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1. Extreme Events

Various types:
» Rare events --> larger or smaller than some (big) threshold
« Extremal events --> largest or smallest in a given set

* Records --> larger or smaller than any previous

Interesting in stochastic dynamics (unpredictable):

» Fun (sports, Guiness book,...)

» Danger (weather, earthquakes, epileptic seizures,...)
» Money (lotto jackpot, insurance claims,...)

» Curiosity (how often, why, ...)

> ...



Difficult to handle mathematically:

» Described by tails of probability distribution --> poor statistics
* Normally interested in peak position (mean (LLN) and variance (CLT))
--> machinery not so well-developed for tails

==> Statistical description by extreme value theory
Application to empirical data problematic:

« approximations difficult because of poor convergence to limiting distributions
* NO insight in mechanisms of origin
* no prediction and prevention

New: Interesting in Statistical Mechanics:

» Conceptual (Foundations of Stat Mech)
» Study causes and effects



Not so new: Extreme events in Equilibrium Stat Mech

Canonical ensemble = subsystem in heat bath

subsystem E,V,N

energy exchange
(V,N fixed)

heat bath Y - E

total system Y,V,,,, Ny

statistical weight of subsystem:

B=S’(E): Inverse T of heat bath Boltzmann distribution



wi12(E1 + E2) = wi(F1)w2(FE2)

- probability p(T,V,N) to find microstate of subsystem with energy E: p =w(E)/Z

partition function  Z(T,V,N) = Z o—BF

maicrostates

— Z r(E,V,N)e PE
FE

— Z o B(E-TS)

E

- sharp peak at some U (mean energy of subsystem) - Helmholtz free energy

F(TVN)=-kTInZ=U-TS




- second equation: Legrende transformation U(S,V,N) €<= F(T,V,N)
- extremal principle: F takes minimal value for given set of system parameters

- extensivity: F =V {(T,p)
Microscopic viewpoint (large deviation theory):

- Consider particle energies E; in subsystem
- Large deviation theory: (i) P(E) = Prob[ %, E; = E] ~ eA®)
(i) < e PE > ~ g B)
- A,B extensive, satisfy extremal principle A(E) = max; [ B(B) - BE ]
- Microcanonical ensemble: P(E) ~T'(E) ==> A(E) = - S(E)
- B(B)=-1In(2) =P F(p)

==> choosing [} that maximizes S yields Legendre transformation F=U - TS



2. Gallavotti-Cohen Symmetry

Far from equilibrium:
- no generally applicable ensemble
- no large deviation theory (in general)

- but: generally valid Fluctuation Theorems

Gallavotti-Cohen
[Evans, Cohen, Morris ‘93,
Gallavotti, Cohen ‘95]

- mathematical asymptotic theorem for certain dynamical systems
- no specific information about entropy production o

- allows (statistical) prediction of negative entropy production (extreme)



Stochastic dynamics: [Kurchan ‘98, Lebowitz, Spohn ‘99, Harris, G.M.S. ‘07]
Consider stochastic process with set of configurations o
- Trajectory (realization) {c} = {oy, G, ... o,} with random jump times t;

- Measure some quantity r associated with each transition (energy transfer,
mass transfer,...) --> (antisymmetric) r_ ; for transition from ¢ —> ol

- Example: Particles hopping on a lattice
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- r = +/- 1 for jump across k,k+1:
==> sum of all r along trajectory = integrated particle current
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uantity with initial state (in f) and final state
(Example for equnlbrlum energy of initial and final configuration)
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- Trajectory functional (measurement) P J “ng

DT i

Xe(t, {0}, f,9) = Tr(t,{o}) + B(}, 9)

Op 010

- Integrated current of trajectory (sum of all r) plus boundary parts
- boundary provide appropriate statistical weight in functional
- choice of f,g depends on experimental setting!

- nNo restriction to any equilibrium condition

1o
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eous entropy production [Seifert ‘05]

Then trajectory functional = entropy change in environment + boundary terms

- Detailed balance (equilibrium process): r = AE / (KT)

==> Thermal systems: AS_,, = Q/T

- Otherwise still well-defined through transition rates

- Stochastic particle systems: proportional to particle current

- Entropy production extensive in time (~t for each trajectory at large times)
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Call corresponding trajectory functional R

- Consider generating function < e*R> ==> gives weight e’*' to each transition

- TIME REVERSAL
transition rates of reversed process t 1 J NG
= original rates x e' T 0 ar
w(c,c’) = w(o’,0) X w(c.c) T | flo
w(c’,0) l_
— ’ 6. 0 +  Inf e
= w(c’,c) efle-0) o 0,0,

