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• Hydrogen is the most abundant element in nature (~90%) in particular 
in the giant planets of the solar system (Jupiter, Saturn, Uranus, Neptune) 
and in extrasolar planets recently discovered.

• Other elements in these planets are Helium, Oxigen, inert gases and 
heavier elements (rocks) in the inner core of the planet.

• Knowledge of the hydrogen and hydrogen-helium Equation of State 
(EOS) is crucial to make quantitative models for the interior of such 
planets.

• Those models, refined to match experimental observation, can provide 
informations about the planet composition, evolution and formation.

• Shock Wave (SW) experimental techniques, developed for Inertial 
Confinement Fusion research, often can mimic the conditions in the 
interiors of the planets and provide useful data.

Motivation: astrophysics
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Fig. 1.— Schematic interior structure of Jupiter and Saturn. Pressures and temperature
are marked at 1 bar (100 kpa, visible atmosphere), 2 Mbar (200 Gpa, near the molecular-

to-metallic transition of hydrogen), and at the top of the heavy element core. Temperatures
are especially uncertain, and are taken from Guillot (2005). Approximate atmospheric abun-
dances for “metals” (relative to solar) are shown within the grey box, in the molecular H2

region. Possible core masses, in M⊕ (labeled as “ME”) are shown as well (Saumon & Guillot
2004).

Fortney J. J., Astrophysics and Space Science 2006.



Motivation: metallization
• Hydrogen is the simplest element in the periodic table but presents a 

reach physics.

• At ambient conditions it is molecular and at low temperature its phase 
diagram is dominated by the orto-para separation (Silvera ’80).

• Metallization and molecular dissociation with pressure in the ground 
state was predicted long ago to be at P~25Gpa (Wigner 1935) but 
modern experiments up to 350GPa did not found a metallic state 
(Loubeyre ’02).

• The search of metallization in hydrogen has been one of the motivations 
in developing high pressure Diamond Anvil Cell (DAC) technology.

• Three different insulating molecular crystal phases has been observed 
so far for increasing pressure.

• The osberved reentrant melting of the molecular crystal and the 
molecular dissociation-metallization has suggested the existence of a 
low temperature liquid which separate the molecular crystal from the 
atomic crystal.
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Theoretical predictions 

• at T=0K molecular dissociation occurs at rs=1.31(DMC, Ceperley Alder PRB '87).

• At the molecular dissociation a diamond structure of protons is 
predicted. At higher pressure a diamond-bcc transition is expected 
(DMC, Natoli et al PRL '93).

• several new structures for Phase III at T=0 have been recently proposed 
(Pickard DFT).

• size effects are crucial in ab-initio simulation to obtain converged results 
(Brillouine zone sampling in AIMD). 

• proton Zero Point Motion is very large and favors isotropic structures 
(Kitamura et al, Nature 2000, CMPD).

• Predicting metallization requires going beyond DFT-LDA-GGA(Johnson 
Ashcroft, Nature 2000)

• Most recent prediction (T=0K): Pm~4Mbars within the molecular phase 
(DFT-Exact-Exchange functional) (Stadele and Martin, PRL 2000). 



Motivation: beyond DFT

• Ab-initio simulation methods are the principal source of theoretical 
information.

• At high temperature, free energy models in the chemical picture have 
been developed and proved useful to interpret “experimental” results.

• Ab-initio simulations are largely based on Density Functional Theory with 
approximated functionals (LDA, GGA), in general a good compromise to 
perform dynamical studies of several hundreds atoms (Car-Parrinello and 
BO Molecular Dynamics).

• There are cases in which DFT is not accurate enough: Van-der-Waals 
bonding systems, sp-bonded materials, excitation energies and energy 
gaps, metallization.

• Quantum Monte Carlo (QMC) provides in general more accurate 
electronic energies for given ionic positions.



Motivation: beyond DFT

• Can we devise an efficient method to exploit the accuracy of QMC in ab-
initio "dynamical" simulation of condensed systems?

• Previous attempts

• Diffusion Monte Carlo for electrons and nuclei (Ceperley-Alder 1987)     

• temperature effects are absent

• time scale separation problem (already for hydrogen) 

• Restricted Path Integral Monte Carlo (RPIMC) (Pierleoni, Ceperley et al, 1994, 
Militzer-Ceperley 1999) 
• electrons and nuclei are at finite temperature

• sampling problem at low temperature (            , T<5000K)

• Coupled Electron-Ion Monte Carlo (CEIMC)

• Born-Oppenheimer separation of time scales: ground state electrons, 
finite T nuclei 

• bridges the gap between finite T PIMC and ground state DMC.

T <
1
20

TF



CEIMC
CEIMC: Metropolis Monte Carlo for finite T ions.  The BO energy in the 
Boltzmann distribution is obtained by a QMC calculation for ground 
state electrons. 

• Finite temperature ions: Noisy Monte Carlo  The Penalty Method

• Ground state electrons:  

• Variation Monte Carlo (VMC) & Reptation Quantum Monte 
Carlo (RQMC)

• Moving the electrons: the bounce algorithm for RQMC

• Energy difference methods 

• Twist Average Boundary Conditions (TABC) within CEIMC to 
minimize electronic finite size effects

• Quantum Protons: Path Integral Monte Carlo (PIMC) within 
CEIMC



• QMC for fermions exploits the fixed node approximation and the accuracy depends on 
the accuracy of the many body trial wave function.

• Slater-Jastrow form:

• U(R|S) is a (two-body + three-body + ...) correlation factor (bosonic).

• ∑ is a Slater determinant of single electron orbitals

• The nodes are determined by the form of the orbitals only. They are the most 
important part of the trial function since the nodes are not optimized by projection.

• Hydrogen trial function

• Single electron orbitals obtained from a band structure (OEP) or LDA (DFT) 
calculation for each proton configuration.

• Analytical electron-electron backflow transformation (BF) to improve the nodes  
[Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

• Analytical form for the two body ''pseudopotential'' within RPA (Gaskell, 1967)

• No variational parameters to be optimized at the QMC level

• early implementation (Metallic): fully analytical form of the trial function              
[free electron orbitals + (ee+ep) backflow + (2body + 3body) Jastrow]

CEIMC: trial functions
Trial wave functions: |ΨT >

Slater-Jastrow form

ΨT (R|S) = exp [−U(R|S)]Det
“

Σ↑
”

Det
“

Σ↓
”

U(R) is a (two-body + three-body + . . . ) correlation factor (”pseudopotential”)

Σ↑ is a Slater determinant of single electron orbitals θk("xi, σi|S).

The nodes are determined by the form of the orbitals only. They are the most important

part of the trial function since the nodes are not optimized by projection.

Hydrogen trial function

Single electron orbitals obtained from a band structure(OEP) or LDA(DFT)

calculation for each proton configuration.

Analytical electron-electron backflow transformation (BF) to further improve the

nodes [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

Analytical form for the two body ”pseudopotential” within RPA (Gaskell, 1967)

Common feature: no variational parameters to be optimized at the QMC level

early implementation (Metallic): fully analytical form of the trial function

free electron orbitals + (ee + ep) backflow + (2body + 3body) Jastrow

CNRS Grenoble, 19 May 2008 – p. 23/41

θk("xi, σi|S)
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liquid hydrogen
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6

k c1k c2k c3k c4k

1 -0.529586 -2.085591·10−4 -3.365628·10−9 2.294411·10−5

2 2.227221·10−6 -1.452601·10−4 -2.488880·10−9 1.894880·10−5

3 -6.266619·10−5 4.210279·10−4 6.174066·10−9 -5.144879·10−5

4 9.977346·10−2 -6.220508·10−4 -8.564851·10−9 7.499558·10−5

5 -1.437627·10−2 -9.867541·10−5 -1.598083·10−9 1.225739·10−5

TABLE III: Coefficients of the expansion of the free energy; energy in Hartree/atom, temperature in K and density in g cm−3

IV. COMPARISON WITH OTHER METHODS

In order to asses the accuracy of the DFT-MD method
for hydrogen at such extreme conditions we have per-
formed DFT based Born-Oppenheimer Molecular Dy-
namics (BOMD). As in the CEIMC calculations of previ-
ous section, the electrons are assumed to be at zero tem-
perature. The BOMD simulations were performed in the
NVT-ensemble ( weakly coupled with a Berendsen ther-
mostat) using the Qbox code [41]. We used the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional
and a Hamann type [37] local pseudopotential with a core
radius of rc = 0.3 a.u. to represent hydrogen. The sim-
ulations were performed with 250 hydrogen atoms in a
cubic box using a plane-wave cutoff of 90 Ry (115 Ry for
rs ≥ 1.10) with periodic boundary conditions (Γ point).
Corrections to the EOS were added to extrapolate results
to infinite cutoff and to account for the Brillouin zone in-
tegration. To do this we studied 15-20 statistically inde-
pendent static configurations of protons at each density
by using a 4x4x4 grid of k-points with a plane-wave cut-
off of at least 300 Ry. See ref. [38] for additional details
of the BOMD simulations.

Data for energy and pressure obtained by CEIMC and
BOMD are reported in table I. There is a good agreement
between the two methods, especially at higher densities
where the difference in pressure is within error bars. Fig-
ure 3 shows a comparison of the pressure and the energy
between CEIMC simulations and BOMD simulations. At
lower densities, the pressure difference increases reaching
an average value of roughly 5% close to the dissociation
regime (ρ ! 0.75g/cm3). There is less reason to expect
good agreement for the energies since DFT uses pseu-
dopotentials and approximate exchange-correlation func-
tionals which can modify the zero of the energy. How-
ever, the temperature and density dependence is well re-
produced with an almost uniform energy shift of 0.8%
in the region of the phase diagram studied. Figure 4
shows the proton-proton radial distribution function for
several thermodynamic conditions as obtained with the
two methods. The observed agreement is again remark-
able. The structure of the liquid is reproduced by BOMD
simulations quite accurately, even the short range corre-
lation peak that develops at the lower temperatures and
higher densities. Figure 5 shows a comparison for the en-
tropy as a function of density along two isotherms. For
densities beyond ρ = 1.4g/cm3, the entropy curves ob-
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FIG. 4: Comparison of radial distribution functions between
BOMD (blue) and CEIMC (red).

tained with the two methods are indistinguishable. In
general, we obtain very good agreement between the two
methods for pressures beyond 600 GPa. At lower pres-
sures, the agreement is not perfect, but still very good,
with BOMD predicting a slightly higher entropy than
CEIMC. We are currently expanding our calculations to
lower density to provide an additional benchmark of the
DFT method close to the molecular dissociation region.

Finally, figure 6 shows a comparison of the pressure di-
vided by the square of the density as a function of density,
obtained with CEIMC, BOMC and the SCVH equation
of state at T=6000 K. We chose this particular quantity
to highlight the differences between the results, since a
direct comparison between CEIMC and BOMD would
produce unnoticeable differences on the scale of the plot.

Comparison with BOMD-LDA(PBE) 7
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At pressures well below the dissociation regime (outside
the regime investigated in the present work), SCVH EOS
produces very good results, but at higher densities the
model can not capture all the features which result from
strong atomic coupling; as illustrated in figure 6 it pre-
dicts a qualitatively different behavior with higher pres-
sures at lower densities.

V. CONCLUSIONS

In summary, we performed a comprehensive study of
the free energy and the equation of state of warm dense
liquid hydrogen in its atomic phase using energies com-
puted with quantum Monte Carlo methods. We provide
a fit to the free energy which can be used as input to
models of Jovian planets or in the formulation of more
accurate chemical models. Given the current status of
DFT and its possible limitations at these conditions, it
is crucial to benchmark its predictions against more ac-
curate methods. We provide such a critical test. Our

results indicate that DFT-based BOMD simulations pro-
vide a very good description of both thermodynamic and
structural properties of hydrogen for the studied condi-
tions. The equation of state of SCVH, used in the study
of planetary interiors for more than a decade, is shown
to produce inaccurate results in the atomic regime. This
suggests that planetary models should be reinvestigated
with a more accurate equations of state, such as the one
presented in this work.

VI. FINITE SIZE EFFECTS

Due to the high computational demands of QMC,
our simulations are restricted to systems of at most 128
atoms. Many techniques have been developed in order to
obtain useful results with finite systems. In this work we
use TABC (the generalization of Brillouin zone integra-
tion to many-body quantum systems) to eliminate shell
effects in the kinetic energy of metallic systems. Twisted
boundary conditions when an electron wraps around the
simulation box are defined by:

Ψθ(..., !rj + !L, ...) = eiθΨθ(..., !rj , ...). (12)

where Ψθ is the many-body wave function of the system.
Observables are then averaged over the all twist vectors,
similar to one-body theories:

< Â >=
∫ π

−π

d!θ

(2π)3
< Ψθ|Â|Ψθ > . (13)

This procedure has been shown to restore the classical
1/N dependence of the energy per particle in QMC cal-
culations, absent when PBC are used [23].

