Record theory and applications: Global warming and market fluctuations

Joachim Krug
Institute of Theoretical Physics, University of Cologne

- What are records, and why do we care?
- Records in growing and improving populations
- Record-breaking temperatures and global warming with Gregor Wergen
- Records of random walks and financial data with Miro Bogner

Records in popular culture

Records in popular culture
1.3.2008: 60 New Delhi chefs create the world's largest biryani (13 tons)

http://www.guinnessworldrecords.com/

Records in popular culture

2007: Shailendra Singh Yadav (Kanpur) published most letters (214) in a single national newspaper (AJ Independent Hindi Daily) in a year.

http://www.guinnessworldrecords.com/

Basic facts about records I

- A record is an entry in a sequence of random variables (RV's) X_{n} which is larger (upper record) or smaller (lower records) than all previous entries

- If the RV's are independent and identically distributed (i.i.d.), the probability for a record at time n is $P_{n}=1 / n$ by symmetry
- This result is universal, i.e. independent of the underlying distribution (provided it is continuous)

Basic facts about records II: i.i.d. RV's

N. Glick, Am. Math. Mon. 85, 2 (1978)

- The expected number of records up to time n is

$$
\left\langle R_{n}\right\rangle=\sum_{k=1}^{n} \frac{1}{k}=\ln (n)+\gamma+\mathscr{O}(1 / n)
$$

where $\gamma \approx 0.5772156649 \ldots$... is the Euler-Mascheroni constant

- Record events are independent: The sequence of records is a Bernoulli process with success probability P_{n}, which converges to a Poisson process in logarithmic time for large n
- If n_{k} is the time of the k^{\prime} th record, then $n_{k} / n_{k+1} \in[0,1]$ becomes a uniform RV for large k. As a consequence

$$
\left.\left\langle n_{k}\right\rangle\right|_{n_{k+1}} \approx \frac{1}{2} n_{k+1},\left.\quad\left\langle n_{k}\right\rangle\right|_{n_{k-1}}=\infty
$$

\Rightarrow records can only be "predicted" backwards in time

Beyond the i.i.d. model

Records in growing populations

M.C.K. Yang, J. Appl. Prob. 12, 148 (1975)

- Motivation: Olympic records occur at an essentially constant (nondecreasing) rate
- Model: At each time n a new "generation" of N_{n} i.i.d. RV's becomes available simultaneously. By symmetry, the probability of a new record at time n is then

$$
P_{n}=\frac{N_{n}}{\sum_{k=1}^{n} N_{k}}
$$

- For an exponentially growing population, $N_{n}=a^{n}$, this yields

$$
P_{n}=\frac{a^{n}(a-1)}{a\left(a^{n}-1\right)} \rightarrow \frac{a-1}{a} \text { for } n \rightarrow \infty .
$$

- The growth of the world population is insufficient to explain the occurrence rate of Olympic records under this model.

Records in improving populations

R. Ballerini \& S. Resnick, J. Appl. Prob. 22, 487 (1985)

- Let $X_{n}=Y_{n}+v n$ with i.i.d. RV's Y_{n} and a drift speed $v>0$
- For large n the record probability approaches a finite limit $\lim _{n \rightarrow \infty} P_{n}(v)>0$ which is however difficult to compute in general

An exactly solvable case

thanks to Jasper Franke

- Let Y_{n} have probability density $p(y)$ and probability distribution function $q(x)=\int^{x} d y p(y)$. Then

$$
P_{n}(v)=\int d x_{n} p\left(x_{n}-v n\right) \prod_{k=1}^{n-1} q\left(x_{n}-v k\right)=\int d x p(x) \prod_{k=1}^{n-1} q(x+v k)
$$

- For the Gumbel distribution $q(x)=\exp \left[-e^{-x / b}\right]$

$$
\begin{aligned}
\prod_{k=1}^{n-1} q(x-v k) & =\exp \left[-e^{-x / b} \sum_{k=1}^{n-1} e^{-v k / b}\right]=q(x)^{\alpha_{n}} \text { with } \alpha_{n}=\sum_{k=1}^{n-1}\left(e^{-v / b}\right)^{k} \\
& \Rightarrow P_{n}(v)=\int_{0}^{1} d q q^{\alpha_{n}}=\frac{1}{\alpha_{n}+1}=\frac{1-e^{-v / b}}{1-e^{-n v / b}}
\end{aligned}
$$

- Key parameter is the ratio v / b

Records from broadening distributions

- Let X_{n} be drawn from $p_{n}(x)=n^{-\alpha} f\left(x / n^{\alpha}\right)$ with $\alpha>0$
- Asymptotic growth of the number of records depends on the universality class of f in the sense of extreme value statistics.