==> weight e*»rto each transition

(reversal of entropy production in each elementary step of each trajectory)
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orward) process
< e-XR>F =< e-(l-?»)R>B

(includes interchange of boundary terms)

- Large deviation property (extensivity of R for t large)

< e-?xR> ~ e-tg(K)

- or equivalently g(A) = g(1-A) + (tm

- Legrende transformation

==> Gallavotti-Cohen symmetry

v



Con .Qn’rually iImportant

e A S L S LR

==> far-from-equilibrium generalization of Onsager relations
==> boosted the whole field of fluctuation theorems

» GC is asymptotic ==> one can use it to extrapolate

* Numerical tests can be performed in lattice gas models

What is the question?

Rigorous in lattice models with finite local state space (exclusion processes)

==> Is GCS valid, if we violate this condition?



3. Classical condensation phenomena

Granular shaking  N=100 plastic particles in box with two compartments separated
by wall with slit [Schiichting and Nordmeier ‘96, Eggers '99, Lohse ‘02]
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) Strong shaking (fixed amplitude, 50 Hz frequency): =» Equal gaseous distribution
i)  Moderate shaking (same amplitude, 30 Hz): = Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition



Granular Clustering: L=5

Detlef Lohse, Devaraj van der Meer, Michel Versluis,
Ko van der Weele, René Mikkelsen

QuickTime™ and a
decompressor
are needed to see this picture.
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QuickTime™ and a
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are needed to see this picture.

t approx. 1 min




Single File Diffusion:

SFD: Quasi one-dimensional diffusion without passing

. molecular diffusion in zeolites

. colloidal particles in narrow channels

. transport in carbon nanotubes

/v Three phases of kinesin transport (Chodhury et al.)
. molecular motors and ribosomes :

. gel electrophoresis \

. automobile traffic flow

Condensation = traffic jam = phase separation

Polyribosome:

Oth e I‘ CO m p I eX SySte m S [http://omega.dawsoncollege.qc.ca/ray/protein/protein.htm

* Network rewiring

« Accumulation of wealth



Condensation transition in the zero-range process

Zero-range process (ZRP) with symmetric nearest-neighbour hopping [spitzer (1970)]

 Stochastic particle hopping model
* Cluster of size n (or length of domain) < occupation number in ZRP

« particle flux J(n,) between compartments (domains) < hopping rate in ZRP

J(nk)m




Exact grand canonical stationary distribution (spitzer, (1970)]

=» Product measure with marginals P(n) and local partition function Z
P(A) = [] P(n:)
1EN

o

P(n) = %z" M7k, z=3 P
k=1 n=0

» Fugacity z determines (fluctuating) density p(z)
» Well-defined for fugacities within radius of convergence z* (that depends on J)
» Canonical ensembles for any N by projection on fixed N

» Grand canonical ensemble: What happens if p(z*) is finite?



Spatially homogeneous systems

1) Asymptotically vanishing flux J(n) = O0: =» z*=0 and hence p. =0

2) Consider generic case where for large n
J(n) =A(1 + b/n°)
=» radius of convergence of partition function: z < z* = A

=>» at z* one has finite density p. foroc <1

> Forc=1: = P(n)~1/nb

(+*) = o0 for b <2
PRET=Y pe=1/(b—2) forb>?2



Interpretation of critical density for b>2 or ¢ < 1 for canonical ensemble:
» Above critical density all sites except one (background) are at critical density

* One randomly selected site carries remaining O(L) particles

=» Classical analogue of Bose-Einstein condensation
[Evans '96, Ferrari, Krug '96, O’Loan, Evans, Cates, '98, Jeon, March ‘00]

=» Single random condensation site
[Grosskinsky, GMS, Spohn, '05, Ferrari, Landim, Sisko '07, Loulakis, Armendariz ‘08,
Evans, Majumdar ‘08]]

= Continuous condensation transition (P, = P.)