As first shown by Chiesa et.al. [24], most of the re-
maining finite size errors in the potential and kinetic BO
energies of QMC simulations come from discretization
errors induced by the use of PBC. To see this, notice
that we can write the potential energy (per electron) of
a system of N electrons and N protons as:

< V̂ >

N
=

1
2Ω

∑

#k "=0

v(!k)[SN (!k)− 2], (14)

where Ω is the volume of the simulation box, {!k} is the
set of lattice vectors in reciprocal space of the simulation
box, v(!k) is the Fourier transform of the Coulomb poten-
tial, SN (!k) = < (ρp(!k)−ρe(!k))(ρp( !−k)−ρe( !−k))) > /N

is the charge-charge structure factor, and ρp/e(!k) =∑
i ei#k·#ri ; the sum over i refers to either protons or elec-

trons depending on the superscript. As we approach the
thermodynamic limit N → ∞, the structure factor con-
verges (SN (!k) → S∞(!k)) and the sum becomes an in-
tegral: 1

Ω

∑
#k "=0 →

∫
d#k

(2π)3 . Assuming, as it is usually
the case, that the structure factor converges fast with

to appear 
PRE 2010
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Conclusions

• Hydrogen remains a very interesting system with many open questions in its 
high pressure regime

• the existence of a low temperature liquid phase 
• the structure of phase III in the insulating molecular crystal
• the mechanism of metallization at low temperature and its interplay with 
molecular dissociation and melting

• CEIMC is an efficient method to perform ab-initio simulation with QMC 
accuracy
• It is unique in its ability to treat quantum protons without a major 
computational bottleneck
• It is the obvious method to study hydrogen at intermediate temperature 
(T>200K) 

•In progress:
• quantum protons effects on the molecular dissociation in the liquid
• melting of the mono-atomic solid
• melting of the molecular crystal
• EOS of hydrogen-helium mixtures



Related Publications

(1) D.M. Ceperley, M. Dewing and C. Pierleoni ``The coupled Electronic-Ionic Monte Carlo 
simulation method'', Lecture Notes in Physics, 605, pp 473-499 (2002).
(2) M. Holzmann., D.M.Ceperley, C. Pierleoni and K. Esler ,``Backflow correlation in the 
electron gas and metallic hydrogen'', Phys. Rev. E 68, 046707 (2003).
(3) C. Pierleoni, D.M. Ceperley and M. Holzmann,``Coupled Electron-Ion Monte Carlo 
Calculations of Dense Metallic Hydrogen'', Phys. Rev. Lett. 93, 146402 (2004).
(4) C. Pierleoni and D.M. Ceperley: ``Computational Methods in Coupled Electron-Ion 
Monte Carlo'', CHEMPHYSCHEM 6, 1872-1878 (2005).
(5) C. Pierleoni and D.M. Ceperley: ``The coupled Electron-Ion Monte Carlo method'',  
Lecture Notes in Physics, 703, 641-683 (2006).
(6) K. Delenay, C. Pierleoni and D.M. Ceperley: ``Quantum Monte Carlo Simulation of the 
High-Pressure Molecular-Atomic Crossover in Fluid Hydrogen'', Phys. Rev. Letts. 97, 235702 
(2006).
(7) C. Pierleoni, K. Delaney, M. A. Morales,D.M. Ceperley and M. Holzmann, ``Trial wave 
functions for high pressure metallic hydrogen”, Comp. Phys. Comm. 179, 89 (2008).
(8) M.A. Morales, C. Pierleoni and D.M. Ceperley, “Equation of state of metallic hydrogen 
from Coupled Electron-Ion Monte Carlo simulations, to appear, PRE 2010
(9) M.A. Morales, C. Pierleoni, E. Schwegler and D.M. Ceperley, “Evidence of the plasma 
phase transition in high pressure hydrogen from ab-initio simulations”, in preparation.



VOLUME 76, NUMBER 11 P HY S I CA L REV I EW LE T T ER S 11 MARCH 1996

Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar)

S. T. Weir, A. C. Mitchell, and W. J. Nellis

Lawrence Livermore National Laboratory, University of California, Livermore, California 94550
(Received 28 August 1995)

Electrical resistivities were measured for liquid H2 and D2 shock compressed to pressures of 93–
180 GPa (0.93–1.8 Mbar). Calculated densities and temperatures were in the range 0.28–0.36 mol!cm3

and 2200–4400 K. Resistivity decreases almost 4 orders of magnitude from 93 to 140 GPa and is
essentially constant at a value typical of a liquid metal from 140 to 180 GPa. The data are interpreted in
terms of a continuous transition from a semiconducting to metallic diatomic fluid at 140 GPa and
3000 K.

PACS numbers: 62.50.+p, 72.20.–i

Hydrogen has been the subject of intense research be-
cause it is the prototypical system of the insulator-to-metal
(IM) transition [1]. Although condensed molecular hy-
drogen is a wide band-gap insulator at ambient pressure
"Eg ! 15 eV#, at sufficiently high pressure the electronic
energy gap is expected to close to zero, resulting in an
IM transition. The electrical conductivity of the fluid
was measured previously at single-shock pressures up to
20 GPa (200 kbar) and 4600 K [2]. These measurements
yielded an energy gap of 11.7 eV at 7.5 cm3!mol. Elec-
trical conductivity experiments using explosively driven
magnetic flux compression to isentropically compress liq-
uid hydrogen showed that the conductivity becomes less
than 1 "V cm#21 at 200 GPa and 400 K [3]. Measure-
ments at static high pressures on solid hydrogen in a
diamond anvil cell are restricted to optical properties to
250 GPa [4,5] and x-ray diffraction to 120 GPa [6].
Calculations of the IM transition with an inter-

molecular potential derived from shock data [7] and
theory of the monatomic metal predict a 0 K IM
transition at 300–400 GPa [8,9]. A plasma phase transi-
tion to a conducting phase has been predicted to occur at
$100 GPa and 10 000 K [10]. Intermolecular potentials
derived from Raman vibron data of solid hydrogen at
static high pressures [11] indicate that full dissociation
and metallization occur at about 300 GPa [12]. Electronic
band gaps calculated for diatomic hydrogen at 0 K predict
metallization pressures in the range 150–300 GPa, de-
pending on molecular orientation in the hcp phase [13,14].
However, the hcp structure is energetically unfavorable
and lower energy structures have wider band gaps at high
density [15]. Thus important issues are (i) does hydrogen
metallize in the monatomic, diatomic, or mixed phase and
(ii) what pressure is required to close the energy gap of a
given structure.
In this work we used a shock wave reverberating be-

tween electrically insulating Al2O3 anvils to compress
a 0.5 mm thick layer of liquid hydrogen to pressures
of 93–180 GPa. In this way we have increased the
maximum pressure of our conductivity measurements an
order of magnitude over our previous experiments [2].
Hydrogen is in the fluid phase because the calculated

temperatures are well above the calculated melting tem-
peratures of $1000 K at 100 GPa pressures [8,16]. The
shock-compression technique is well suited for measur-
ing electrical conductivity because (i) the high pressure
reduces the energy gap; (ii) the reverberating shock main-
tains temperatures at a few 0.1 eV, $10 times lower than
the temperature achieved by a single shock to the same
pressure; (iii) the relatively low shock temperatures acti-
vate sufficient conduction electrons to produce measurable
conductivities in the semiconducting state; (iv) electrode
dimensions and separations are mm’s, which are straight-
forward to assemble; (v) hydrogen is in thermal equilib-
rium in these 100 ns experiments [17]; and (vi) uniform
electrical current density is established in a time small
compared to the duration [18].
The purpose of this Letter is to report measurements of

electrical conductivities of fluid hydrogen and deuterium
at shock pressures of 93–180 GPa and the derived den-
sity dependence of the electronic energy gap. The results
are needed for comparison with theoretical calculations of
band-gap closure at high pressures. Electrical conductivi-
ties are also needed for calculations of the magnetic fields
of Jupiter and Saturn, which are caused by convective dy-
namo motion of conducting fluid hydrogen at pressures up
to a few hundred GPa and temperatures up to several thou-
sand K [19].
High shock pressures were generated by impact of a

hypervelocity impactor onto the front surface of an Al
sample holder [20] containing a thin layer of liquid hy-
drogen between Al2O3 anvils. Hydrogen shock pressure
is determined by shock impedance matching the mea-
sured impactor velocity and known Hugoniot equations
of state of the impactor, Al, and Al2O3. The pressure
in hydrogen reverberates up to the first shock pressure in
the Al2O3, independent of the equation of state of hydro-
gen [21,22]. The uncertainty in pressure is 1%. Electri-
cal resistivity was derived from measured resistance by
calibration [23]. The uncertainty in electrical resistivity
was typically 25% but ranged up to 50%. This uncer-
tainty is caused primarily by signal dispersion in the low
thermal conductance coaxial cables used for the cryogenic
target.
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Both hydrogen and deuterium samples were used to

obtain different densities and temperatures. Liquid deu-

terium essentially behaves normally at ambient pressures

[24] and hydrogen and deuterium fluids are expected to be-

have normally at high pressures and temperatures. Al and

Cu impactor plates were accelerated with a two-stage light-

gas gun. Impactor plates were 2 or 3 mm thick, 25 mm in

diameter, and embedded in a Lexan plastic sabot. Impact

velocities in the range 5.58–7.33 km/s were measured with

flash x radiography [25]. The cryogenic Al sample holders

were cooled with liquid H2 at 20 K [7]. Liquid D2 or H2

specimens were then condensed from high-purity gas to in-

sure that intrinsic conductivities are measured. The liquid

specimen was initially 0.5–0.6 mm thick and 25.4 mm in

diameter. This liquid layer was sandwiched between two

z-cut single-crystal Al2O3 disks 2 mm thick, which in turn

were sandwiched between two Al disks 2 mm thick. The

outer Al walls are ductile and strong at 20 K; the Al2O3

disks are stiff, electrically insulating anvils. Because of the

large density mismatch between hydrogen and Al2O3 the

first shock pressure in hydrogen is a factor of !25 lower
than the first shock in Al2O3. The reverberation of the

shock in hydrogen between the Al2O3 anvils achieves a fi-

nal hydrogen temperature of a few 0.1 eV, low compared

to the initial energy gap of 15 eV and low compared to

molecular dissociation energies of about 2 eV at these

pressures [9]. The configuration was illustrated previ-

ously [26].

Insulated metal electrodes, either two or four depend-

ing on whether the conductivity was expected to be rela-

tively small or large, were inserted through the rear walls

and were flush with the rear liquid hydrogen-Al2O3 inter-

face. The electrodes were 1 mm in diameter, separated

by 3.5 mm, and centered on the axis of the sample holder.

Electrical conductivities below !10 "V cm#21 were mea-

sured using a constant-voltage two-probe method, similar

to that used previously for liquid H2 [2]. Electrical con-

ductivities above !10 "V cm#21 were measured using a

constant-current four-probe method. Signal levels were at

least 0.01 V and signal durations were about 200 ns after

shock reverberation to final pressure. Supplemental ex-

periments examining the electrical conductivity of shock-

compressed Al2O3 at 100 GPa shock pressures [27] re-

vealed that the conductivity of hydrogen is 2–4 orders of

magnitude greater than that of Al2O3, resulting in a small

to negligible correction to the hydrogen conductivity data.

The data are plotted as the logarithm of electrical re-

sistivity vs shock pressure in Fig. 1. The resistivities de-

crease from about 1 V cm at 93 GPa to 5 3 1024 V cm

at 140 GPa and are constant at 5 3 1024 V cm at 155

and 180 GPa. Figure 1 shows that the resistivity de-

creases almost 4 orders of magnitude from 93 to 140 GPa

and then plateaus at 500 mV cm to 180 GPa. The data in

the range 93–135 GPa were analyzed using our previous

dependence for a fluid semiconductor [2]:

s ! s0 exp$2Eg"r#%2kBT& , (1)

FIG. 1. Electrical resistivity vs pressure for fluid hydrogen
and deuterium. The saturation resistivity of 500 mV cm above
140 GPa is that of the metallic fluid. Theoretical predictions of
this resistivity are a factor of 100 smaller (Refs. [33] and [34]).

where s is electrical conductivity, s 0 depends on den-

sity r, Eg"r# is the density-dependent mobility gap in the
electronic density of states of the fluid, kB is Boltzmann’s

constant, and T is temperature. Because of uncertainties

in s and T and the small number of points, any tempera-

ture dependencies in Eg and s 0 cannot be determined.

