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Systems with long range interactions

in d  dimensions

two-body interaction
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and the energy is not extensive

for σ<0 



self gravitating systems    (1/r)                    σ=-2

ferromagnets                                               σ=0

2d vortices                       log(r)                   σ=-2
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These systems are non-additive
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As a result, many of the common properties of typical

systems with short range  interactions are not shared

by these systems.



Driven systems

T1 T2

T1>T2

E

heat current

charge current

Local and stochastic dynamics

No detailed balance (non-vanishing current)

What is the nature of the steady state?



drive in conserving systems result in many cases in long range correlations

leading, in some cases, to spontaneous symmetry breaking and 

condensation transition even in one dimension.

What can be learned from systems with long-range interactions

on steady state properties of driven systems?
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the entropy may be neglected in the

thermodynamic limit.

In finite systems, although E>>S, if T is high enough

E may be comparable to TS, and the full free energy

need to be considered. (Self gravitating systems, e.g.

globular clusters)

Systems with long range interactions



one may implement the large T limit by rescaling

the Hamiltonian
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Although the canonical thermodynamic functions (free energy,

entropy etc) are extensive, the system is non-additive
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Mean-field type interactions is an extreme case with σ=-d.

for example, consider the Ising model:



Features which result from non-additivity

Negative specific heat in microcanonical ensemble 

Inequivalence of microcanonical (MCE) and

canonical (CE) ensembles

Breaking of ergodicity in microcanonical ensemble

Slow dynamics, diverging relaxation time

Thermodynamics

Dynamics

Temperature discontinuity in MCE 



Some general considerations

Negative specific heat in microcanonical ensemble

of non-additive systems.
Antonov (1962); Lynden-Bell & Wood (1968); Thirring (1970), Thirring & Posch 

coexistence region

in systems with short range interactions

E0 = xE1 +(1-x)E2

S0 = xS1 +(1-x)S2

hence S is concave and the microcanonical

specific heat is non-negative
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On the other hand in systems with long range interactions

(non-additive), in the region  E1<E<E2
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The entropy may thus follow the homogeneous

system curve, the entropy is not concave. and

the microcanonical specific heat becomes

Negative  CV<0.
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compared with canonical ensemble where
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S0 = xS1 +(1-x)S2



2nd order

1st order

tricritical

T

Δ

T

Δcanonical

T

Δmicrocanonical

Typical (but not exclusive) resulting phase diagrams
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In general it is expected that whenever the canonical transition

is first order the microcanonical and canonical ensembles

differ from each other.
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Dynamics

Systems with long range interactions exhibit slow 

relaxation processes.

This may result in quasi-stationary states (long lived

non-equilibrium states whose relaxation time to the 

equilibrium state diverges with the system size).

Non-additivity may facilitate breaking of ergodicity

which could lead to trapping of systems in non-

Equilibrium states. 



Long range correlations in driven systems

Conserved variables tend to produce long range correlations.

Thermal equilibrium states in short range systems are 

independent of the dynamics (e.g. Glauber and Kawasaki 

dynamics result in the same Boltzmann distribution)

Non-equilibrium steady states depend on the dynamics

(e.g. conserving or non-conserving)

Conserving dynamics in driven, non-equilibrium systems

may result in steady states with long range correlations

even when the dynamics is local

Can these correlations be viewed as resulting from effective

long-range interactions? 

Driven systems



ABC model 

One dimensional driven model with stochastic local dynamics

which results in phase separation (long range order) where the

steady state can be expressed as a Boltzmann distribution of an

effective energy with long-range interactions. 
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ABC Model

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

dynamics

Evans,Kafri, Koduvely, Mukamel PRL 80, 425 (1998)

A  model with similar features was discussed by Lahiri, Ramaswamy PRL 79, 1150 (1997) 



Simple argument:

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

ACCCC CCCCA

CBBBB BBBBC

BAAAA AAAAB

…AACBBBCCAAACBBBCCC…

…AABBBCCCAAABBBCCCC…

…AAAAABBBBBCCCCCCAA…

fast rearrangement

slow coarsening

The model reaches a phase separated steady state



logarithmically slow coarsening

…AAAAABBBBBCCCCCCAA…

tlqt l ln       

needs n>2 species to have phase separation

strong phase separation: no fluctuation in the bulk;

only at the boundaries.

…AAAAAAAAAABBBBBBBBBBBBCCCCCCCCCCC…

Phase separation takes place for any q (except q=1)

Phase separation takes place for any density N   , N    , N   
A B C



N N N
A B C
 Special case

The argument presented before is general, independent of densities.

For the equal densities case the model has detailed balance for arbitrary q.

