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1. Extreme Events

Various types:

• Rare events --> larger or smaller than some (big) threshold

• Extremal events > largest or smallest in a given set• Extremal events --> largest or smallest in a given set

• Records --> larger or smaller than any previous

Interesting in stochastic dynamics (unpredictable):

Fun (sports, Guiness book,…)
Danger (weather, earthquakes, epileptic seizures,…)
Money (lotto jackpot, insurance claims,…)
Curiosity (how often, why, …)
…



Difficult to handle mathematically:y

• Described by tails of probability distribution --> poor statistics
• Normally interested in peak position (mean (LLN) and variance (CLT)) 
-->  machinery not so well-developed for tails

==> Statistical description by extreme value theoryp y y

Application to empirical data problematic:

• approximations difficult because of poor convergence to limiting distributions
• no insight in mechanisms of origin
• no prediction and preventionp p

New: Interesting in Statistical Mechanics:

Conceptual (Foundations of Stat Mech)
Study causes and effects



Not so new: Extreme events in Equilibrium Stat Mech

Canonical ensemble = subsystem in heat bath

q

subsystem E,V,N

h

heat bath Y - E

energy exchange
(V,N fixed)

total system Y,Vtot,Ntot

statistical weight of subsystem:

Boltzmann distributionβ=S’(E): Inverse T of heat bath



- origin of exponential: statistical independence of subsystemsorigin of exponential: statistical independence of subsystems

E1 E2

probability (T VN) to find microstate of subsystem with energy E (E)/Z- probability p(T,V,N) to find microstate of subsystem with energy E:  p = w(E)/Z

partition function

- sharp peak at some U (mean energy of subsystem) Helmholtz free energy

F(T,V,N) = -kT ln Z = U - TS



- second equation: Legrende transformation U(S,V,N) F(T,V,N)

t i it F V f(T )

- extremal principle: F takes minimal value for given set of system parameters

- extensivity:  F = V f(T,ρ)

Microscopic viewpoint (large deviation theory):

- Consider particle energies Ei in subsystem

Large deviation theory: (i) P(E) = Prob[ Σ E = E] ~ e-A(E)- Large deviation theory:  (i) P(E) = Prob[ Σi Ei = E] ~ e A(E)  

(ii) < e -βE > ~ e -B(β)

- A B extensive satisfy extremal principle A(E) = maxβ [ B(β) - βE ]A,B extensive, satisfy extremal principle A(E)  maxβ [ B(β) βE ]

- Microcanonical ensemble: P(E) ~ Γ(E)  ==>  A(E) = - S(E)

B( ) l (Z) F( )- B(β) = - ln (Z) = β F(β)

==> choosing β that maximizes S yields Legendre transformation F = U - TS



2. Gallavotti-Cohen Symmetry

Far from equilibrium:

- no generally applicable ensemble

- no large deviation theory (in general)g y ( g )

- but: generally valid Fluctuation Theorems

Gallavotti-Cohen
[Evans, Cohen, Morris ‘93,
Gallavotti, Cohen ‘95]

- mathematical asymptotic theorem for certain dynamical systems

- no specific information about entropy production σno specific information about entropy production σ

- allows (statistical) prediction of negative entropy production (extreme)



Stochastic dynamics: [K h ‘98 L b it S h ‘99 H i G M S ‘07]Stochastic dynamics: [Kurchan ‘98, Lebowitz, Spohn ‘99, Harris, G.M.S. ‘07]

Consider stochastic process with set of configurations σ

- Trajectory (realization) {σ} =  {σ0, σ1, … σn} with random jump times τi

Measure some quantity r associated with each transition (energy transfer- Measure some quantity r associated with each transition (energy transfer,
mass transfer,…) --> (antisymmetric) rσ�,σ for transition from σ −−> σ�

- Example: Particles hopping on a lattice- Example: Particles hopping on a lattice

g(nk)

k k+1

- r = +/- 1 for jump across k,k+1: 
==> sum of all r along trajectory = integrated particle currentg j y g



Associate some physical quantity with initial state (ln f) and final state ( ln g)Associate some physical quantity with initial state (ln f) and final state (- ln g)
(Example for equilibrium: energy of initial and final configuration)

- Trajectory functional (measurement)

- Integrated current of trajectory (sum of all r) plus boundary partsg j y ( ) p y p

- boundary provide appropriate statistical weight in functional 

- choice of f,g depends on experimental setting!