The density and temperature were calculated by com-

putationally simulating each experiment using a standard

equation of state of hydrogen in the molecular fluid phase

[28]. The hydrogen pressures obtained from these com-

putational simulations agree within 1% of those obtained

by shock impedance matching. Although a computational

model for hydrogen introduces systematic uncertainties in

the calculated densities and temperatures [29], the results

are useful for understanding the slope change at 140 GPa

in Fig. 1. In Fig. 2 the data are plotted as the logarithm

of electrical conductivity vs "2kBT #21. Since Eg"r# is
an electronic property, it is assumed to be the same for

both hydrogen and deuterium. This assumption is ex-

pected to be valid in the fluid where possible effects on

the band gap caused by different zero-point energies of

FIG. 2. Electrical conductivity vs "2kBT #21 for fluid hydrogen
and deuterium. For these points, pressure is in the range 93–
135 GPa. The dashed lines are guides to the eye.
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velocity, which is in the range of the systematic errors in
the experiments. The compression decreases with higher
pressures and temperatures and reaches the correct high-
temperature limit as given by the PIMC simulations51.
The QMD curve lies slightly below the experimental data
for compression rates between 3 and 4 which could be due
to the known band gap problem of DFT in GGA. The
FVT curve42 is shown as a representative of chemical
models which, in general, show a higher compressibility
well beyond 4.5.

Also shown is the linear mixing result of Ross52. This
curve shows a sixfold compression and is not in agreement
with the shown experiments. The curve of Kerley53 has
a maximum compression of 4.25, like the experiments
indicate, but the pressure is there slightly higher than
the results of the QMD simulations.
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FIG. 5: Principal Hugoniot curve for hydrogen. The re-
sults of this work (solid line) are compared with previous
QMD results of Lenosky et al.50 (dashed) and Desjarlais22

(stars), PIMC simulations54 (dotted), the linear mixing model
of Ross52 (dot-dash-dashed), the model of Kerley53 (dot-dot-
dashed) and the chemical model FVT42 (dot-dashed). Ex-
periments: Gas gun48 (diamonds), Sandia Z machine8 (grey
squares; grey line: running average through the us-up data),
high explosives49 (black circles).

IV. DYNAMIC CONDUCTIVITY,
REFLECTIVITY AND DC CONDUCTIVITY

The dynamic conductivity σ(ω) is derived from the
Kubo-Greenwood formula:55,56

σ(ω) =
2πe2!2

3m2ωΩ

∑

k

W (k)
N

∑

j=1

N
∑

i=1

3
∑

α=1

[F (εi,k) − F (εj,k)]

×|〈Ψj,k|∇α|Ψi,k〉|
2δ(εj,k − εi,k − !ω), (10)

where e is the electron charge and m its mass. The sum-
mations over i and j run over N descrete bands consid-
ered in the electronic structure calculation for the cubic
supercell volume Ω. The three spatial directions are av-
eraged by the α sum. F (εi,k) describes the occupation

of the ith band corresponding to the energy εi,k and the
wavefunction Ψi,k at k. The δ-function has to be broad-
ened because a discrete energy spectrum results from
the finite simulation volume21. Integration over the Bril-
louin zone is performed by sampling special k points57,
where W (k) is the respective weighting factor. We used
Baldereschi’s mean value point38 to reach a convergence
of better than 10% accuracy.

Optical properties can be derived from the frequency-
dependent conductivity Eq. (10). The standard method
is to obtain the imaginary part via the Kramers-Kronig
relation

σ2(ω) = −
2

π
P

∫

σ1(ν)ω

(ν2 − ω2)
dν, (11)

P is the prinicipal value of the integral. The dielectric
function can be calculated directly with the conductivity:

ε1(ω) = 1 −
1

ε0ω
σ2(ω), (12)

ε2(ω) =
1

ε0ω
σ1(ω). (13)

The square of the index of refraction contains the real
part n and the imaginary part k is equal to the dielectric
function which leads to the following relations:

n(ω) =
1

2

√

|ε(ω)| + |ε1(ω)|, (14)

k(ω) =
1

2

√

|ε(ω)|− |ε1(ω)|. (15)

The index of refraction is then used to calculate optical
propersties such as the reflectivity r:

r(ω) =
[1 − n(ω)]2 + k(ω)2

[1 + n(ω)]2 + k(ω)2
. (16)

We compare our ab initio results with reflectivities
measured along the Hugoniot curve58 in Fig. 6; the agree-
ment is excellent. The change of the hydrogen reflectivity
with the pressure can be interpreted as a gradual transi-
tion from a molecular insulating fluid through an atomic
fluid above 20 GPa where the atoms have strongly fluc-
tuating bonds with next neighbors20 to a dense, almost
fully ionized plasma with a reflectivity of about 50-60 %
at high pressures above 40 GPa. The chemical model59

shows also this qualitative behavior but the abrupt in-
crease of the reflectivity occurs at a higher density. This
shows the difficulties of the chemical models in finding
the correct shifts of the dissociation and ionization en-
ergies as function of density and temperature and, thus,
the location of the nonmetal-to-metal transition. How-
ever, the limits of a molecular fluid at low pressures and
of a fully ionized plasma at high pressures are incorpo-
rated in a reasonable way.

From: Holst, Redmer and Desjarlais, arXiv:0710.1006v1
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The properties of compressed liquid hydrogen, the most abundant
fluid in the universe, have been investigated by means of first-
principles molecular dynamics at pressures between 75 and 175
GPa and temperatures closer to the freezing line than so far
reported in shock-wave experiments. Evidence for a liquid–liquid
transition between a molecular and a dissociated phase is pro-
vided. The transition is accompanied by a 6% increase in density
and by metallization. This finding has important implications for
our understanding of the interiors of giant planets and supports
predictions of a quantum fluid state at low temperatures.

The search for a metallic state and the abundance of hydrogen
in stars and giant planets have stimulated widespread interest

in the states of hydrogen at extreme conditions of pressure and
temperature. Multimegabar pressures (1 Mbar ! 100 GPa ! 106

atm) can be simulated in the laboratory by means of shock-wave
or static methods. Shock experiments have focused on the fluid
at very high temperatures (1–3), whereas static experiments on
the solid molecular phases (4–6) were mainly at low tempera-
tures. Temperatures in shock experiments increase fast with
pressure, up to several thousand K, whereas temperatures in
static diamond-anvil cell experiments typically are restricted to
ambient or below, because of difficulties in sample confinement.
As a consequence, the properties of compressed liquid hydrogen
at intermediate temperatures, close to the freezing line, are
unknown. An extrapolation of the freezing line, obtained from
measurements up to 20 GPa, suggests that the freezing temper-
ature could cease to increase after reaching 1,100 K at a critical
pressure of "120 GPa (7). More recent experiments confirm this
picture (E. Gregoryanz, A. F. Goncharov, K. Matsuishi, H.-k.
Mao, and R. J. Hemley, personal communication). A sign
reversal of the freezing slope implies, through the Clausius–
Clapeyron relation, that the liquid becomes denser than the solid
above 120 GPa. This finding raises fundamental questions about
the structure of the compressed liquid and in particular about the
extent of its structural differences with respect to the molecular
solid.

Computational Methods
First-principles molecular dynamics has been extensively used as
a theoretical tool to explore the behavior of hydrogen at extreme
conditions, for example along the shock compression curves
(9–12) and in the search for new low-temperature structures
(13). Evidence of a crossover from a molecular to an atomic
liquid in the region of the putative freezing maximum was
provided on the basis of first-principles molecular dynamics (14),
but no attempt was made to map out the location of the transition
line in the pressure-temperature diagram. Identifying with first-
principles simulations the occurrence of finite-temperature
phase transitions in compressed hydrogen requires extreme care.
First, the use of a constant-pressure (isobaric) thermodynamic
sampling is strongly suggested. In fact, direct constant-volume
simulations of phase transitions are affected by larger hysteresis
effects than constant-pressure simulations if the volume jump at
the transition is not negligible and the simulation cell is small (as
in first-principles simulations). On the other hand, indirect
constant-volume methods based on the evaluation of the Gibbs

free energy through thermodynamic integration (15) are com-
putationally expensive and become a viable option to direct
simulations only when the latter are affected by large hysteresis,
which is not the case of compressed liquid hydrogen, as seen
below. A second important technical issue concerns the sampling
of the Brillouin zone (in unit-cell crystal calculations), or
equivalently the size of the simulation cell (in supercell calcu-
lations with single-point Brillouin zone sampling). Relative
phase stabilities were shown to be unusually sensitive to these
approximations (13, 16). Here both requirements are met. The
first requirement is met by making use of the Parrinello–Rahman
algorithm (17), whereby the simulation cell is allowed to adjust
in size and shape to properly sample the isobaric ensemble. The
second requirement is met by working with simulation cells
containing 448 atoms, a number that was found sufficient to
guarantee convergence both for electronic and structural prop-
erties, as detailed below.

Simulations were performed with the Car–Parrinello method
(18) and a variable-cell algorithm (19). The fictitious mass of the
electronic wave functions was 50 a.u. (20), which requires a time
step of 4 a.u. for the integration of the equations of motion.
Molecular dynamics runs were started by equilibrating the
system for an amount of time varying between 0.5 and 1 ps, and
statistical averages were collected in the subsequent 1 ps of the
dynamics, corresponding to "10,000 time steps, respectively.
Protons were assumed to behave as classical particles. This is a
good approximation at 1,500 K, because quantum effects on the
ground-state structure are roughly equivalent to classical ther-
mal effects at 500 K in the classical system (21). The electron-ion
interaction was modeled with a pseudopotential (13) and elec-
tronic states were expanded in plane waves up to a cutoff of 60
Ry with #-point sampling of the Brillouin zone. #-point sampling
with a 448-atom supercell is roughly equivalent to the eight-point
sampling in a 64-atom supercell used in ref. 22. We estimate that
errors in the energy differences introduced by such k-point
sampling are of the order of 5 meV per atom. Electron–electron
interactions were treated by using the local density approxima-
tion supplemented with gradient corrections (13).

Results
A molecular liquid was initially equilibrated at 75 GPa and 1,500
K by melting a molecular solid from phase I. We did not observe
any sign of molecular dissociation at these conditions. Pressure
was then increased isothermally at a rate of "6 GPa"ps, up to
175 GPa. A clear transformation took place at 125 GPa, as
signaled by a significant reduction of the volume of the simula-
tion cell (Fig. 1). The reverse transition was observed when
pressure was released from 137 to 112 GPa, indicating that the
simulated transition is not affected by hysteresis. Inspection of
the local structure of the liquid and in particular of the H-H pair
correlation function, a measure of the probability of finding a
pair of H atoms at a distance r from one another, shows a clear
change from a molecular liquid $125 GPa, with a well defined
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The properties of compressed liquid hydrogen, the most abundant
fluid in the universe, have been investigated by means of first-
principles molecular dynamics at pressures between 75 and 175
GPa and temperatures closer to the freezing line than so far
reported in shock-wave experiments. Evidence for a liquid–liquid
transition between a molecular and a dissociated phase is pro-
vided. The transition is accompanied by a 6% increase in density
and by metallization. This finding has important implications for
our understanding of the interiors of giant planets and supports
predictions of a quantum fluid state at low temperatures.

The search for a metallic state and the abundance of hydrogen
in stars and giant planets have stimulated widespread interest

in the states of hydrogen at extreme conditions of pressure and
temperature. Multimegabar pressures (1 Mbar ! 100 GPa ! 106

atm) can be simulated in the laboratory by means of shock-wave
or static methods. Shock experiments have focused on the fluid
at very high temperatures (1–3), whereas static experiments on
the solid molecular phases (4–6) were mainly at low tempera-
tures. Temperatures in shock experiments increase fast with
pressure, up to several thousand K, whereas temperatures in
static diamond-anvil cell experiments typically are restricted to
ambient or below, because of difficulties in sample confinement.
As a consequence, the properties of compressed liquid hydrogen
at intermediate temperatures, close to the freezing line, are
unknown. An extrapolation of the freezing line, obtained from
measurements up to 20 GPa, suggests that the freezing temper-
ature could cease to increase after reaching 1,100 K at a critical
pressure of "120 GPa (7). More recent experiments confirm this
picture (E. Gregoryanz, A. F. Goncharov, K. Matsuishi, H.-k.
Mao, and R. J. Hemley, personal communication). A sign
reversal of the freezing slope implies, through the Clausius–
Clapeyron relation, that the liquid becomes denser than the solid
above 120 GPa. This finding raises fundamental questions about
the structure of the compressed liquid and in particular about the
extent of its structural differences with respect to the molecular
solid.

