

Max Planck Institute of Molecular Cell Biology and Genetics ICTS-NESP Kanpur 2 February 2010

Motor Proteins as Nanomachines: Force, Friction and Fluctuations

The inner life of the cell (Harvard Univ.)

MAX-PLANCK-GESELLSCHAFT

Outline

1. Single-molecule techniques can be used to study movement of purified motor proteins

- 2. Role of **fluctuations** in the motor reaction
- 3. Protein friction limits motor speed and efficiency

4. Force gating of motor proteins: active mechanical circuits underlying cell motility

Squid giant axon

Organelle transport in squid axoplasm

10 µm

Robert Allen, Woods Hole

Organelle transport in squid axoplasm

Dieter Weiss, Rostock

Crossbridges between microtubules and organelles

Miller & Lasek, J. Cell Biol. 101: 2181 (1985) Ashkin et al., Nature 348: 346 (1990)

Kinesin

Hirokawa et al., Nature 348: 346 (1990)

In vitro gliding assay (upside down assay)

Glass microscope slide

Microtubule gliding assay

10 µm

Sped up 25X

ATP is required for motility

Bead Assay

real time

Coy et al. J. Biol. Chem., 1999

Kinesin is processive: single molecules move

<u>Total-Internal-Reflection-Fluorescence</u> (TIRF) microscopy

Total-internal-reflectionfluorescence microscopy (TIRF)

Fluorescence

TIRF

Imaging area – 75 μm x 55 μm GFP-MCAK on microtubules

Processive motility of kinesin

In which direction does kinesin move?

Kinesin moves towards the plus-end of the microtubule

minus end

minus end

minus end

Howard & Hyman 1993 What path does kinesin follow on the microtubule surface?

Lattice structure of the microtubule

Alberts et al., Molecular Biology of the Cell

Which path does kinesin follow?

parallel

angled

random

Lattice rotation model

(D)

Dick Wade, Grenoble

 θ

Moire pattern reveals the supertwist

13 protofilaments

14 protofilaments

Dick Wade, Grenoble

13 Protofilaments

Ray et al., J. Cell Biol. 1993

14 Protofilaments

Ray et al., J. Cell Biol. 1993

Rotation of supertwisted microtubules

Ray et al., J. Cell Biol. 1993

Fluorescence interference contrast (FLIC) microscopy

Nitzsche et al. Nature Nanotech. (2008) (**Stefan Diez**, Dresden)

Rotation of 14-protofilament microtubules

Nitzsche et al. Nature Nanotech. (2008)

Handedness of rotation $counterclockwise \rightarrow along the protofilament$

Kinesin follows the protofilament axis

parallel	angled	random
YES	NO	NO

Kinesin's path on the microtubule

Direct measurement of 8-nm steps

Volker Bormuth

Outline

1. Single-molecule techniques can be used to study movement of purified motor proteins

2. Role of **fluctuations** in the motor reaction

3. Protein friction limits motor speed and efficiency

4. Force gating of motor proteins: active mechanical circuits underlying cell motility
"Ratchet diffusion" model

Force generated by the "Ratchet diffusion" mechanism

Prediction:

First-passage time: $t = d^2/2D = d^2\gamma/2kT$ d = step size = 8 nm γ = viscosity

Maximum force against a viscous load: $f_{drag} = \gamma v_{max} = \gamma d/t = 2kT/d = 1 pN$

Single-kinesin force against a viscous load

"upside-down assay"

Hunt et al. (1994)

Time-varying (flashing) ratchets

Roussellet et al. 1994 and see also Astumian & Bier 1994

Time-varying (flashing) ratchets

<u>Prediction</u>:

Because there is only a <50% chance of progressing to the next site (>50% chance of staying put or going backwards) then it takes at least 2 ATP on average to move 8 nm

Experiment:

One ATP hydrolyzed per step (Coy et al. J. Biol. Chem. 1999)

Thermal ratchet model

Huxley 1957 Cordova et al. 1992

Thermal ratchet Powerstroke model

model

Transition state concept

What is the position of the transition state?

Howard, Curr. Biol. 2006

Force-velocity curve (kinesin)

Force-velocity curve (kinesin)

Force-velocity curve (kinesin)

Thermal ratchet Powerstroke model

model

small distance to transition state assures reasonable speeds even at high forces

Spring

Huxley 1957 Cordova et al. 1992 Recover

Eiesenberg & Hill 1978 Parmeggiani et al. 1999 High processivity (kinesin does not let go)

\Rightarrow at least two binding sites

Hand-over-hand model

Hancock & Howard 1998, 1999; Schief & Howard 2001; Schief et al. 2004

Outline

1. Single-molecule techniques can be used to study movement of purified motor proteins

- 2. Role of fluctuations in the motor reaction
- 3. Protein friction limits motor speed and efficiency

4. Force gating of motor proteins: active mechanical circuits underlying cell motility

Friction ...

... resists the relative motion of two bodies in contact.