- no restriction to any equilibrium condition



Consider instantaneous entropy production [S if t ‘05]Consider instantaneous entropy production [Seifert ‘05]

Then trajectory functional =  entropy change in environment + boundary terms

- Detailed balance (equilibrium process): r = ΔE / (kT)

==> Thermal systems: ΔSenv = Q/Ty env 

- Otherwise still well-defined through transition rates

- Stochastic particle systems: proportional to particle current

- Entropy production extensive in time  (~t for each trajectory at large times)



Call corresponding trajectory functional RCall corresponding trajectory functional R

- Consider generating function < e-λR> ==> gives weight e-λr to each transition- Consider generating function < e >  ==> gives weight e to each transition

- TIME REVERSALTIME REVERSAL

transition rates of reversed process
= original rates x er                                                                                                                        erg

w(σ,σ’) = w(σ’,σ) x                                                                              erw(σ,σ’)( ) ( )

= w(σ’,σ) er(σ’,σ)

w(σ’,σ)

==> weight e(1-λ)r to each transition

(reversal of entropy production in each elementary step of each trajectory)



extra factor for as many transitions as in initial (forward) process- extra factor for as many transitions as in initial (forward) process

< e-λR>F = < e-(1-λ)R>B

(includes interchange of boundary terms)

- Large deviation property (extensivity of R for t large)  

< e λR> e tg(λ)< e-λR> ~ e-tg(λ)

(λ) (1 λ) (b d t )/t- or equivalently                     g(λ) = g(1-λ) + (boundary terms)/t

- Legrende transformation
e-rt

==> Gallavotti-Cohen symmetryy y
σ

t



Conceptually importantConceptually important 

==> far-from-equilibrium generalization of Onsager relations
==> boosted the whole field of fluctuation theorems

• GC is asymptotic ==> one can use it to extrapolatey

• Numerical tests can be performed in lattice gas models

What is the question?

Rigorous in lattice models with finite local state space (exclusion processes)

==>                   Is GCS valid, if we violate this condition?



3. Classical condensation phenomena

Granular shaking N=100 plastic particles in box with two compartments separated 
by wall with slit [Schlichting and Nordmeier ‘96, Eggers ’99, Lohse ‘02]

Gaseous state                                                                    Condensed state

T > Tc T < Tc

i)       Strong shaking (fixed amplitude, 50 Hz frequency): Equal gaseous distribution
ii)      Moderate shaking (same amplitude, 30 Hz): Condensation (with SSB)

Eff ti f d d t t t l d t h t itiEffective, frequency-dependent temperature leads to phase transition



Granular Clustering: L=5Granular Clustering: L=5
http://stilton.tnw.utwente.nl/people/rene/clustering.html
Detlef Lohse, Devaraj van der Meer, Michel Versluis, 
Ko van der Weele, René Mikkelsen

QuickTime™ and a
 decompressor

d d t thi i t

QuickTime™ and a
 decompressor

d d t thi i tare needed to see this picture. are needed to see this picture.

Time t 0 12 sec t approx 1 minTime t = 0…12 sec t approx. 1 min



Single File Diffusion:

• molecular diffusion in zeolites

SFD: Quasi one-dimensional diffusion without passing

• molecular diffusion in zeolites

• colloidal particles in narrow channels

• transport in carbon nanotubes

• molecular motors and ribosomes
Three phases of kinesin transport (Chodhury et al.)

• gel electrophoresis

• automobile traffic flow

Condensation = traffic jam = phase separation
Polyribosome:
[htt // d ll / / t i / t i htOther Complex Systems [http://omega.dawsoncollege.qc.ca/ray/protein/protein.htmOther Complex Systems

• Network rewiring

• Accumulation of wealth



Condensation transition in the zero-range process

Zero-range process (ZRP) with symmetric nearest-neighbour hopping  [Spitzer (1970)]

• Stochastic particle hopping model

• Cluster of size n (or length of domain) occupation number in ZRP• Cluster of size n (or length of domain) occupation number in ZRP

• particle flux J(nk) between compartments (domains) hopping rate in ZRP

J(nk)

k



Exact grand canonical stationary distribution [Spitzer, (1970)]

Product measure with marginals P(n) and local partition function Z

~

• Fugacity z determines (fluctuating) density ρ(z)• Fugacity z determines (fluctuating) density ρ(z)

• Well-defined for fugacities within radius of convergence z* (that depends on J)

• Canonical ensembles for any N by projection on fixed N

• Grand canonical ensemble: What happens if ρ(z*) is finite?



Spatially homogeneous systemsSpatially homogeneous systems

1) Asymptotically vanishing flux J(n) 0:  z*=0 and hence ρc = 0 

2)     Consider generic case where for large n

J(n)  = A (1 + b/nσ )

radius of convergence of partition function: z < z* = Aradius of convergence of partition function: z < z  = A  

at z* one has finite density ρc for σ < 1

For σ = 1:     P(n) ~ 1/nb 



Interpretation of critical density for b>2 or σ < 1 for canonical ensemble:Interpretation of critical density for b>2 or σ < 1 for canonical ensemble: 

• Above critical density all sites except one (background) are at critical density

• One randomly selected site carries remaining O(L) particles 

Classical analogue of Bose-Einstein condensation
[Evans ’96, Ferrari, Krug ’96, O’Loan, Evans, Cates, ’98, Jeon, March ‘00]

Single random condensation siteSingle random condensation site 
[Grosskinsky, GMS, Spohn, ’05, Ferrari, Landim, Sisko ’07, Loulakis, Armendariz ‘08, 
Evans, Majumdar ‘08]]

Continuous condensation transition (ρbg = ρc)

Coarsening as precursor of condensation
[Grosskinsky GMS Spohn ’05; Godreche ‘05][Grosskinsky, GMS, Spohn, 05; Godreche 05]

Generic model for classical condensation phenomena



4. Breakdown of GCS

Validity of Gallavotti-Cohen symmetry: 

• It’s a mathematical theorem (Good-bye, experimental physics?!)