Fréchet class: $f(x) \sim x^{-(\mu+1)} \quad \Rightarrow \quad\left\langle R_{n}\right\rangle \approx(1+\alpha \mu) \ln (n)$
Gumbel class: $f(x) \sim \exp \left[-x^{\beta}\right] \quad \Rightarrow \quad\left\langle R_{n}\right\rangle \sim \alpha \ln ^{2}(n)$
Weibull class: $f(x) \sim\left(x_{\max }-x\right)^{\delta}, \delta>0 \quad \Rightarrow \quad\left\langle R_{n}\right\rangle \sim \alpha^{\delta} n^{1 /(\delta+1)}$

- Effect of broadening is stronger for fast decaying tails, and generally weaker than effect of drift in the mean value
- Broadening (and drift) generically induces correlations between records

Application to global warming

Record-breaking temperatures and global warming

R.E. Benestad (2003); S. Redner \& M.R. Petersen (2006)

- Question: Does global warming significantly increase the occurrence of record-breaking high daily temperatures?
- Model: The temperature on a given calendar day of the year is an independent Gaussian RV with constant standard deviation σ and a mean that increases at speed v

- Typical values: $v \approx 0.03^{\circ} \mathrm{C} / \mathrm{yr}, \sigma \approx 3.5^{\circ} \mathrm{C} \Rightarrow v / \sigma \ll 1$

Expansion for small drift speed

- We want to compute the record rate $P_{n}(v)=\int d x p(x) \prod_{k=1}^{n-1} q(x+v k)$ for general $q(x)$ and $p(x)=d q / d x$
- To leading order in v we have $q(x+v k) \approx q(x)+v k p(x)$

$$
\Rightarrow P_{n} \approx \int d x p(x) q(x)^{n-1}+\frac{v n(n-1)}{2} \int d x p(x)^{2} q(x)^{n-2}=\frac{1}{n}+v I_{n}
$$

with $I_{n}=\frac{n(n-1)}{2} \int d x p(x)^{2} q(x)^{n-2}$

- Asymptotic behavior of I_{n} depends on the universality class of p :

Fréchet class: $p(x) \sim x^{-(\mu+1)} \Rightarrow I_{n} \sim n^{-1 / \mu} \rightarrow 0$
Weibull class: $p(x) \sim\left(x_{\max }-x\right)^{\delta}, \delta>0 \Rightarrow I_{n} \sim n^{1 /(\delta+1)} \rightarrow \infty$
Exponential: $p(x)=e^{-x / a} \Rightarrow I_{n}=\frac{1}{2 a}$
\Rightarrow effect of drift is smaller for fatter tails

- In the Gaussian case I_{n} can be evaluated in closed form only for $n=2,3$
- A saddle point approximation for large n yields the result

$$
P_{n}(v) \approx \frac{1}{n}+\frac{v}{\sigma} \frac{(2 \pi)^{3 / 2}}{e^{2}} \sqrt{\ln \left(n^{2} / 8 \pi\right)}
$$

Analysis of daily high temperatures

European data

- 43 stations over 100 year period 1906-2005
- 187 stations over 30 year period 1976-2005
- 30 year data: Constant warming rate $v \approx 0.034 \pm 0.01^{\circ} \mathrm{C} / \mathrm{yr}$, standard deviation $\sigma \approx 3.5 \pm 0.5^{\circ} \mathrm{C} \Rightarrow v / \sigma \approx 0.01$

American data

- 87 stations over 100 year period 1906-2005
- 207 stations over 30 year period 1976-2005
- Continental climate implies larger variability:

$$
\sigma=4.9 \pm 0.1^{\circ} \mathrm{C}, v=0.025 \pm 0.002^{\circ} \mathrm{C} / \mathrm{yr} \Rightarrow v / \sigma \approx 0.005
$$