Computational Methods
First-principles molecular dynamics has been extensively used as
a theoretical tool to explore the behavior of hydrogen at extreme
conditions, for example along the shock compression curves
(9–12) and in the search for new low-temperature structures
(13). Evidence of a crossover from a molecular to an atomic
liquid in the region of the putative freezing maximum was
provided on the basis of first-principles molecular dynamics (14),
but no attempt was made to map out the location of the transition
line in the pressure-temperature diagram. Identifying with first-
principles simulations the occurrence of finite-temperature
phase transitions in compressed hydrogen requires extreme care.
First, the use of a constant-pressure (isobaric) thermodynamic
sampling is strongly suggested. In fact, direct constant-volume
simulations of phase transitions are affected by larger hysteresis
effects than constant-pressure simulations if the volume jump at
the transition is not negligible and the simulation cell is small (as
in first-principles simulations). On the other hand, indirect
constant-volume methods based on the evaluation of the Gibbs

free energy through thermodynamic integration (15) are com-
putationally expensive and become a viable option to direct
simulations only when the latter are affected by large hysteresis,
which is not the case of compressed liquid hydrogen, as seen
below. A second important technical issue concerns the sampling
of the Brillouin zone (in unit-cell crystal calculations), or
equivalently the size of the simulation cell (in supercell calcu-
lations with single-point Brillouin zone sampling). Relative
phase stabilities were shown to be unusually sensitive to these
approximations (13, 16). Here both requirements are met. The
first requirement is met by making use of the Parrinello–Rahman
algorithm (17), whereby the simulation cell is allowed to adjust
in size and shape to properly sample the isobaric ensemble. The
second requirement is met by working with simulation cells
containing 448 atoms, a number that was found sufficient to
guarantee convergence both for electronic and structural prop-
erties, as detailed below.

Simulations were performed with the Car–Parrinello method
(18) and a variable-cell algorithm (19). The fictitious mass of the
electronic wave functions was 50 a.u. (20), which requires a time
step of 4 a.u. for the integration of the equations of motion.
Molecular dynamics runs were started by equilibrating the
system for an amount of time varying between 0.5 and 1 ps, and
statistical averages were collected in the subsequent 1 ps of the
dynamics, corresponding to "10,000 time steps, respectively.
Protons were assumed to behave as classical particles. This is a
good approximation at 1,500 K, because quantum effects on the
ground-state structure are roughly equivalent to classical ther-
mal effects at 500 K in the classical system (21). The electron-ion
interaction was modeled with a pseudopotential (13) and elec-
tronic states were expanded in plane waves up to a cutoff of 60
Ry with #-point sampling of the Brillouin zone. #-point sampling
with a 448-atom supercell is roughly equivalent to the eight-point
sampling in a 64-atom supercell used in ref. 22. We estimate that
errors in the energy differences introduced by such k-point
sampling are of the order of 5 meV per atom. Electron–electron
interactions were treated by using the local density approxima-
tion supplemented with gradient corrections (13).

Results
A molecular liquid was initially equilibrated at 75 GPa and 1,500
K by melting a molecular solid from phase I. We did not observe
any sign of molecular dissociation at these conditions. Pressure
was then increased isothermally at a rate of "6 GPa"ps, up to
175 GPa. A clear transformation took place at 125 GPa, as
signaled by a significant reduction of the volume of the simula-
tion cell (Fig. 1). The reverse transition was observed when
pressure was released from 137 to 112 GPa, indicating that the
simulated transition is not affected by hysteresis. Inspection of
the local structure of the liquid and in particular of the H-H pair
correlation function, a measure of the probability of finding a
pair of H atoms at a distance r from one another, shows a clear
change from a molecular liquid $125 GPa, with a well defined
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first peak at !0.7 Å, the intramolecular bond length, to a
nonmolecular broader shape characteristic of a quasi-
monoatomic liquid, "125 GPa (Fig. 2A). At 125 GPa the pair
correlation function displayed an oscillatory molecular-to-
atomic behavior with time, indicating that thermal equilibration
could not be achieved at this pressure because of the limited size
and time scale of the simulation. This is also responsible for the
large error bar in the volume determination at 125 GPa (Fig. 1).
Such finite size effects are well known in simulations of phase
transitions and are consistent with a first-order character for the
transition, although the possibility that the transition is a rapid,
but continuous, crossover cannot be excluded a priori. The
volume jump and the latent heat at the transition pressure, which

we locate at 125 (#10) GPa, were calculated by extrapolating
averages obtained at lower and higher pressures. The volume
reduction is 6 (#2)%, whereas the latent heat is 70 (#20) meV
per atom (the transformation being endothermic from molecular
to nonmolecular). According to the Clausius–Clapeyron relation
these values yield a dT!dP slope for the phase boundary of $17
(#7) K!GPa. In fact, we found a very similar transition when
temperature was increased isobarically, at 125 GPa, to 2,000 K,
which provides an independent support to the negative dT!dP
slope.

Discussion
A number of important implications for the interiors of giant
planets and, more generally, for our understanding of the
hydrogen phase diagram (see Fig. 2B) can be immediately
inferred from the present results.

I first remark that the existence of a first-order liquid–liquid
transition line, the so-called plasma phase transition, has been
proposed (25), although on the basis of considerably simpler
models than the one used here. Quantum Monte Carlo (QMC)
simulations initially confirmed the existence of a first-order
transition line extending up to 10,000 K (24), but more recent
work suggests that QMC predictions may depend crucially on
how the location of the nodal planes of the electronic wave
function is approximated (26). All theoretical models propose
that the transition extends to temperatures up to at least 10,000
K, which appears to be inconsistent with recent experiments
along the reverberating-shock Hugoniot of H2, where a seem-
ingly continuous crossover from a molecular to a dissociated
liquid is observed (2). Our simulations indicate that a sharp
transition does indeed take place at lower temperatures (1,500–
2,000 K), which is not inconsistent with the experimental and
QMC results. The transition might end at a critical point located
below the temperatures reached in shock experiments. If so,
the nature of the liquid in the ‘‘supercritical’’ region above the
critical point, that is along the shock Hugoniots and along
the pressure-temperature isentrope of giant planets, could be
more complex than previously thought. A number of thermo-
dynamic and dynamical anomalies are known to occur above the
critical point (27). These include a maximum in the temperature
dependence of the pressure along the isentrope (1) and a
minimum in the pressure dependence of the sound velocity. All
of these anomalies are known to have important implications for
our understanding of the interiors of giant planets (28, 29).

Because a continuous insulator-to-metal transition has been
observed at similar pressures but slightly higher temperatures (2),
we checked whether the transition observed here is also associated
with metallization. We calculated the electronic density of states for

Fig. 3. Electronic density of states of hydrogen at 1,500 K in the molecular
state at 112 GPa (Left) and the nonmolecular state at 137 GPa (Right). The zero
of the energy corresponds to the Fermi level.

Fig. 1. Calculated volumes for liquid hydrogen at 1,500 K (bars; their size
gives the error). The anomalous error bar at 125 GPa is discussed in the text.
The dashed line indicates the experimental volume at 300 K (23).

Fig. 2. (A) Pair correlation functions of hydrogen at 1,500 K and the pressures
indicated. (B) Sketch of the hydrogen phase diagram. Circles indicate points
where simulations were performed; E correspond to points where the system
was found to be molecular (nonmolecular points are indicated by F). Triangles
indicate shock-wave points from ref. 2. A continuous transition from insulat-
ing (‚) to metal (Œ) behavior was observed. The dashed line is an extrapolation
of the melting line (7). The dash-dotted line is an extrapolation of the
first-order transition line predicted by quantum Monte Carlo simulations with
free-particle nodes for the electronic wave function (24). Gray lines indicate
suggested phase boundaries.
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first peak at !0.7 Å, the intramolecular bond length, to a
nonmolecular broader shape characteristic of a quasi-
monoatomic liquid, "125 GPa (Fig. 2A). At 125 GPa the pair
correlation function displayed an oscillatory molecular-to-
atomic behavior with time, indicating that thermal equilibration
could not be achieved at this pressure because of the limited size
and time scale of the simulation. This is also responsible for the
large error bar in the volume determination at 125 GPa (Fig. 1).
Such finite size effects are well known in simulations of phase
transitions and are consistent with a first-order character for the
transition, although the possibility that the transition is a rapid,
but continuous, crossover cannot be excluded a priori. The
volume jump and the latent heat at the transition pressure, which

we locate at 125 (#10) GPa, were calculated by extrapolating
averages obtained at lower and higher pressures. The volume
reduction is 6 (#2)%, whereas the latent heat is 70 (#20) meV
per atom (the transformation being endothermic from molecular
to nonmolecular). According to the Clausius–Clapeyron relation
these values yield a dT!dP slope for the phase boundary of $17
(#7) K!GPa. In fact, we found a very similar transition when
temperature was increased isobarically, at 125 GPa, to 2,000 K,
which provides an independent support to the negative dT!dP
slope.

Discussion
A number of important implications for the interiors of giant
planets and, more generally, for our understanding of the
hydrogen phase diagram (see Fig. 2B) can be immediately
inferred from the present results.

I first remark that the existence of a first-order liquid–liquid
transition line, the so-called plasma phase transition, has been
proposed (25), although on the basis of considerably simpler
models than the one used here. Quantum Monte Carlo (QMC)
simulations initially confirmed the existence of a first-order
transition line extending up to 10,000 K (24), but more recent
work suggests that QMC predictions may depend crucially on
how the location of the nodal planes of the electronic wave
function is approximated (26). All theoretical models propose
that the transition extends to temperatures up to at least 10,000
K, which appears to be inconsistent with recent experiments
along the reverberating-shock Hugoniot of H2, where a seem-
ingly continuous crossover from a molecular to a dissociated
liquid is observed (2). Our simulations indicate that a sharp
transition does indeed take place at lower temperatures (1,500–
2,000 K), which is not inconsistent with the experimental and
QMC results. The transition might end at a critical point located
below the temperatures reached in shock experiments. If so,
the nature of the liquid in the ‘‘supercritical’’ region above the
critical point, that is along the shock Hugoniots and along
the pressure-temperature isentrope of giant planets, could be
more complex than previously thought. A number of thermo-
dynamic and dynamical anomalies are known to occur above the
critical point (27). These include a maximum in the temperature
dependence of the pressure along the isentrope (1) and a
minimum in the pressure dependence of the sound velocity. All
of these anomalies are known to have important implications for
our understanding of the interiors of giant planets (28, 29).

Because a continuous insulator-to-metal transition has been
observed at similar pressures but slightly higher temperatures (2),
we checked whether the transition observed here is also associated
with metallization. We calculated the electronic density of states for

Fig. 3. Electronic density of states of hydrogen at 1,500 K in the molecular
state at 112 GPa (Left) and the nonmolecular state at 137 GPa (Right). The zero
of the energy corresponds to the Fermi level.

Fig. 1. Calculated volumes for liquid hydrogen at 1,500 K (bars; their size
gives the error). The anomalous error bar at 125 GPa is discussed in the text.
The dashed line indicates the experimental volume at 300 K (23).

