Institute for the Physics of Complex Systems

Amit Chattopadhyay Andreas Hilfinger Benjamin Friedrich

S. Grill

Max Planck Institute of Molecular Cell Biology and Genetics

A. Hyman

J. Howard I. Riedel-Kruse J. Pecreaux J.C- Röper

U.B. Kaupp (CEASAR, Bonn)

Max Planck Institute of Molecular Cell Biology and Genetics Dresden