=» Coarsening as precursor of condensation
[Grosskinsky, GMS, Spohn, '05; Godreche ‘05]

Generic model for classical condensation phenomena




4. Breakdown of GCS

Validity of Gallavotti-Cohen symmetry:

* It's a mathematical theorem (Good-bye, experimental physics?!)
 Related fluctuation theorems (Jarzinsky, Crooks, ...) also rigorous...
e ... but then, in which experimental system can you check the
hypotheses of the theorem?
=» In other words, how robust is GC symmetry? (Experimentalists, please return!)
Related fluctuation theorems experimentally well-confirmed in systems with

- relatively small number of degrees of freedom
- boundary terms matter for experimental time scales



Exactly solvable for b=0
=>» large time regime accessible
=>» many degrees of freedom

=» unbounded state space

BUT:
* N0 condensation

» exponentially small probability for large occupation

?7?
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General case w,, arbitrary

Consider integrated current J, across bond |,I+1, starting from some initial distribution
Take t large, study mean current j, = J, / t

=» Compute large deviation function e,(1) from generation function <e-AJ,>

=» Compute Legendre transform (probability to observe specific |,



Exact result:

\ ] LAII ]

- write master equation in Quantum Hamiltonian form
- make product ansatz for groundstate to obtain lowest eigenvalue (LDF)

A L-1 _X
Large deviation eo(A) = (p—g)(e* — 1) [ﬂ-ﬁ{ﬁf'&') e —nb

function Y(p—gq—B8)+ B8 —q+7) (p/9)"

Legrende 8olj) = (p — q)[eB(p/q)" " + 4]
transform Yo —q—08)+8(p—q+7)(p/fg)t!
) \/jg . 40875(p/q)"(p — g)?
Yp—q—08)+8—qg+7)p/g) 1
208(p/q)" ' (p — q) ]
¥(p—q—8)+B(p—qg+7)(p/g)t

+jln ,jf + &/_?z + [ dafByd(p/q)“'(p— g)* }

— jln

Y(ip—q—8)+8(p—q+7)(p/q)t1]?

- satisfies GCS, independent of |, but boundary terms ignored



For bo

- direct computation of complete LDF (no diagonalization --> inclusion of boundary terms)
- mapping to totally asymmetric simple exclusion process

- Bethe ansatz --> determinantal transition probabilities

- summation of determinants yields exact expression \

current distribution L ./\
input bond polJ,t) ~ g ~tla—s+im(j/e)] -
1
Poisson, by definition of process
| o tloe—i+iln(j/a)] i<
outputbond  P1(Js8) ~ ) _yarjasimiia)] o g-tl8-i+ilnti/6) i>8

- different from bond O

- non-analytic behaviour at j =3



- requires previous build-up of large number of particles at site 1 (~t)
followed by rapid extraction

- implies input/output are independent Poisson processes
--> product form

{

- transient condensate through (rare) fluctuation
- causes non-analytic behaviour in tale of
probability distribution (extreme events)

- mathematical: divergence of boundary term,
possible because of unbounded local state




Conjecture for full lattice
e Input bond

—t[a—g7+7 In{j fa))

pf}{j: i':] ~ €
e Bulk bonds, [ # 0, L

. p—tla—i+iln(i/a) J<1
pi(J, 1) ~ e—tla—j+iln(j/a)l y o—t{1—j+ilnj) 7= 1

e Output bond
e~ tla—j+iln(j/ajl ] < IS
o tla—j+ilm{j/a)] g o—tl(8—j+iln(j/8)] G<j<1

j>1.

pL{j: f’] ™~

e ey e e e ateri
e tla—j+37In(j/a)) w g tl—itiln ) (L-1) o 4 t[B—j+71n(i/8)

- proof for small L by determinant formula obtained from Bethe ansatz
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P.r.{j, ” _ H E—t[*u —jlnw;)

i=1

Df}(‘j!‘!f’j -lel{jf’_li') D':J(j!'_g_{_ltj D£+1[ji‘_55f’)
Dy(gt +1,t) Do(gt+1-1,%) ...  Dg(jt+ 1,%) Dya(gt,t)
with elements
1 [+1
_ tjz r—1 P ) |
Dz, t) = Eﬁijge z !;_,Uﬂ{l v;2)  dz.

- evaluation by steepest descent for finite L
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artially asymmetric ZRP
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Simiilation rasiilts for laraer lattice
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5. Conclusions

Statistical Mechanics of extreme events yields:
 Fluctuation theorems through time reversal
» Gallavotti-Cohen symmetry may break down in “natural”’ setting

* Violation caused by transient condensation

==> dynamical mechanism underlying non-analytic change of
extreme event identified

» Large deviation phase diagram

==> Large deviations, fluctuation theorems, extremal events should be
studied together

==> Study of critical phenomena in extreme events
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Mapping of single-file diffusion to zero range process:

« Label particles consecutively

* Map particle label to lattice site
» Map discretized interparticle distance to particle number

©)
)
)

1

NTO O O
~10 00