Fig. 2. (A) Pair correlation functions of hydrogen at 1,500 K and the pressures
indicated. (B) Sketch of the hydrogen phase diagram. Circles indicate points
where simulations were performed; E correspond to points where the system
was found to be molecular (nonmolecular points are indicated by F). Triangles
indicate shock-wave points from ref. 2. A continuous transition from insulat-
ing (‚) to metal (Œ) behavior was observed. The dashed line is an extrapolation
of the melting line (7). The dash-dotted line is an extrapolation of the
first-order transition line predicted by quantum Monte Carlo simulations with
free-particle nodes for the electronic wave function (24). Gray lines indicate
suggested phase boundaries.
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a sharp— 4 orders of magnitude—jump (see insertion in
Fig. 4) of dc electrical conductivity of adiabatically com-
pressed plasmas. We plan to extend both the experimental
and theoretical techniques to search and study phase tran-
sitions and electrical conductivity anomalies in warm
dense matter of other elements and at other parameters.
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FIG. 4. Isentropic compression of deuterium. Comparison of
experimental data and theoretical predictions. Open circles—
[27]; line with stars—present work; dashed line isentrope calcu-
lated by SAHA-D model [21,26]; dotted line—isentrope calcu-
lated by model [10,24]; hypothetical phase transitions: density
gap at ‘‘plasma phase transition’’ (PPT) at T ! 2000–10 000 K
[6]—up triangles; ‘‘dissociation driven’’ phase transition (DPT)
at T ! 1500 K [12]—down triangles with dashed line; anomaly
at T ! 3000 K and ! ! 1 g=cm3 associated with DPT [13]—
thick line; Insertion above. Electrical conductivity of com-
pressed hydrogen: solid rhombus—data from experiments
with liquid hydrogen [20,21]; open circles and open squares—
data from experiments with liquid and gaseous hydrogen accord-
ingly [22,23].
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High-explosive driven generators of cylindrical and plane shock waves in D2 and H2 were used for the
generation of warm and dense strongly nonideal matter with an intense interparticle interaction and Fermi
statistics. Highly resolved flash x-ray diagnostics were used to measure the adiabatic plasma compressi-
bility. The thermodynamic measurements demonstrated the 20% increase of density at megabar pressure,
just in the density range, where the electrical measurements indicated a sharp—5 orders of magnitude—
increase of electrical conductivity due to pressure ionization in strongly coupled plasmas.
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The investigation of Jupiter, Saturn, brown dwarfs, and
D-T targets for inertial confinement fusion [1,2] demands
the knowledge of thermodynamic information on strongly
nonideal (where the ratio of the Coulomb interaction en-
ergy to kinetic energy ! ! Ze2n1=3=EK " 1), partially
degenerated (ne!3

e # 1; !e !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2"@2=mekBT

p
. . . -electron

de Broglie thermal wavelength) hydrogen plasma. In this
region the complexity of a physical description increases
considerably, when nonideal effects are superimposed with
chemical reactions associated with partial pressure and
temperature dissociation and ionization [1–3]. Many inter-
esting phenomena, such as metal-insulator transition, Mott
effect, and metastability have been predicted for nonideal
plasmas. They occur in situations where both quantum and
Coulomb effects are important, making the physical analy-
sis extremely difficult. Moreover, new nonstandard kinds
of phase transitions have been predicted for strongly
coupled Coulomb systems and warm dense hydrogen. It
is the so-called ‘‘plasma phase transition’’ (PPT) [1–9] and
‘‘dissociation driven’’ phase transition (DPT) [10–14]. In
many of these works [2,5–8,11] the variants of ‘‘chemical
picture’’ were applied for calculation of thermodynamics
of warm dense partially ionized hydrogen (deuterium).

Recently the ab initio direct quantum mechanical simu-
lation approaches [path-integral Monte Carlo method [15]
and density functional theory (DFT) molecular dynamic
method [12–14] ] have been applied successfully to dense
warm strongly coupled proton-electron system (hydrogen)
and have shown the clear indication of existence of new
phase transitions other than the ordinary gas-liquid tran-
sition and melting of molecular crystal. That is why the
experimental detection of new phase transitions seems to
be the real challenge of modern plasma and condensed
matter physics. Up to now, no experimental indications of

plasma phase transitions in the real multicomponent (ion,
electron, atom, and molecule) nonideal plasma were ob-
tained. In this work we present the first direct experimental
thermodynamic signature of new phase transition in
strongly coupled (#$ 1–4 g=cc) nonideal deuterium
with intense Coulomb interaction (!$ 100–200), quasi-
isentropically compressed up to pressure $3 Mbar.

A number of experiments have been made with intense
shock compression of liquid, solid, and initially precom-
pressed gaseous hydrogen (deuterium) [16–19]. In early
experiments with laser-driven shock waves [16] liquid
deuterium was compressed in maximum up to density #$
1:1 g=cc (#=#0 $ 6) at pressure range 100–300 GPa. In
later experiments with magnetically driven [17] and high-
explosive (HE) driven [18,19] shock waves liquid, solid,
and initially precompressed gaseous deuterium was com-
pressed up to significantly lower density #$ 0:7–0:8 g=cc
(#=#0 $ 4) at pressure 100 GPa. All these experiments
gave no indication of any new phase transitions. Present
experiment gives such indication at the same pressure as
the shock experiments (p$ 100 GPa) but at significantly
higher density (#$ 2 g=cc).

To generate strongly nonideal plasma the dynamic
method was applied (see [1] and references therein). In
this experimental approach the intense shock waves were
used for compression and nonreversible heating of plasma
up to several megabars pressure range and up to tempera-
tures %3–8& 103 K. The inertial confinement of high-
pressure plasma allows us to generate strongly coupled
states during 10'8–10'6 sec .

In our experiments we have used the quasi-isentropic
compression of plasma [20–23] by the series of reverber-
ating shock waves, allowing one to obtain compression
#=#0 $ 50 and !> 200.
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It is generally assumed1–3 that solid hydrogen will transform into
a metallic alkali-like crystal at sufficiently high pressure. How-
ever, some theoretical models4,5 have also suggested that com-
pressed hydrogenmay form an unusual two-component (protons
and electrons) metallic fluid at low temperature, or possibly even
a zero-temperature liquid ground state. The existence of these
new states of matter is conditional on the presence of amaximum
in themelting temperature versus pressure curve (the ‘melt line’).
Previous measurements6–8 of the hydrogen melt line up to
pressures of 44GPa have led to controversial conclusions regard-
ing the existence of this maximum. Here we report ab initio
calculations that establish themelt line up to 200GPa.We predict
that subtle changes in the intermolecular interactions lead to a
decline of the melt line above 90GPa. The implication is that as
solidmolecular hydrogen is compressed, it transforms into a low-
temperature quantum fluid before becoming a monatomic crys-
tal. The emerging low-temperature phase diagram of hydrogen
and its isotopes bears analogies with the familiar phases of 3He
and 4He (the only known zero-temperature liquids), but the long-
range Coulomb interactions and the large component mass ratio
present in hydrogen would result in dramatically different
properties9.

The possible existence of low-temperature liquid phases of
compressed hydrogen has been rationalized with arguments based
on the nature of effective pair interactions and of the quantum
dynamics at high density, resulting in proton–proton correlations
insufficient for the stabilization of a crystalline phase5. But so far
there has been no conclusive evidence establishing whether hydro-
gen metallizes at low temperature as a solid (the more widely
accepted view to date) or as a liquid. Measurements and theoretical
predictions of the near-ground-state high-pressure phases3 of
hydrogen are difficult because of the light atomic mass, significant
quantum effects and strong electron–ion interactions. In this
regard, the finite temperature liquid–solid phase boundary pre-
dicted here is especially valuable for understanding the manner in
which hydrogen metallizes.

The appearance of a maximummelting temperature in hydrogen
is in itself a manifestation of an unusual physical phenomenon. The
few systems with a negative melt slope involve either open crystal-
line structures, such as water and graphite, or in the case of closed
packed solids, a promotion of valence electrons to higher orbitals
upon compression (6 s to 5 d in caesium10, for example). In these
cases, the liquid is denser than the solid when they coexist, possibly
because of structural or electronic transitions taking place continu-
ously in the liquid, as a function of pressure, but only at discrete
pressure intervals in the solid.

In contrast, recent experiments8 have shown that hydrogen phase
I—a solid structure with rotationally free molecules associated with
the sites of a hexagonal close packed (h.c.p.) lattice—persists below
the liquid transition up to at least 150GPa, that is, well beyond the
melt curvemaximum predicted here. The promotion of electrons to
higher orbitals in hydrogen can also be ruled out because of the
prohibitive high energy involved. Alternatively, it has been
suggested that dissociation in the fluid, either gradual7 or following
a first-order liquid–liquid phase transition11,12, may be the origin of

a maximum in the melt line. This idea is not supported by our
results. Instead, we explain the physical origin of the maximum in
terms of changes in the intermolecular interactions—a mechanism
significantly different from that expected from familiar phenom-
enological models.
The approach taken here to compute the melt line is one of direct

simulation of the melting process. Hysteresis effects of super-
heating or super-cooling during the phase transition are avoided
by simulating solid and liquid phases in coexistence. The validity of
this method is then assessed by reducing size effects in such a way
that realistic thermodynamic processes can be mimicked. This
technique, known as two-phase simulation, hasmostly been applied
with model potentials13, thus allowing the simulation of large
systems, and only recently was it demonstrated14,15 that implemen-
tations within the framework of first-principles molecular dynamics
(MD) are feasible.
Two-phase simulations (Fig. 1) are performed for various press-

ure and temperature conditions to predict the melt curve of
hydrogen up to 200GPa (Fig. 2). As discussed in refs 7 and 8, the
experimental data available up to 44GPa can be equally well fitted
with several empirical melt equations, leading to qualitatively
different conclusions regarding the further rise or fall of the phase
boundary. Our results at 50GPa compare favourably with recent
measurements8, and the calculations at 130 and 200GPa predict a
negative slope in this pressure region.
Previous first-principles calculations11,16 indicated the existence

of a sharp transition from molecular to non-molecular fluid, thus
raising the possibility that the melt curve maximum is a liquid–
liquid–solid triple point. We therefore studied the properties of the
liquid at temperatures abovemelting. In our simulations, we do find

Figure 1 Snapshots from two-phase MD simulations at P ¼ 130 GPa and temperatures

below and above the melting temperature. A quantitative assessment of the instantaneous

local order environment around each molecule has been performed as described in

ref. 29, and compared with single-phase solid and liquid simulations. Molecules are

coloured according to the arrangement of their nearest neighbours, red and blue

representing configurations uniquely characteristic of the h.c.p. solid and liquid at the

given P and T, respectively (the Q 4 order parameter
29 has been used for the colour map).

The systems reach equilibrium at the target average temperatures (800 and 900 K) over a

time interval of,0.5 ps, which is followed by periods of coexistence lasting from one to

several picoseconds. The phase transitions are observed by monitoring changes in the

diffusion constants, pair correlation functions, specific volumes and local order

parameters. In addition, some noticeable correlations between temperature and diffusion

variations indicate the exchange of latent heat.
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Previous measurements6–8 of the hydrogen melt line up to
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ing the existence of this maximum. Here we report ab initio
calculations that establish themelt line up to 200GPa.We predict
that subtle changes in the intermolecular interactions lead to a
decline of the melt line above 90GPa. The implication is that as
solidmolecular hydrogen is compressed, it transforms into a low-
temperature quantum fluid before becoming a monatomic crys-
tal. The emerging low-temperature phase diagram of hydrogen
and its isotopes bears analogies with the familiar phases of 3He
and 4He (the only known zero-temperature liquids), but the long-
range Coulomb interactions and the large component mass ratio
present in hydrogen would result in dramatically different
properties9.

The possible existence of low-temperature liquid phases of
compressed hydrogen has been rationalized with arguments based
on the nature of effective pair interactions and of the quantum
dynamics at high density, resulting in proton–proton correlations
insufficient for the stabilization of a crystalline phase5. But so far
there has been no conclusive evidence establishing whether hydro-
gen metallizes at low temperature as a solid (the more widely
accepted view to date) or as a liquid. Measurements and theoretical
predictions of the near-ground-state high-pressure phases3 of
hydrogen are difficult because of the light atomic mass, significant
quantum effects and strong electron–ion interactions. In this
regard, the finite temperature liquid–solid phase boundary pre-
dicted here is especially valuable for understanding the manner in
which hydrogen metallizes.

The appearance of a maximummelting temperature in hydrogen
is in itself a manifestation of an unusual physical phenomenon. The
few systems with a negative melt slope involve either open crystal-
line structures, such as water and graphite, or in the case of closed
packed solids, a promotion of valence electrons to higher orbitals
upon compression (6 s to 5 d in caesium10, for example). In these
cases, the liquid is denser than the solid when they coexist, possibly
because of structural or electronic transitions taking place continu-
ously in the liquid, as a function of pressure, but only at discrete
pressure intervals in the solid.

