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Outline
1.   Collaboratory for advanced computing and simulations
 and multiscale algorithms

2.  Chemical reactions: Oxidation dynamics and flash 
heating of an Al/Al2O3 nanoparticle

3.  Chemical reactions: Isothermal heating of a chain of 
three Al/Al2O3 nanoparticles

4.  Research in Progress
 Molecular dynamics with non-adiabatic transitions
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•   Left: High-resolution TEM of ANP
[A. L. Ramaswamy, et al., J. Ener. Mater. 23, 1-25 (2005)]

•   Top-Right: Crystallization of 
    amorphous shell during heating of ANP
[Mei, et al., Act. Mat. 53 (2005) ]

Experiments: Atomic Level Structure of 
Aluminum Nanoparticles
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Reactive Force-Field (ReaxFF) MD:�
Variable N-Charge Problem 
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•Charge-equilibration (QEq)
 → Charge transfer 
 Determine atomic charges
 {qi | i = 1, ..., N} every MD 

step to minimize EES(rN,qN) 
with charge-neutrality 
constraint: Σi qi = 0 
 — Dense linear system:                   

O(N3)!
M q = -χ

•Reactive bond order potential energy: Ebond({rij},{rijk},{rijkl},{BOij}) 
 → Bond breakage & formation



Oxidation of an Al Nanoparticle (n-Al) 

• Oxide thickness saturates at 40 Å after 0.5 ns, in agreement with experiments
• Oxide region/metal core is under negative/positive pressure
• Attractive Al-O Coulomb forces contribute large negative pressure in the oxide

5

15

25

35

0 100 200
O

xi
de

 T
hi

ck
ne

ss
 (Å

)
Time (ps)

100 Å

Electrostatic Forces

100 Å

Non-electrostatic Forces

1-1 0Pressure  (GPa)



Laser Flash  
Heating of 

Core (Al)–Shell (Al2O3)  
Nanoparticle   



Core-Shell Aluminum Nanoparticle 

 

•  Total Diameter 
 of ANP = 48 nm 

•  Shell Thickness = 4 nm

•  Shell Structures:
•  Crystalline (Al2O3)
•  Amorphous (a-Al2O3)

•  Well thermalized three 
temperatures (T1, T2, T3)



Crystalline and Amorphous Shells�
Nano-Explosion

Expansion Shell   Broken           Oxidation ReactionCrystalline:
Expansion Shell Shattered           Oxidation ReactionAmorphous:



Migration of Atoms During Combustion

•  Migration of Atoms can be categorized into two types:
•   Events related to the shell - atoms into the shell or out of the shell
•   Direct transport of core Al and environmental Oxygen through the
   pores in the shell

Core = c;  Shell = s;  Environment = e
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Jetting out of Al Core Atoms-
Crystalline shell  

•      More Al core atoms jet out from the weak areas of the shell 
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Jetting out of Al Core Atoms  
40 nm Core, 4 nm Shell 

•      More Al core atoms jet out from the weak areas of the shell 



Jetting out of Al Core Atoms- �
Amorphous shell �

•      Core Al jet out homogeneously from the shell
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Jetting out of Al Core Atoms �
Amorphous Shell

•   Core Al jet out homogeneously from the shell



Energy Release Rate & Survival Fraction of 
Unoxodized Al atoms

•   Effect of temperature on the energy release rate in ANPAS 
     and ANPCS is similar
•   Three mechanisms: diffusion-oxidation; ballistic transport       
     followed by diffusion-oxidation; ballistic transport followed 
     by coalescing of atoms into few-atom clusters-oxidation



Isothermal Heating 
Three Nanoparticles 
 NP # 1  &  # 3 heated

(T = 1200K) 
NP # 2 not heated 



Three 46 nm Nanoparticles: 
Burning of the Center Nanoparticle 

46 nm

3 nm
4.11 Million atoms4.11 Million atoms

Not heatedHeated Heated
Oxygen

Oxygen
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Burning of the Center Nanoparticle 

Oxidation reaction (Al core is not shown)



Aluminum ejections: core (white) and shell (red)

Burning of the Center Nanoparticle 
Aluminum Ejections 



Temperature Profiles of Nanoparticles 
650 ps

Cold (T<1000K) Hot (T>2500K)
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Research in Progress 
Molecular dynamics 

with non-adiabatic 
transitions 



Zinc-porphyrin core 

Hyper-branched  
benzyl ether-type peripheries 

Photons 

Photoexcited electrons 
are transferred to the core. 

Photoluminescence 
due to the recombination  
of electron-hole pairs 

http://pltop.shocomarec.kumamoto-u.ac.jp/index-j.html �

Light harvesting dendrimer 



Tully: J. Chem. Phys. 93, 1061 (1990) �
Craig et al.: Phys. Rev. Lett. 95, 163001 (2005) �

Time-Dependent Density-Functional Theory with
Fewest-Switches Surface-Hopping method (TDDFT-FSSH)

State A 

State B 

Photo- 
excitation�

transition�

Electronic transitions from the current state to another state occur 
stochastically based on the switching probability obtained by solving 
the TD-KS equations. �

To account the nonadiabatic effects within the adiabatic MD simulations, 



front view side view 
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HOMO-1 HOMO-3 HOMO HOMO-2 HOMO-4 

LUMO LUMO+1 LUMO+2 LUMO+3 LUMO+4 

An electron in HOMO-4 is excited to LUMO+4.�



Time Evolution of Spatial Distribution 
of Photoexcited Electron 



Excited  
State 300 K 

Photoexcited 
electron 

LUMO+4 

LUMO+4→LUMO+3 

LUMO+3→LUMO+2 

The photoexcited electron is transferred to the core 
via overlapping orbitals. 



Thank you for your attention!
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