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• What are records, and why do we care?

• Records in growing and improving populations

• Record-breaking temperatures and global warming
with Gregor Wergen

• Records of random walks and financial data
with Miro Bogner



Records in popular culture



Records in popular culture

1.3.2008: 60 New Delhi chefs create
the world’s largest biryani (13 tons)

http://www.guinnessworldre
ords.
om/



Records in popular culture

2007: Shailendra Singh Yadav (Kanpur)
published most letters (214) in a single
national newspaper (AJ Independent Hindi
Daily) in a year.

http://www.guinnessworldre
ords.
om/



Basic facts about records I

• A record is an entry in a sequence of random variables (RV’s) Xn which is
larger (upper record) or smaller (lower records) than all previous entries

• If the RV’s are independent and identically distributed (i.i.d.), the probability
for a record at time n is Pn = 1/n by symmetry

• This result is universal, i.e. independent of the underlying distribution
(provided it is continuous)



Basic facts about records II: i.i.d. RV’s

N. Glick, Am. Math. Mon. 85, 2 (1978)

• The expected number of records up to time n is

〈Rn〉 =
n

∑
k=1

1
k

= ln(n)+ γ +O(1/n)

where γ ≈ 0.5772156649.... is the Euler-Mascheroni constant

• Record events are independent: The sequence of records is a Bernoulli
process with success probability Pn, which converges to a Poisson process
in logarithmic time for large n

• If nk is the time of the k’th record, then nk/nk+1 ∈ [0,1] becomes a uniform
RV for large k. As a consequence

〈nk〉|nk+1 ≈
1
2

nk+1, 〈nk〉|nk−1 = ∞

⇒ records can only be ”predicted” backwards in time



Beyond the i.i.d. model



Records in growing populations

M.C.K. Yang, J. Appl. Prob. 12, 148 (1975)

• Motivation: Olympic records occur at an essentially constant (non-
decreasing) rate

• Model: At each time n a new “generation” of Nn i.i.d. RV’s becomes
available simultaneously. By symmetry, the probability of a new record at
time n is then

Pn =
Nn

∑n
k=1 Nk

• For an exponentially growing population, Nn = an, this yields

Pn =
an(a−1)

a(an−1)
→ a−1

a
for n → ∞.

• The growth of the world population is insufficient to explain the occurrence
rate of Olympic records under this model.



Records in improving populations

R. Ballerini & S. Resnick, J. Appl. Prob. 22, 487 (1985)

• Let Xn = Yn + vn with i.i.d. RV’s Yn and a drift speed v > 0

• For large n the record probability approaches a finite limit limn→∞ Pn(v) > 0
which is however difficult to compute in general



An exactly solvable case

thanks to Jasper Franke

• Let Yn have probability density p(y) and probability distribution function
q(x) =

∫ x dy p(y). Then

Pn(v) =
∫

dxn p(xn − vn)
n−1

∏
k=1

q(xn− vk) =
∫

dx p(x)
n−1

∏
k=1

q(x+ vk)

• For the Gumbel distribution q(x) = exp[−e−x/b]

n−1

∏
k=1

q(x− vk) = exp[−e−x/b
n−1

∑
k=1

e−vk/b] = q(x)αn with αn =
n−1

∑
k=1

(e−v/b)k

⇒ Pn(v) =
∫ 1

0
dqqαn =

1
αn +1

=
1− e−v/b

1− e−nv/b

• Key parameter is the ratio v/b



Records from broadening distributions

JK, J. Stat. Mech. P07001 (2007)

• Let Xn be drawn from pn(x) = n−α f (x/nα) with α > 0

• Asymptotic growth of the number of records depends on the universality
class of f in the sense of extreme value statistics.

Fréchet class: f (x) ∼ x−(µ+1) ⇒ 〈Rn〉 ≈ (1+αµ) ln(n)

Gumbel class: f (x) ∼ exp[−xβ ] ⇒ 〈Rn〉 ∼ α ln2(n)

Weibull class: f (x) ∼ (xmax− x)δ ,δ > 0 ⇒ 〈Rn〉 ∼ αδ n1/(δ+1)

• Effect of broadening is stronger for fast decaying tails, and generally weaker
than effect of drift in the mean value

• Broadening (and drift) generically induces correlations between records



Application to global warming



Record-breaking temperatures and global warming

R.E. Benestad (2003); S. Redner & M.R. Petersen (2006)

• Question: Does global warming significantly increase the occurrence of
record-breaking high daily temperatures?