In contrast, recent experiments8 have shown that hydrogen phase
I—a solid structure with rotationally free molecules associated with
the sites of a hexagonal close packed (h.c.p.) lattice—persists below
the liquid transition up to at least 150GPa, that is, well beyond the
melt curvemaximum predicted here. The promotion of electrons to
higher orbitals in hydrogen can also be ruled out because of the
prohibitive high energy involved. Alternatively, it has been
suggested that dissociation in the fluid, either gradual7 or following
a first-order liquid–liquid phase transition11,12, may be the origin of

a maximum in the melt line. This idea is not supported by our
results. Instead, we explain the physical origin of the maximum in
terms of changes in the intermolecular interactions—a mechanism
significantly different from that expected from familiar phenom-
enological models.
The approach taken here to compute the melt line is one of direct

simulation of the melting process. Hysteresis effects of super-
heating or super-cooling during the phase transition are avoided
by simulating solid and liquid phases in coexistence. The validity of
this method is then assessed by reducing size effects in such a way
that realistic thermodynamic processes can be mimicked. This
technique, known as two-phase simulation, hasmostly been applied
with model potentials13, thus allowing the simulation of large
systems, and only recently was it demonstrated14,15 that implemen-
tations within the framework of first-principles molecular dynamics
(MD) are feasible.
Two-phase simulations (Fig. 1) are performed for various press-

ure and temperature conditions to predict the melt curve of
hydrogen up to 200GPa (Fig. 2). As discussed in refs 7 and 8, the
experimental data available up to 44GPa can be equally well fitted
with several empirical melt equations, leading to qualitatively
different conclusions regarding the further rise or fall of the phase
boundary. Our results at 50GPa compare favourably with recent
measurements8, and the calculations at 130 and 200GPa predict a
negative slope in this pressure region.
Previous first-principles calculations11,16 indicated the existence

of a sharp transition from molecular to non-molecular fluid, thus
raising the possibility that the melt curve maximum is a liquid–
liquid–solid triple point. We therefore studied the properties of the
liquid at temperatures abovemelting. In our simulations, we do find

Figure 1 Snapshots from two-phase MD simulations at P ¼ 130 GPa and temperatures
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a first-order liquid–liquid phase transition from molecular to
dissociating fluid, but this occurs at temperatures higher than
those of the melting line; at 200GPa, the liquid–liquid transition
takes place between 900 and 1,000 K (Fig. 2). Thus, over the pressure
range considered here, the liquid remains molecular below 900K,
with molecules stable over the simulation times of several pico-
seconds.We emphasize that on heating above a critical temperature,
the transition to a non-molecular fluid takes place very rapidly, over
a couple of hundred femtoseconds of simulation time. When the
fluid is subsequently quenched, the molecules recombine and the
system reverts to the molecular state. Therefore, we conclude that
the change from a positive to a negative melt line slope happens
gradually and we emphasize that it is not directly related to
molecular dissociation. However, extrapolations of the melt line
and the liquid–liquid phase transition indicate a triple point at
,300GPa and 400K. Above this pressure, the solid is expected to
melt into a metallic liquid.
To estimate the errors originating from finite system size effects,

we have computed the ground-state pressure and energy for
different size simulation cells sampled at the G-point and with a
2 £ 2 £ 2 k-point mesh. The pressure and energy differences
between the solid and the liquid are converged to within
,0.3 GPa and ,1meV per ion, and the estimated errors are
included in Fig. 3. A question that remains to be answered is
whether the size of the system considered here is sufficient to
simulate liquid–solid coexistence. To address this, we carried out
MD simulations of single-phase solid and liquid hydrogen at the
melting temperatures determined in the two-phase simulations.
The differences in the specific volumes and enthalpies obtained in
this way (Fig. 3) are then used to compute the melt slopes using the
Clausius–Clapeyron equation. The agreement with the results from
two-phase simulations gives us confidence that the computed melt
curve is thermodynamically consistent.
We also discuss the validity of the principal approximations in

our theoretical method: (1) adiabatic interactions, (2) the general-
ized gradient approximation (GGA) for the exchange-correlation
energy, and (3) classical treatment of ion motion. Electron–phonon
interactions are significant in the solid phase when the direct
bandgap is comparable with the phonon frequencies, an event
that eventually occurs at high densities. But at 200 GPa and
600 K—the conditions examined here where the electron–phonon
coupling is expected to be most pronounced—the GGA bandgap is
still ,2 eV. We note that the GGA tends to systematically under-
estimate bandgaps; this has been shown for various materials,
including hydrogen17. However, because the highest vibrational
frequencies in hydrogen are ,0.5 eV, the computed GGA band-
gap—a lower bound to the actual value—is already sufficient to
establish that non-adiabatic effects are indeed negligible.

Local density approximations are also expected to favour the
phase with more delocalized electrons; previous studies have shown
a consistent tendency of the GGA to underestimate melting tem-
peratures, such as those of lithium hydride14 and aluminium15.
Here, this effect is expected to be very small because the molecular
bonding properties and the atomic coordination differ little in the
solid and liquid phases. This also implies that the zero-point energy
bound in the vibron motion is similar in the two phases. Indeed,
velocity–velocity autocorrelation analysis carried out on our MD
trajectories shows that vibron frequency distributions (containing
all vibrational modes) differ by less than 10 cm21 in the solid and
the liquid between 50 and 200GPa. In addition, we have computed
the first-order quantum correction to the ionic free energies.
It is given by the Wigner–Kirkwood formula, DF ¼
"2=ð24k2BT2ÞPikF2i l=mi; where the average is over the classical
ensemble, and Fi and mi are the ionic forces and masses. The
difference in the quantum corrections for the phases obtained in
this way at pressures of 50, 130 and 200GPa remains less than 2meV
for temperatures near the computed melt curve.

We now turn our attention to the physical origin of themaximum
in the melt curve of hydrogen. The transition from an ordered to a

Figure 3 Difference of the specific volumes (DV ) and enthalpies (DH ) between the liquid
and solid phases at the melting temperatures determined from the two-phase

simulations. The reported uncertainties include standard deviations collected during the

MD simulations and observed size effects from single-phase simulations with 360 and

768 atom supercells. The data are used to compute melt slopes from the Clausius–

Clapeyron equation: dTm/dP ¼ TmDV/DH; the values obtained for 50, 130 and 200 GPa

are (6.5 ^ 1.2), (21.4 ^ 0.6) and (22.3 ^ 0.6) K/GPa, respectively. For comparison,

the slopes from the melt line fit in Fig. 2 are 3.9,22.2 and22.7 K GPa21, but we note

that these are weighted heavily by the experimental data, especially at lower pressures.

Figure 2 Melt curve of hydrogen predicted from first-principles MD. The filled circles are

experimental data from refs 6 and 7 and references therein, and the open squares are

measurements from ref. 8. Triangles indicate two-phase simulations where solidification

(up) or melting (down) have been observed, and bracketed melting temperatures (Tm ) are

represented by open circles. As the phase boundary is approached, the period of

coexistence increases and eventually the outcome becomes dependent on the choice of

simulation parameters. This degree of arbitrariness is reflected in the error bars of Tm,

which also include the standard deviation of the temperatures collected during the MD

simulations. All experimental and theoretical points are given equal weight and fitted with

a Kechin melt equation30 (solid line in the figure): Tm ¼ 14.025(1 þ P/a)b exp(2cP ) K,

where P is in units of GPa, a ¼ 0.030355, b ¼ 0.59991, and c ¼ 0.0072997. The open

diamond marks the liquid–liquid transition from molecular to non-molecular fluid at

200 GPa, and the estimated slope of this phase boundary is given by the green line. The

error bar on the diamond symbol indicates the hysteresis effects during the simulation of

the liquid–liquid transition.
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sample was illuminated by an auxiliary laser operating
continuously in the visible then speckle motion would
not be observable because the melting only occurs at pulse
peaks, about 1=500 of the time. However our CCD re-
sponded to the 1:065 !m pulsed laser radiation, which
only illuminates the CCD during the laser pulse so that
the duty cycle for observation of melting was of order 1.
The observation of the plateau and motion of the laser
speckle coincided. The second method was to plot the
temperature versus the average laser power. With increas-
ing power the temperature rises; there is a plateau at
melting as shown in Fig. 2, as the energy goes into the
heat of melting. In Fig. 3 we show a typical set of data to
determine the temperature of melting: the lower tempera-
tures are below the plateau, the highest on the plateau.
Statistical errors of the temperature from the fit around the
melt temperature are very small, around !4 K. The
smaller than usual uncertainty arises because with our
method of using the platinum foil for the absorber and
for determination of the optical transfer function the emis-
sivity drops out for the fitting procedure and one carries out
a one-parameter fit rather than two (emissivity and tem-
perature). Moreover, in unpublished work, we have shown
that the emissivity of platinum is essentially independent
of temperature in the temperature region of our study. The
dominant uncertainty arises from the determination of the
melt temperature from the plateau curves, approximately
!15 K, and a possible systematic error of "5 K from the
transfer function determination.

The melting line of hydrogen is shown in Fig. 4 and has a
peak. Our lowest pressure measurement agrees well with
the measurements of Gregoryanz et al. [18]. Our data
exhibit a rather sharp peak at 64:7! 4 GPa and 1055!
20 K. The pressure we specify here is the ambient pressure,
i.e., the pressure before heating, and there may be a thermal
effect (see ahead) during the short pulse that enhances the
pressure at melting. The main source of uncertainty in the
peak (ambient) pressure is due to the interval of data

points. Our results establish a peak in the melting line in
the vicinity of this point. We were not able to fit our data
with the unexpectedly sharp peak to a Kechin melting
curve, as was done by earlier researchers. The calculation
of the melt line depends on the space group of the solid and
Bonev et al. [12] assumed the hcp structure. The unex-
pected sharpness of the melting line peak may be due to an
as yet undetected solid-solid phase line intersecting the
melt line; this might be an extension of a new phase
recently detected by Baer, Evans, and Yoo [29].

There are two more interesting points to discuss. First, a
preliminary finite element analysis [25], including thermo-
elastic coefficients, has shown that the pressure of the
hydrogen at the surface of the absorber during a short
heat pulse may be higher than the ambient pressure by of
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FIG. 3 (color online). The blackbody radiation curves below
and above the melt line for P # 75 GPa. We also show the curve
for 700 K, our approximate limit for temperature measurement.
Shown are the BB curves for the Planckian average temperatures
of 921, 906, and 866 K, yielding peak temperatures of 944, 925,
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FIG. 4 (color online). The experimental melting line of hydro-
gen showing our results along with earlier results at lower
pressures. Bonev et al. fit their theoretical results to a Kechin
curve and we show this curve (dashed line). We also show the
calculated liquid-liquid phase line for dissociation of hydrogen
in the melt.
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The insulator to metal transition in solid hydrogen was predicted over 70 years ago but the
demonstration of this transition remains a scientific challenge. In this regard, a peak in the temperature
versus pressure melting line of hydrogen may be a possible precursor for metallization. However, previous
measurements of the fusion curve of hydrogen have been limited in pressure and temperature by diffusion
of hydrogen into the gasket or diamonds. To overcome this limitation we have used an innovative
technique of pulsed laser heating of the sample and find a peak in the melting line at P ! 64:7" 4 GPa
and T ! 1055" 20 K.
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One of the great challenges to condensed matter physics
is the observation of the insulator to metal transition in
solid hydrogen, predicted over 70 years ago by Wigner and
Huntington to take place at 25 GPa [1]; metallic hydrogen
was also predicted by Ashcroft [2] to be a high temperature
superconductor. Earlier advances at low temperature found
two new high-pressure phases, the broken symmetry phase
[3,4] at about 110 GPa and the hydrogen A phase [5,6] at
about 150 GPa, but neither in the metallic phase [7,8].
Pressures as high as 342 GPa [9,10] have not yielded the
metallic state. Recently the approach to finding the insu-
lator to metal transition in diamond anvil cells (DACs) has
shifted from low to very high temperature. After a calcu-
lation by Scandolo [11], an analysis of the melting line by
Bonev et al. [12] predicted a peak at $80 GPa and
$900 K. Furthermore, at higher temperatures they found
a liquid-liquid transition from H2 to nonmolecular hydro-
gen, with a negative slope. By extrapolation beyond the
pressures of the peak this curve meets the melting line so
that hydrogen would melt from the molecular solid to the
atomic liquid. Extrapolation of this melt line to still higher
pressure and lower temperature implies that at a pressure
greater than 400 GPa hydrogen might be a liquid at T !
0 K. Babaev, Sudbø, and Ashcroft [13] analyzed high-
pressure liquid atomic hydrogen and found two-component
superconductivity for the protons and electrons, as well as
superfluidity. The existence of a peak in the melting line
will show a possible new pathway to metallic hydrogen and
the importance of extending calculations and experiments
to higher pressures and lower temperatures. Using an in-
novative technique we have measured the melting line in
the region where molecular hydrogen melts to a molecular
liquid and find a peak at a pressure of 64:7" 4 GPa and
temperature of 1055" 20 K.