Friction arises from the force necessary to deform and break adhesive bonds.

When a bond breaks, the energy stored in its deformation is dissipated

1) Protein Friction ...

... is especially important for motor proteins

Harvard university

Friction forces acting on motors have not been measured

How they depend on speed are unknown

2) Protein Friction is related to diffusion

Diffusion

Friction

The budding yeast kinesin-8 (Kip3p) is a model system to study protein friction

Varga et. al 2006

The budding yeast kinesin-8 (Kip3p) is a model system to study protein friction

Varga et. al 2006

Microtubule depolymerase With key role in microtubule length regulation

In ATP:Highly processive plus end directed motor00 $v = 3 \, \mu \mathrm{m/min}$ 2 um

Varga et. all 2006

<u>In ATP:</u> Highly processive plus end directed motor

00 2 un

 $v = 3 \,\mu\mathrm{m/min}$

Varga et. al 2006

In ADP: Kip3p diffuses on microtubules

In ATP:Highly processive plus end directed motor00 $v = 3 \, \mu \mathrm{m/min}$

Varga et. al 2006

In ADP: Kip3p diffuses on microtubules

 $\gamma = rac{k_B T}{D}$ $\gamma = 0.95 \pm 0.11\,\mu \mathrm{Ns/m}$

 $v \approx 1 \,\mu \mathrm{m/s} => F = \gamma v \approx 1 \,\mathrm{pN}$

The friction measurement:

Optical tweezers can measure friction force

Kinesin-8 has non-linear protein friction

Frictional slipping is in 8-nm steps

Diffusion and friction can be described as motion in a periodic potential

How does the measured friction limit the motility of kinesin when it is driven by ATP-hydrolysis?

Picture of a motor as a force generator limited by a damping element

sticky feet

Mechanical switching and oscillations in cells

Outline

1. Single-molecule techniques can be used to study movement of purified motor proteins

- 2. Role of fluctuations in the motor reaction
- 3. Protein friction limits motor speed and efficiency
- **4. Force gating of motor proteins**: active mechanical circuits underlying cell motility

Force-accelerated detachment of motors

Can give rise to **negative friction** Can lead to **switching, oscillations!**

Load-accelerated dissociation of kinesin-1

Schnitzer et al. 2000

Load-accelerated dissociation \rightarrow Positive feedback

More force generated

Motor binds Force/bound motor decreases

 \downarrow Load-accelerated detachment

Load-accelerated dissociation \rightarrow Negative friction

Theory of dynamical systems

The flagellar beat

Bull sperm, L = 58 μ m, f = 21 Hz, 22 °C

Riedel-Kruse, Hilfinger, Howard & Julicher 2007

Two types of coordination

- across the section
- along the length

Bending and sliding

Flagellar oscillator

Oscillation requires

Negative friction (to supply energy) – load-accelerated detachment
Inertial term (delay) – delay of detachment

3. Elastic term (return to the center) – stiffness of the microtubules

IJ

"Sperm equation" $a^2 \chi \frac{d^2 \tilde{\psi}}{ds^2}(s) = i\omega \xi_{\perp} \tilde{\psi}(s) + \kappa \frac{d^4 \tilde{\psi}}{ds^4}(s)$ Boundary conditions no external forces or torques (all internal)

Riedel-Kruse, Hilfinger, Howard & Jülicher 2007

Determination of beat shape

Riedel-Kruse, Hilfinger, Howard & Jülicher 2007

Agreement between theory and experiment

Clamped head

Riedel-Kruse, Hilfinger, Howard & Jülicher 2007

Mechanical signaling network in the axoneme

Advantages of mechanical signaling over chemical signaling 1. can travel over large distances

- 2. signals move at the speed of sound (in the material)
- 3. feedback leads to coordination, switching and oscillation

Summary

1. Single-molecule techniques can be used to study movement of purified motor proteins

- 2. Role of **fluctuations** in the motor reaction
- 3. Protein friction limits motor speed and efficiency

4. Force gating of motor proteins: active mechanical circuits underlying cell motility

Frank Jülicher

Andy

Ingmar Riedel

Vlado Varga

Volker Bormuth

Jacques Pecreaux

Tony Hyman

Erik Schäffer

Stephan Grill

CBG Max Planck Institute of Molecular Cell Biology and Genetics

CBG Max Planck Institute of Molecular Cell Biology and Genetics

Physics of Biological Systems MPI-CBG, MPI-PKS, TU Dresden

Groups

Stefan Diez (CBG & ERC) Stephan Grill (CBG & PKS) Thilo Gross (PKS) Joe Howard (CBG) Frank Jülicher (PKS) Daniel Müller (TUD) Ewa Paluch (CBG & PAN) Erik |Schäfer (TUD) Petra Schwille (TUD & MPG) Ralf Seidel (TUD) Iva Tolic-Norrylekke (CBG)

Deutsche Forschungsgemeinschaft DFG