• Model: The temperature on a given calendar day of the year is an
independent Gaussian RV with constant standard deviation σ and a mean
that increases at speed v

• Typical values: v ≈ 0.03oC/yr, σ ≈ 3.5oC ⇒ v/σ ≪ 1



Expansion for small drift speed

• We want to compute the record rate Pn(v) =
∫

dx p(x)∏n−1
k=1 q(x+ vk) for

general q(x) and p(x) = dq/dx

• To leading order in v we have q(x+ vk) ≈ q(x)+ vkp(x)

⇒ Pn ≈
∫

dx p(x)q(x)n−1 +
vn(n−1)

2

∫

dx p(x)2q(x)n−2 =
1
n

+ vIn

with In = n(n−1)
2

∫

dx p(x)2q(x)n−2

• Asymptotic behavior of In depends on the universality class of p:

Fréchet class: p(x) ∼ x−(µ+1) ⇒ In ∼ n−1/µ → 0

Weibull class: p(x) ∼ (xmax− x)δ ,δ > 0 ⇒ In ∼ n1/(δ+1) → ∞

Exponential: p(x) = e−x/a ⇒ In = 1
2a

⇒ effect of drift is smaller for fatter tails



• In the Gaussian case In can be evaluated in closed form only for n = 2,3

• A saddle point approximation for large n yields the result

Pn(v) ≈
1
n

+
v
σ

(2π)3/2

e2

√

ln(n2/8π)



Analysis of daily high temperatures

European data

• 43 stations over 100 year period 1906-2005

• 187 stations over 30 year period 1976-2005

• 30 year data: Constant warming rate v ≈ 0.034±0.01oC/yr,
standard deviation σ ≈ 3.5±0.5oC ⇒ v/σ ≈ 0.01

American data

• 87 stations over 100 year period 1906-2005

• 207 stations over 30 year period 1976-2005

• Continental climate implies larger variability:
σ = 4.9±0.1oC, v = 0.025±0.002oC/yr ⇒ v/σ ≈ 0.005

• Significant effect of rounding to integer degrees Fahrenheit



Record frequency in Europe: 1976-2005

• Expected number of records in stationary climate: 365
30 ≈ 12

• Observed record rate is increased by about 50 % ⇒ 6 additional records



Mean record number: 1976-2005

Inset: American data



Re-analysis data: Record maps

number of records 1957-2000 normalized warming rate v/σ



Re-analysis data: Seasonal variation



Random walks & market fluctuations



Records of random walks

S.N. Majumdar & R.M. Ziff, PRL 101, 050601 (2008)

• Let Xn be an unbiased random walk:

Xn =
n

∑
k=1

ηk

with i.i.d. RV’s ηk drawn from a symmetric, continuous distribution φ(η)

• The probability of having m records in n steps is given by

P(m,n) =

(

2n−m+1
n

)

2−2n+m−1 → 1√
πn

exp[−m2/4n]

• Mean number of records: 〈Rn〉 ≈
√

4n/π

• This result does not require φ(η) to have finite variance
⇒ valid also for Lévy flights!



Random walks and stock market fluctuations

L. Bachelier, Théorie de la spéculation (1900)

• Basic model of a fluctuating stock price Sn is the exponential random walk

Sn = eXn = exp[
n

∑
k=1

ηk] ⇒ ηk = ln(Sn/Sn−1)

• Distribution of returns ηk display fat tails when viewed at high temporal
resolution

• Key problem: How to distinguish trends and fluctuations?

• Standard approach removes a linear trend from ln(Sn)

• Alternative: Normalize stock prices within an index by the index itself



Siemens stock normalized by DAX



Average number of records in the S&P 500
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• 366 stocks from S&P 500, 1.1.1990-31.3.2009

• Detrending by index seems to work better



High and low records of the index-detrended S&P 500
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• Excess of lower (upper) records for short (long) times

• Ratio 〈Rn〉high/〈Rn〉low tends to a constant limit

• Asymmetry may reflect different market reactions to positive and negative
price changes



Beyond the simple random walk

• Financial markets show volatility correlations, i.e. the variance of price
increments depends on past market history.

• This effect is taken into account by ARCH and GARCH models
ARCH = Autoregressive Conditional Heteroskedasticity

Engle 1982, Bollerslev 1986

• In the simplest GARCH, the variance σ 2
n of the n’th increment ηn is

determined recursively through

σ 2
n = α0 +α1η2

n−1 +β1σ 2
n−1

with constants α0,α1,β1 > 0; the ARCH has β1 = 0.

• The GARCH volatility correlation function is given by

〈η2
k η2

k+n〉−〈η2
k 〉2 =

α0(α1 +β1)
n

1−α1−β1
∼ e−n/τ with τ = | ln(α1 +β1)|−1



• Volatility correlations reduce the exponent but increase the prefactor in the
effective power law 〈Rn〉 ≈ Anν
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• An asymmetry between positive and negative increments is introduced in
the QGARCH: σ 2

n = α0 +(α1ηn−1− f )2 +β1σ 2
n−1 Sentana 1995
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Conclusions

• Records statistics as a paradigm of non-stationary dynamics
of rare events

• Global warming affects the rate of record-breaking temperatures
in a moderate but significant way

• Records in financial data conform to the basic random walk
model, with some additional features

• Theory of processes beyond i.i.d. RV’s largely remains to be
developed