• Related fluctuation theorems (Jarzinsky, Crooks, …) also rigorous…

• … but then, in which experimental system can you check the
hypotheses of the theorem? 

I th d h b t i GC t ? (E i t li t l t !)In other words, how robust is GC symmetry? (Experimentalists, please return!)

Related fluctuation theorems experimentally well-confirmed in systems with 

- relatively small number of degrees of freedom
- boundary terms matter for experimental time scales



Test of GCS for zero-range processTest of GCS for zero range process 

Exactly solvable for b=0Exactly solvable for b 0

large time regime accessible

many degrees of freedom

unbounded state space 

BUT:

• no condensation

• exponentially small probability for large occupation
??

exponentially small probability for large occupation



Zero-range process with open boundaries [R J Harris A Rakos G M S ‘05-’07]Zero range process with open boundaries [R.J.Harris, A. Rakos, G.M.S., 05- 07]

General case wn arbitrary

Consider integrated current Jl across bond l,l+1, starting from some initial distribution

Take t large study mean current j = J / tTake t large, study mean current jl = Jl / t

Compute large deviation function el(λ) from generation function <e-λJl>

Compute Legendre transform (probability to observe specific jl



Exact result:Exact result:

- write master equation in Quantum Hamiltonian form
- make product ansatz for groundstate to obtain lowest eigenvalue (LDF)

Large deviation
f tifunction

Legrendeg
transform

ti fi GCS i d d t f l b t b d t i d- satisfies GCS, independent of l, but boundary terms ignored



For boundary terms consider totally asymmetric ZRP w = 1For boundary terms consider totally asymmetric ZRP, wn  1

- direct computation of complete LDF (no diagonalization --> inclusion of boundary terms)
- mapping to totally asymmetric simple exclusion process
- Bethe ansatz --> determinantal transition probabilities
- summation of determinants yields exact expression

current distribution
input bond

Poisson, by definition of process

output bond

- different from bond 0

- non-analytic behaviour at j = β



How can a mean current larger than exit rate be realized?How can a mean current larger than exit rate be realized?

- requires previous build-up of large number of particles at site 1 (~t)requires previous build up of large number of particles at site 1 ( t)
followed by rapid extraction

- implies input/output are independent Poisson processes p p p p p
--> product form

- transient condensate through (rare) fluctuation

- causes non-analytic behaviour in tale of 
probability distribution (extreme events)

th ti l di f b d t- mathematical: divergence of boundary term, 
possible because of unbounded local state



Conjecture for full lattice:Conjecture for full lattice:

proof for small L b determinant form la obtained from Bethe ansat- proof for small L by determinant formula obtained from Bethe ansatz



Exact expression for current distribution:Exact expression for current distribution:

l ti b t t d t f fi it L- evaluation by steepest descent for finite L



Back to partially asymmetric ZRPBack to partially asymmetric ZRP

• take one site, b=0  for analytic calulation

• generate equilibrium with fugacity x

h b d t t ilib i it ti• change boundary parameters to non-equilibrium situation

• obtain different non-analyticities, depending both on j and x

• large deviation phase diagram

• validity of GCS only in restriced
region, depending on preparation
of systemof system

• origin transient condensates



Simulation results for larger lattice:Simulation results for larger lattice:

steady state                                                   empty latticey p y

• breaking of GCS persistsg p

• measurable in Monte- Carlo simulations



5. Conclusions

Statistical Mechanics of extreme events yields:

• Fluctuation theorems through time reversal

G ll tti C h t b k d i “ t l” tti• Gallavotti-Cohen symmetry may break down in “natural” setting

• Violation caused by transient condensation

==> dynamical mechanism underlying non-analytic change of 
extreme event identified

• Large deviation phase diagram

==> Large deviations, fluctuation theorems, extremal events should be 
studied together

==> Study of critical phenomena in extreme events



Acknowledgments

Thanks to:

• Weizmann Institute of Science



Mapping of single-file diffusion to zero range process:

• Label particles consecutively

n1 n2 n3 n4n1 n2 n3                         n4

1                         2                       3              4

• Map particle label to lattice site

• Map discretized interparticle distance to particle numberMap discretized interparticle distance to particle number

1 2 3 41             2            3             4