In order to measure the melting line a hydrogen sample
must be confined at high pressure and temperature and this
is a challenge. Diatschenko and Chu [14] measured the
melting curve up to room temperature and 5.2 GPa and fit it
to the conventional Simon-Glatzel equation [15]. Datchi,
Loubeyre, and LeToullec [16] extended the curve in an

electrically heated DAC to P ! 15 GPa and T ! 526 K.
This was their limiting temperature, since at higher tem-
peratures the hydrogen diffused through the confining
metallic gasket and the sample was lost. They found a
curvature in the melting line such that it could be fit to a
Kechin melting curve [17] which can have a maximum.
Subsequently, Gregoryanz et al. [18] were able extend the
melting line measurements to P$ 44 GPa and T $ 800 K,
also fitting to a Kechin melting curve, with a possible
maximum at higher pressures. In their Ohmically heated
cell, at the highest temperatures the diamonds would fail
within a few minutes, evidently due to hydrogen diffusion
into the diamonds [19]. Thus, there is a need to extend the
measurements to higher temperatures [20].

There are two common methods of heating samples in
DACs: continuous Ohmic heating of the DAC where the
temperature is measured with a thermocouple and continu-
ous wave (cw) laser heating. In the latter an optical ab-
sorber is embedded in the sample in the DAC. A high
power laser ( $ 50 W) is focused on the absorber; the
absorber and the surrounding sample heat to thousands of
degrees K, controlled by the laser power. Temperature can
be accurately determined by recording the blackbody (BB)
radiation spectrum and fitting to a Planckian curve. This
method has been used, for example, to measure the melting
lines of rare gas solids [21], where melting was detected by
illuminating the sample with an auxiliary laser and observ-
ing the onset of motion in the laser speckle pattern. For
Ohmic heating the sample temperature is uniform; for laser
heating there is a large thermal gradient. The absorbed
power flows from the absorber to the sample to the dia-
monds to the body of the DAC, and components become
hot and susceptible to hydrogen diffusion and embrittle-
ment, while the DAC body can become hot to the touch. To
circumvent the problems due to diffusion, we have utilized
the method of pulsed laser heating [22–24]. We use a
neodymium-vanadate laser with a pulse length of 70 to
$200 ns and peak powers up to $20 kW. During the pulse
the surface of the absorber, a 1:5 !m thick platinum foil
with linear dimension $25 !m (see Fig. 1), heats and the
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1. INTRODUCTION

Establishing the melting curve of hydrogen is of
fundamental interest in physics and astrophysics, as
hydrogen is the simplest element and the most abun-
dant matter in the interiors of stars and giant planets.
Recent theoretical calculations show unusual behavior
of the hydrogen melting curve: it starts at ambient pres-
sure at 14 K, attains a maximum at 

 

T

 

 

 

≈

 

 900 K at 

 

P

 

 

 

≈

 

90 GPa [1], and is extrapolated [2] to 0 K at 

 

P

 

 

 

≈

 

400 GPa, where hydrogen is predicted to be in liquid
ground state [3, 4] as a metallic superfluid or supercon-
ducting superfluid [3, 5] (Fig. 1). Thus, it is possible
that fluid hydrogen occupies the bulk of the pressure–
temperature (

 

P

 

, 

 

T

 

) phase diagram, whereas the domain
of solid hydrogen is limited by the melting curve
(Fig. 1). Above the melting curve, at megabar pressures
hydrogen becomes gradually conductive and then
metallic because of the dissociation of molecules and
narrowing of the band gap due to derealization of elec-
trons (Fig. 1: from [1] (open diamond), [6] (solid
square), [9] (circles), [7] (open square), and [12] (star).
See also [8, 10, 11]. Therefore, hydrogen might already
occur in its metallic state at accessible pressures of 

 

P

 

 >
100 GPa and temperatures of below 

 

T

 

 = 2000 K
(Fig. 1).

First-principles molecular dynamics simulations
yield similar results [1, 6]; however, there exist contra-
dictory explanations of the maximum in the melting
curve. According to [6], a sharp liquid–liquid transition
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takes place between a molecular and a dissociated
phase at 

 

≈

 

125 GPa and 1500–2000 K (Fig. 1, solid
square). The transition is accompanied by a volume
reduction of 

 

≈

 

6%, thus explaining the negative slope of
the melting curve at higher pressures. Based on two-
phase simulations [1], a second physical origin of the
maximum in the melt curve of hydrogen has been pro-
posed: the contrasting rates at which the steep increase
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Hydrogen at high pressures of ~400 GPa might be in a zero-temperature 

 

liquid

 

 ground state (N. Ashcroft, J.
Phys.: Condens. Matter A 
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, 129 (2000), E. G. Brovrnan et al., Sov. Phys. JETP 
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, 783 (1972)). If metallic
hydrogen is liquid, the melting 
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melt
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) line should possess a maximum. Here we report on the experimental
evaluation of the melting curve of hydrogen in the megabar pressure range. The melting curve of hydrogen has
been shown to reach a maximum with 

 

T

 

melt

 

 = 1050 

 

±

 

 60 K at 

 

P

 

 = 106 GPa and the melting temperature of hydro-
gen decreases at higher pressures so that 

 

T

 

melt

 

 = 880 

 

±

 

 50 K at 

 

P

 

 = 146 GPa. The data were acquired with the
aid of a laser heating technique where diamond anvils were not deteriorated by the hot hydrogen. Our experi-
mental observations are in agreement with the theoretical prediction of unusual behavior of the melted hydro-
gen [S. Bonev et al., Nature 
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Fig. 1.

 

 Phase diagram of hydrogen. Our melting points are
shown with black bars. Domain of conductive fluid hydro-
gen is indicated by the shaded area. The provisional low-
temperature boundary of this area is based on calculations
(see text for details).
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in repulsive interactions at high density are softened by
attractive many-body interactions in the solid and liq-
uid phases as a function of pressure. Recent ab initio
molecular-dynamics calculations also indicate a strong
decline in the melting curve with pressure, showing sta-
bility of the liquid phase at 300 GPa and 400 K [12].

The melting curve of hydrogen has been studied
experimentally by many authors, starting with the first
measurements performed at the Leiden laboratory in
the Netherlands, nearly 100 years ago for pressures up
to 0.25 kbar [13]. The most recent measurements have
been performed at up to 7.7 GPa and 373 K [14],
15.2 GPa and 530 K [15], 40 GPa and 800 K [16], and
80 GPa and 1100 K [17]. Solids and open circles on
Fig. 1 indicate experimental melting data from [16] and
[17]. Experimental data on melting are typically fitted
to empirical melting laws that can be used for the ana-
lytical presentation and extrapolation. Those the most
widely employed are the Simon–Glatzel [18] (Fig. 1,
the solid line) and Kraut–Kennedy [19] (Fig. 1, the
dashed line) expressions, which generally describe
experimental melting curves with great accuracy. Both
predict a continuous rise in the melting line. In contrast,
the empirical Kechin melting equation [2] (Fig. 1, the
dot line) yields an excellent fit to experimental data but
predicts a turnover in the melting curve at ~100 GPa
and 950 K [2], close to the parameters of the maximum
in the melting curve obtained via first-principles calcu-
lations [1] (Fig. 1, the solid triangles). Available hydro-
gen melting data [15–17] clearly demonstrate a devia-
tion from the common Simon–Glatzel law, while they
can be satisfactory fitted to the Kraut–Kennedy equa-
tion (melting temperature is proportional to the isother-
mal volume compression) (Fig. 1). The highest pres-
sure of 80 GPa of the hydrogen melting curve have
recently been achieved [17] using 70–200 ns laser
pulses for heating. However, the temperature measure-
ments and detection of the melt were not temporally
resolved and determined indirectly from the data inte-
grated over the laser pulses. The maximum in the melt-
ing curve was assigned to a sharp increase of the melt-
ing temperature at one point at 65 GPa. Other experi-
mental points in this study satisfactorily agree with the
Kraut-Kennedy equation [19]. To summarize, the pres-
sure range of available experimental data [15–17] is
insufficient for a reliable estimate of a maximum at the
melting curve hydrogen and for extrapolation to higher
pressures. Therefore only experiments conducted at
significantly higher, megabar pressures can give an
answer if melting temperature decreases with pressure,
i.e. the melting curve has a maximum. So far experi-
mental work on dense hydrogen in the megabar range
has been limited to shock-wave experiments conducted
at elevated temperatures [20, 21] (Fig. 1, open triangle
point). The melting curve was not determined in these
studies, however, it was demonstrated that fluid hydro-
gen is conductive at 

 

P

 

 

 

≈

 

 150 GPa and high temperatures
of 

 

≈

 

3000 K.

The primary goal of the present static pressure work
was to determine values of the melting temperature of
hydrogen at pressure range up to about 150 GPa within
which the predicted maximum at the melting curve [1]
would be observable.

2. EXPERIMENTAL
We performed numerous laser heating runs in four

different diamond anvil cells (DACs) loaded cryogeni-
cally with hydrogen. Experiments with hydrogen under
high-temperature high-pressure conditions pose a num-
ber of significant difficulties. The most severe problem
is the interaction of hydrogen with diamond anvils: the
hot hydrogen easily penetrates diamond anvils causing
their breakage to pieces. This inevitably happens at
experiments with external heating where diamonds are
in contact with hot hydrogen [16]. In our study we
developed a laser heating technique which allowed for
preserving diamond anvils from the deteriorating influ-
ence of the hot hydrogen. In this case the temperature
of anvils remains almost unchanged (see Figs. 2, 3 and
the “Discussion Section”) while hydrogen can be
heated to temperature up to ~2000 K in the layer con-
tacting a heater which is in turn insulated with hBN
from the anvils. Schematic diagram of the arrangement
of a diamond anvil cell for the melting of hydrogen is
shown in Fig. 2a. The area illuminated with the laser is
indicated with the circle in the center while the circle on
the right indicates position of the laser in the control
experiment described in the text. The photograph (B)
shows the diamond anvil cell under light transmitted
through the cBN-epoxy gasket, which is transparent at
high pressures. The hole (diameter 

 

≈

 

20 

 

µ

 

m) in the cen-
ter of the diamond anvil culets contains hydrogen. The
edge of the hole (which is rough in appearance) is a
mixture of pieces of cBN gasket and hydrogen. A plat-
inum electrode (1-

 

µ

 

m-thick and 

 

≈

 

5-

 

µ

 

m-width foil)
passes through the hydrogen sample. The electrode is
thermally insulated from the back anvil with a ~1-

 

µ

 

m-
thick transparent piece of hBN. Spacing between the
diamonds (thickness of the cBN gasket is estimated as
5–7 

 

µ

 

m). The electrode was heated with 5–15 W power
1.054 

 

µ

 

m radiation of a YLF-laser focused on a 15–
30 

 

µ

 

m spot, and thermal radiation spectra were mea-
sured every 0.5 seconds from a 3 

 

×

 

 3 

 

µ

 

m spot selected
by a field diaphragm at the surface of the heated Pt foil.
The resistance of the electrode was measured using the
quasi-four-probe scheme (each end of the electrode
touches two other Pt electrodes extending outside the
cell). The Raman spectrum of hydrogen is represented
at 300 K and 146 GPa with a vibron line at 4067 cm

 

–1

 

.
The signal around 1500 cm

 

–1

 

 is Raman scattering from
the stressed diamond anvil tip.

Typically in our experiments the laser exposure time
was about 30 seconds. This time was sufficient for reli-
able data acquisition. In a typical laser heating run, we
simultaneously measured temperature, resistance of the
Pt foil (Fig. 3), and Raman spectra (Fig. 4).
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 Phase diagram of hydrogen. Our melting points are
shown with black bars. Domain of conductive fluid hydro-
gen is indicated by the shaded area. The provisional low-
temperature boundary of this area is based on calculations
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Hydrogen, being the first element in the periodic table,
has the simplest electronic structure of any atom, and the
hydrogen molecule contains the simplest covalent chemical
bond. Nevertheless, the phase diagram of hydrogen is poorly
understood. Determining the stable structures of solid hydrogen
is a tremendous experimental challenge1–3, because hydrogen
atoms scatter X-rays only weakly, leading to low-resolution
diffraction patterns. Theoretical studies encounter major
difficulties owing to the small energy differences between
structures and the importance of the zero-point motion of
the protons. We have systematically investigated the zero-
temperature phase diagram of solid hydrogen using first-
principles density functional theory (DFT) electronic-structure
methods4, including the proton zero-point motion at the
harmonic level. Our study leads to a radical revision of the DFT
phase diagram of hydrogen up to nearly 400 GPa. That the most
stable phases remain insulating to very high pressures eliminates
a major discrepancy between theory5 and experiment6. One of
our new phases is calculated to be stable over a wide range of
pressures, and its vibrational properties agree with the available
experimental data for phase III.

