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Introduction

Consider a theory with a set of coupling constants g0 and a
natural cutoff. l.

Field theory defined for l→ 0 but perturbation theory
diverges.

Physical quantity = f(g0, l); Take arbitrary scale µ.

Let l→∞ and write physical quantity f(g0, µ); µ is arbitrary.

RG expresses the fact that the physical quantity is
independent of µ.
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Introduction

L. Y. Chen, N. Goldenfeld and Y. Oono, Phys. Rev. E 54, 376
(1996)

Asymptotic solutions of differential equations.

ẍ+ kẋ(x2 − 1) + ω2x = 0

Special periodic orbit called limit cycle.

For k > 0, trajectory settles on a periodic orbit of fixed
radius(independent of initial conditions).

RG applied to find size and frequency.

Advantage: straightforward perturbation theory.
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Introduction

Trajectory characterized by amplitude A, phase Θ.

Chose initial condition at t = t0.

Answer in terms of perturbation theory.

Divergent series
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Introduction

Initial condition could be anywhere on the path

Place initial condition at τ

x(t) independent of τ gives RG flow
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Introduction

Amplitude A and phase Θ flow

dA
dτ = f(A,Θ) : dΘ

dτ = g(A,Θ)

Two dimensional autonomous: function of A alone

Centre

dA
dτ = 0 initial condition sets amplitude which cannot change

Isochronous centre

dΘ
dτ = 0 as well

Limit Cycle: Isolated trajectory

dA
dτ = f(A) Fixed point gives size of orbit or if A∗ = 0 implies focus
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Duffing’s Equation

ẍ+ ω2x+ λx3 = 0

Expanding x = x0 + λx1 + λ2x2 + . . . , we have at different orders
of λ,
O(λ0) : ẍ0 + ω2x0 = 0
O(λ1) : ẍ1 + ω2x1 = −x3

0

O(λ2) : ẍ2 + ω2x2 = −3x2
0x1

Solving, we get

x0 = A0 cos(ωt+ Θ0); t = −Θ0/ω x = A0, ẋ = 0

ẍ1 + ω2x1 = −A3
0

4 (3 cos(ωt+ Θ0) + cos 3(ωt+ Θ0))

⇒ x1 = B1 cosωt+B2 sinωt+ A3
0

32ω2 cos 3(ωt+ Θ0)

−3A3
0

8ω t sin(ωt+ Θ0);
for initial conditions x1 = ẋ1 = 0 at t = −Θ0/ω
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Duffing’s Equation

x1 = −3A3

8ω

(
t+ θ0

ω

)
sin(ωt+ θ0) +

A3

32ω2 {cos 3(ωt+ θ0)− cos(ωt+ θ0)}

x0 = A0 cos(ωt+ Θ0)
x = x0 + λx1 + λ2x2 + . . .

Split interval −Θ/ω to t as −Θ/ω to τ ; τ to t for the
divergent term.

Finally

x = A(t0) cos (ωt+ θ(t0))− 3λA3

8ω

(
t+ θ0

ω

)
sin(ωt+ θ0) +[

λA3

32ω2 {cos 3(ωt+ θ0)− cos(ωt+ θ0)}
]
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Duffing’s Equation

Define renormalization constants Z1 and Z2

A(t0) = Z1(t0, τ)A(τ)

Θ(t0) = Θ(τ) + Z2(t0, τ)

Where,

Z1 =
∑∞

n=1 anλ
n Z2 =

∑∞
n=1 bnλ

n
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Duffing’s Equation

x = A(τ) (1 + a1λ+ . . . ) cos(ωt+ Θ + b1λ) + . . .

= A(τ) cos(ωt+ Θ) + a1λA(τ) cos(ωt+ Θ)− b1λA(τ) sin(ωt+ Θ)

−3λA3

8ω

(
t− τ + τ +

Θ0

ω

)
sin(ωt+ Θ) + . . .

Choose a1 = 0 and b1 = −3A2

8ω

(
τ + Θ0

ω

)
dx

dτ
= 0

0 =
dA

dτ
cos(ωt+ Θ)−AdΘ

dτ
sin(ωt+ Θ) +

3λA3

8ω
sin(ωt+ Θ) + . . .