- Significant effect of rounding to integer degrees Fahrenheit

Record frequency in Europe: 1976-2005

- Expected number of records in stationary climate: $\frac{365}{30} \approx 12$
- Observed record rate is increased by about $50 \% \Rightarrow 6$ additional records

Mean record number: 1976-2005

Re-analysis data: Record maps

number of records 1957-2000 normalized warming rate v / σ

Re-analysis data: Seasonal variation

Random walks \& market fluctuations

Records of random walks

S.N. Majumdar \& R.M. Ziff, PRL 101, 050601 (2008)

- Let X_{n} be an unbiased random walk:

$$
X_{n}=\sum_{k=1}^{n} \eta_{k}
$$

with i.i.d. RV's η_{k} drawn from a symmetric, continuous distribution $\phi(\eta)$

- The probability of having m records in n steps is given by

$$
P(m, n)=\binom{2 n-m+1}{n} 2^{-2 n+m-1} \rightarrow \frac{1}{\sqrt{\pi n}} \exp \left[-m^{2} / 4 n\right]
$$

- Mean number of records: $\left\langle R_{n}\right\rangle \approx \sqrt{4 n / \pi}$
- This result does not require $\phi(\eta)$ to have finite variance \Rightarrow valid also for Lévy flights!

Random walks and stock market fluctuations

L. Bachelier, Théorie de la spéculation (1900)

- Basic model of a fluctuating stock price S_{n} is the exponential random walk

$$
S_{n}=e^{X_{n}}=\exp \left[\sum_{k=1}^{n} \eta_{k}\right] \Rightarrow \eta_{k}=\ln \left(S_{n} / S_{n-1}\right)
$$

- Distribution of returns η_{k} display fat tails when viewed at high temporal resolution
- Key problem: How to distinguish trends and fluctuations?
- Standard approach removes a linear trend from $\ln \left(S_{n}\right)$
- Alternative: Normalize stock prices within an index by the index itself

Siemens stock normalized by DAX

Average number of records in the S\&P 500

- 366 stocks from S\&P 500, 1.1.1990-31.3.2009
- Detrending by index seems to work better

High and low records of the index-detrended S\&P 500

- Excess of lower (upper) records for short (long) times
- Ratio $\left\langle R_{n}\right\rangle_{\text {high }} /\left\langle R_{n}\right\rangle_{\text {low }}$ tends to a constant limit
- Asymmetry may reflect different market reactions to positive and negative price changes

Beyond the simple random walk

- Financial markets show volatility correlations, i.e. the variance of price increments depends on past market history.
- This effect is taken into account by ARCH and GARCH models ARCH = Autoregressive Conditional Heteroskedasticity

Engle 1982, Bollerslev 1986

- In the simplest GARCH, the variance σ_{n}^{2} of the n^{\prime} th increment η_{n} is determined recursively through

$$
\sigma_{n}^{2}=\alpha_{0}+\alpha_{1} \eta_{n-1}^{2}+\beta_{1} \sigma_{n-1}^{2}
$$

with constants $\alpha_{0}, \alpha_{1}, \beta_{1}>0$; the ARCH has $\beta_{1}=0$.

- The GARCH volatility correlation function is given by

$$
\left\langle\eta_{k}^{2} \eta_{k+n}^{2}\right\rangle-\left\langle\eta_{k}^{2}\right\rangle^{2}=\frac{\alpha_{0}\left(\alpha_{1}+\beta_{1}\right)^{n}}{1-\alpha_{1}-\beta_{1}} \sim e^{-n / \tau} \text { with } \tau=\left|\ln \left(\alpha_{1}+\beta_{1}\right)\right|^{-1}
$$

- Volatility correlations reduce the exponent but increase the prefactor in the effective power law $\left\langle R_{n}\right\rangle \approx A n^{v}$

- An asymmetry between positive and negative increments is introduced in the QGARCH: $\sigma_{n}^{2}=\alpha_{0}+\left(\alpha_{1} \eta_{n-1}-f\right)^{2}+\beta_{1} \sigma_{n-1}^{2}$

Conclusions

- Records statistics as a paradigm of non-stationary dynamics of rare events
- Global warming affects the rate of record-breaking temperatures in a moderate but significant way
- Records in financial data conform to the basic random walk model, with some additional features
- Theory of processes beyond i.i.d. RV's largely remains to be developed