We will demonstrate that for any microscopic configuration {X}

One can define “energy” E({X}) such that the steady state

Distribution is
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AAAAAABBBBBBCCCCC E=0

……AB…..                      ……BA…..     E         E+1

……BC…..                      ……CB…..     E         E+1

……CA…..                      ……AC…..     E         E+1
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With this weight one has:

=q =1
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AAAAABBBBBCCCCC             AAAABBBBBCCCCCA

E                                   E+NB-NC

NB = NC

Thus such “energy” can be defined only for NA=NB=NC

This definition of “energy” is possible only for N N N
A B C
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AABBBBCCCAAAAABBBCCCC

The rates with which an A particle makes a full circle clockwise

And counterclockwise are equal

CB NN
qq 

Hence no currents for any N.

For                   the current of A particles satisfies CB NN  CB NN

A qqJ 

The current is non-vanishing for finite N. It vanishes only in the

limit              . Thus no detailed balance in this case.N



…AAAAAAAABBBABBBBBBCCCCCCCCCAA…

The model exhibits strong phase separation

The probability of a particle to be at a distance

on the wrong side of the boundary is
lql

The width of the boundary layer is -1/lnq
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The “energy” E may be written as
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Alternatively, in a manifestly translational invariant form:

(mean-field like interaction with σ=-d)
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Local dynamics

Long range interaction



Partition sum
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Excitations near a single interface:     AAAAAAABBBBBB

P(n)= degeneracy of the excitation with energy n

P(0)=1

P(1)=1

P(2)=2 (2, 1+1)

P(3)=3 (3, 2+1, 1+1+1)

P(4)=5 (4, 3+1, 2+2, 2+1+1, 1+1+1+1)

P(n)= no. of partitions of an integer n
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Partition sum:
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Weakly asymmetric ABC model

Neq /

Clincy, Derrida, Evans, PRE 67, 066115 (2003)

q=1  - homogeneous            q<1  - phase separation

consider

the model exhibits a phase transition at

for the case of equal densities  
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 homogeneous

phase separated

This feature persists at non-equal densities.
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effective rescaled “energy”

Neq /The choice                   amounts to rescaling the energy

by 1/N

without rescaling: 

energy is dominates the entropy, no transition

with rescaling: 

energy and entropy are comparable, resulting in a transition
Neq /

 eq



A brief summary of the ABC model

Driven model with local dynamics

Exhibits long range correlation (phase separation)

It exhibits a phase transition in the weak bias limit

In the case of equal densities its steady state may be

expressed by an energy with long range interactions



Outline

Generalize the model to study non-conserving processes

Study the steady states in both cases

The existence of effective long range interactions may lead

to different steady states in both cases for  equal densities

Use this as a starting point to move into non-equal

densities (where there is no detailed balance)



Generalized ABC model

A , B,  C,  0;

AB               BA
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q

BC               CB
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CA               AC
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q

0X               0X
1

1

X=A,B,C

Dynamics

A. Lederhendler, D. Mukamel

Add vacancies:

Vacancies are “inert”
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For  NA=NB=NC there is detailed balance

not important



Non conserving processes
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q
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1

q
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ABC               000
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X=A,B,C

…A000ACBABCCA00AACBBB00000CCC…

ABC000
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The dynamics is local

For NA=NB=NC: there is detailed balance with respect to
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irrespective of  {X} and of where the deposition is made
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Conserving dynamics corresponds to the canonical ensemble:

minimize                   and the determine μ by taking the derivative.   )),(( TxF 

The model exhibits a transition from homogeneous to modulated

structure at  
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Conserving dynamics
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Non-conserving dynamics

AB               BA
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q

BC               CB
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qθ

 L3

X=A,B,C

Grand canonical ensemble: minimize G with respect to ρ(x) at a given μ
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Grand canonical ensemble: minimize G with respect to ρ(x) at a given μ

One finds the same critical line as in the canonical ensemble

But with a tricritical point at                  where the transition

becomes first order 
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Non-conserving dynamics

-1/18 μ

0000000 A..AB..BC..C
T=0



-1/18 μ

0000000 A..AB..BC..C
T=0

Canonical  vs. grand-canonical phase diagrams



T=0.04

Conserving vs. non-conserving dynamics: 2nd order line



T=0.02

Conserving vs. non-conserving dynamics: 1st order line



T=0.02, conserving dynamics  – 2nd order transition at )047.0(  2177.0  c



T=0.02, non-conserving dynamics – 1st order transition at 



049.0Correlations for both solutions with
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Further generalization 

This energy corresponds to the non-conserving process

This dynamics is non-local except for γ=1/6





Summary

Local stochastic dynamics may result in effective long-

range interactions in driven systems.

This is manifested in the existence of phase transitions

in one dimensional driven models.

Existence of effective long range interactions can be explicitly

demonstrated in the ABC model.

The model exhibits phase separation for any drive 

Phase separation is a result of effective long-range

interactions generated by the local dynamics.

Inequivalence of ensembles in the driven model.
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