So,

dA
dτ = 0 ; dΘ

dτ = 3λA2

8ω + . . .
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Duffing’s Equation

x = A(τ) cos
(
ωt+

3λA2

8ω
τ + Θ0

)
− 3λA3

8ω
(t− τ) sin(ωt+ Θ0) + . . .

Set τ = t to remove the remaining problem

x = A(t) cos(Ωt+ Θ0) +O(λ)
Ω = ω + 3λA2

8ω

Ȧ = 0

x = A0 cos(Ωt+Θ0)+ λA3

32Ω2

[
cos 3(Ωt+Θ0)−cos(Ωt+Θ0)

]
+O(λ2)

In agreement with perturbation expansion of exact solution.
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Forced Oscillator

Best known limit cycle

ẍ+ kẋ+ ω2x = f cos Ωt

Calculation strategy: Find a centre about which to perturb

ẍ+ Ω2x = f cos Ωt− kẋ+ (Ω2 − ω2)x

Non-autonomous system: frequency fixed
Centre for f = k = Ω2 − ω2 = 0; Perturbation theory treats
each as small

dA
dτ = −kA

2 −
F sin Θ

2Ω ; dΘ
dτ = −F cos Θ

2ΩA + ∆ω

where ∆ω ≡ ω − Ω. dΘ
dτ = 0 and dA

dτ = 0 gives

A = F/[k2 + 4(∆ω)2]1/2 and Θ = tan−1[−k/2(∆ω)].
Jayanta K. Bhattacharjee Center or Limit Cycle: Renormalization Group as a Probe



Introduction
Methodology

Examples

Lotka-Volterra equation

Population dynamics: Lotka Volterra system

dx

dt
= x− xy

dy

dt
= −y + xy

Fixed points: (0, 0): Saddle and (1,1)
Shift origin to x = y = 1. Resulting equations:

Ẋ = −Y −XY
Ẏ = X +XY

X = Y = 0 is Centre

dA
dτ = 0; dθ

dτ = −A2

12

Oscillations with frequency ω = 1− A2

12
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Glycolytic Oscillator

Biological Oscillator: glycolysis

ẋ = −x+ ay + x2y

ẏ = b− ay − x2y

x: ADP (adenosine diphosphate) ; y: F6P (fructose-6-phosphate)
fixed point x = b, y = b

a+b2

The shaded region of parameter space (a, b), we get limit cycle solution; fixed point solution outside this region;

nonlinear centre at any point of the bounding curve
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System with no linear term

Consider the system,
ẍ+ λx3 = 0
Introduce Ω2 = λa〈x2〉 to write

ẍ+ λa〈x2〉+ λ
[
x3 − a〈x2〉x

]
= 0

⇒ ẍ+ Ω2x = −λ
[
x3 − a〈x2〉x

]
At different orders of λ we get,

ẍ0 + Ω2x0 = 0
ẍ1 + Ω2x1 = −x3

0 + a〈x2
0〉x0

Now, Ω2 = λa
[
〈x2

0〉+ 2λ〈x0x1〉+ . . .
]

Flow equations upto O(λ), dA
dτ = 0

dΘ
dτ = A2

2Ω

(
a− 3

2

)
Fix a to keep frequency at Ω, i.e. dΘ

dτ = 0
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Riccati Equation

Riccati equation of second kind

ẍ+ 3ẋx+ x3 = 0

Exact solution where x, ẋ→ 0 as t→∞

ẍ+ λkẋx+ λ2x3 = 0

Jordan and Smith: numerically periodic solution for k = 0.1
Consider the general system with arbitrary k: for what value of k
does system become aperiodic?
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Riccati Equation

Flow equations

dA
dτ = 0
dΘ
dτ = λA2

2Ω

(
9− k2 − 6a

)
For periodic orbit λ > 0 ; possible only if k < 3
”Two loop”: k < 2.61 ; T ∝ (k − kc)−1/2

Numerics: No periodic orbit for k > 2.80
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Isochronous oscillation

ẍ+ x = 1
x3 ; V (x) = 1

2

(
x2 + 1

x2

)
Checked to sixth order in amplitude

Cherkas System

RG immediately yields constraints on the parameters.
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