The low-pressure phase I of solid hydrogen, which consists
of freely rotating molecules on a hexagonal close-packed lattice2,
transforms at pressures of about 110 GPa to the broken-symmetry
phase II, in which the mean molecular orientations are ordered,
and then to phase III at about 150 GPa (ref. 1). However, even the
combination of X-ray and neutron scattering data and Raman and
infrared vibrational data has not so far yielded the structures of
phases II and III of hydrogen.

The theoretical prediction of stable crystal structures is very
difficult because of the need to search the very large space of
possible structures, and the necessity of obtaining accurate energies
for each of these structures. First-principles DFT methods have
proved an efficient means of calculating quite accurate energies, and
they have provided many insights into the properties of materials,
including solid hydrogen5,7. At present, DFT offers the highest level
of theoretical description at which we can carry out searches over
many possible candidate structures.

Our approach is to relax many random structures to minima
in the enthalpy at fixed pressure8. This method does not rely on
previous theoretical or experimental results, and it allows for the
possibility of finding radically new structures. In some cases we
used the intuition gained from the random searches to build other
candidate structures. We then calculated the enthalpies of the most
stable phases at a larger number of pressures, generating the data
shown in Fig. 1. We refer to each structure by its short Hermann–
Mauguin space-group symbol, giving additional information where
an ambiguity might occur.

The lowest-enthalpy structures found around 100 GPa were
those of space groups Pca21 and P21/c, which were considered
in previous studies5,7, and a new structure of space group P63/m,
which is marginally the most stable up to 105 GPa. The centres of
the molecules in these structures form a slightly distorted hexagonal
close-packed lattice, as is generally thought to occur in phase II
of solid hydrogen. The molecular bond lengths of the different
structures are very similar and the molecules are orientated so that
the atoms of neighbouring molecules are kept apart. The P63/m
structure differs from the other two in that some molecules lie
perpendicular to the plane, whereas the others are arranged around
it in a ‘swirl’; see Fig. 2.

The most stable phase we found in the range 105–270 GPa is a
layered structure of space group C2/c, which is illustrated in Fig. 3.
We also found a layered molecular structure of Cmca symmetry
with a 12-atom primitive unit cell. We refer to this as Cmca-12 to
distinguish it from the Cmca structure discussed in earlier work5,
which was also generated by our searches. Cmca-12 is illustrated
in Fig. 4, and it is the most stable phase in the range 270–385 GPa.
From 385–490 GPa we found the Cmca structure to be the most
stable, and above 490 GPa the monatomic I41/amd structure with
a c/a ratio greater than unity (which is also the structure of Cs-IV)
is most stable. Cmca-12 remains competitive up to about 500 GPa,
and a more closely packed version of Cmca, which we refer to
as high-Cmca (and is the same structure as black phosphorus), is
almost degenerate with Cmca-12 and I41/amd at about 480 GPa.
A structure of Cmcm symmetry has been obtained by following
an unstable phonon displacement of the Pca21 structure9. We have
studied this structure but found it to be uncompetitive; see Fig. 1.
We found numerous less stable structures, including a particularly
intriguing family of ‘mixed’ structures consisting of alternate
layers of strongly bonded hydrogen molecules and less strongly
bonded atoms, which at higher pressures resemble graphene
layers. These mixed structures are described in more detail in the
Supplementary Information.

The small mass of the proton poses a significant problem
for theoretical descriptions of hydrogen; the zero-point (ZP)
motion of the nuclei is large enough to significantly affect the
relative stabilities of structures and their vibrational properties.
We have estimated ZP vibrational energies within DFT using the
harmonic approximation. The harmonic approximation is likely
to give useful estimates of the total ZP vibrational energy of the
candidate structures at low pressures, as the calculated harmonic
vibronic frequencies are similar to the measured values. There
are, however, noticeable anharmonic effects in hydrogen, even
at low pressures1,10. In monatomic structures, which are believed
to be stable at very high pressures, the harmonic approximation
fails completely11.

nature physics VOL 3 JULY 2007 www.nature.com/naturephysics 473

!"#$#%&'()***+ ),-.-,/0*1234215*67

Figure 2: A layer of the hexagonal P63/m structure at 300 GPa. The layers are stacked
in an ABAB fashion, and the primitive unit cell contains 16 atoms which form two types
of hydrogen molecule. Three quarters of the molecules lie flat within the plane, and
one quarter lie perpendicular to the plane. The centres of the molecules lie on a slightly
distorted hexagonal close packed lattice. In this, and Figs. 3, 4, and 5, bonds are indicated
between atoms closer than 1.05 Å, and close contacts (pink dashed lines), if they exist,
between atoms closer than 1.15 Å.

6

Figure 3: A layer of the monoclinic C2/c structure at 300 GPa. The layers are arranged
in an ABCDA fashion, and the primitive unit cell contains 24 atoms. Each layer consists
of three inequivalent molecules whose axes are nearly parallel to the plane and whose
centres form a distorted hexagonal lattice.

7

Figure 4: A layer of the monoclinic Cmca-12 structure at 300 GPa. The layers are arranged
in an ABA fashion, and the primitive unit cell contains 12 atoms. The arrangement of the
molecules is similar to that in C2/c, although the molecules lie flat within the layer and the
distortion from hexagonal packing is larger.

8

Figure 5: The Pbcn structure at 300 GPa. Four layers are depicted, with the colour become
successively darker for each deeper layer. On applying further pressure, the bond lengths
within the less strongly bonded graphene-like layers become more nearly equal, and the
Ibam structure is formed.

9



Moving the ions

- In Metropolis MC we generate a Markov chain of ionic states S distributed according to

Boltzmann

P (S) ∝ exp(−βEBO(S))

EBO(S) = Born-Oppenheimer energy for the configuration S.

- Given an initial state S we propose a trial state S′ with probability

T (S → S′) = T (S′ → S)

and we accept the move with probability

A(S → S′) = min
ˆ

1, exp
˘

−β[EBO(S′) − EBO(S)]
¯˜

- After a finite number of moves the Markov chain is distributed with Boltzmann (if ergodicity

holds).

- But EBO(S) from QMC is noisy⇒ use the penalty method
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The Penalty Method

Assume mean value and variance of the energy difference over the noise distribution

P (δ|S, S′) exist

β[EBO(S′) − EBO(S)] = < δ(S, S′) >= ∆(S, S′)

< (δ − ∆)2 > = σ2(S, S′)

We want to find the new acceptance probability a(S → S′) such that we satisfy detailed

balance on average:

T (S → S′) < a(S → S′) >= T (S′ → S) < a(S′ → S) > exp[−β∆(S, S′)]

< a(S → S′) >=

Z ∞

−∞
dδP (δ|S, S′)a(δ|S,S′)

Under general assumption one can show that

a(δ|σ) = min

»

1, exp

„

−δ −
σ2

2

«–

The noise always causes extra rejection !
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The Penalty Method

EFFICIENCY: which level of noise is optimal?

For a generic observable we ask which level of noise minimizes its statistical error ε2 at

fixed computer time T : T = m[nt + t0]

m=total number of ionic steps attempted

n=number of electronic calculations before the acceptance test

t=CPU time for a single electronic calculation

t0=time in the noiseless part of the code per total step

In general ε = c(s)m−(1/2) and s = σn−(1/2). (c(s) and sigma are unknown).

A measure of the inefficiency of our calculation is:

T ε2 = c2(s)t0

»

1 +
f

s2

–

f = σ2 t

t0

For any given application we have to chose s which minimize this quantity.

In few simple examples the optimal noise level was found to be s2 = σ2/n ≈ 1.

In CEIMC other constraints imposes the noise level but as a rule of thumb we always try

to stay around 1.

σ2 ∼ T−2: lowering the temperature requires smaller noise level, i.e. longer electronic

runs
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The penalty method for random walks with uncertain energies

D. M. Ceperley and M. Dewing
Department of Physics and NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

!Received 28 December 1998; accepted 1 March 1999"

We generalize the Metropolis et al. random walk algorithm to the situation where the energy is

noisy and can only be estimated. Two possible applications are for long range potentials and for

mixed quantum-classical simulations. If the noise is normally distributed, we are able to modify the

acceptance probability by applying a penalty to the energy difference and thereby achieve exact

sampling even with very strong noise. When one has to estimate the variance we have an

approximate formula, good in the limit of a large number of independent estimates. We argue that

the penalty method is nearly optimal. We also adapt an existing method by Kennedy and Kuti and

compare to the penalty method on a one-dimensional double well. © 1999 American Institute of

Physics. #S0021-9606!99"50920-3$

I. INTRODUCTION

As Metropolis et al. showed in 1953,1 Markov random

walks can be used to sample the Boltzmann distribution and

thereby calculate thermodynamic properties of classical

many-body systems. The algorithm they introduced is one of

the most important and pervasive numerical algorithms used

on computers because it is a general method of sampling

arbitrary highly-dimensional probability distributions. Since

then many extensions have been developed.2 In addition to

the sampling of classical systems, many quantum Monte

Carlo algorithms such as path integral Monte Carlo,3 varia-

tional Monte Carlo,4 and lattice gauge Monte Carlo use a

generalization of the random walk algorithm.

In a Markov process, one changes the state of the system

%s& randomly according to a fixed transition rule, P (s
→s!), thus generating a random walk through state space,

%s0 ,s1 ,s2 , . . . &. The transition probabilities often satisfy the
detailed balance property !a sufficient but not necessary con-
dition". This means that the transition rate from s to s! equals
the reverse rate,

'!s "P !s→s!"!'!s!"P !s!→s ". !1"

Here '(s) is the desired equilibrium distribution which we

take for simplicity to be the classical Boltzmann distribution,

'(s)(exp("V(s)/(kBT)), where T is the temperature and

V(s) is the energy. If the pair of functions %'(s),P (s
→s!)& satisfy detailed balance and if P (s→s!) is ergodic,
then the random walk will eventually converge to ' . For
more details see Refs. 5 and 6.

In the particular method introduced by Metropolis one

ensures that the transition rule satisfies detailed balance by

splitting it into an a priori sampling distribution T(s→s!) !a
probability distribution that can be directly sampled such as a

uniform distribution about the current position" and an ac-
ceptance probability a(s→s!) with 0)a)1. The overall
transition rate is

P !s→s!"!T!s→s!"a!s→s!". !2"

Metropolis et al.1 made the choice for the acceptance prob-

ability,

aM!s→s!"!min#1,q!s!→s "$ , !3"

where

q!s→s!"!
'!s!"T!s!→s "

'!s "T!s→s!"

!exp!"!V!s!""V!s ""/!kBT "". !4"

Here we are assuming for the sake of simplicity that T(s!
→s)!T(s→s!). The random walk does not simply proceed
downhill; thermal fluctuations can drive it uphill. Moves that

lower the potential energy are always accepted but moves

that raise the potential energy are often accepted if the en-

ergy cost !relative to kBT!1/*) is small. Since asymptotic
convergence can be guaranteed, the main issue is whether

configuration space is explored thoroughly in a reasonable

amount of computer time.

What we consider in this article is the common situation

where the energy, V(s) needed to accept or reject moves, is

itself uncertain. This can come about because of two related

situations:

!1" The energy may be expressed as an integral, V(s)

!+dxv(x ,s). If the integral has many dimensions, one
might need to perform the integral with another subsid-

iary Monte Carlo calculation.

!2" The energy may be expressed as a finite sum, V(s)
!,k!1

N ek(s), where N is large enough that performing

the summation slows the calculation. It might be desir-

able for the sake of efficiency to sample only a few terms

in the sum.

A. Mixed quantum-classical simulation

First, consider the typical system in condensed matter

physics and chemistry, composed of a number of classical

nuclei and quantum electrons. In many cases the electrons

can be assumed to be in their ground state and to follow the

nuclei adiabatically. To perform a simulation of this system,

JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 20 22 MAY 1999
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Two level sampling

Since the electronic part is much more expensive than computing any classical effective

potential, in CEIMC we can use two level Metropolis sampling to improve the efficiency.

Suppose Vcl(S) is a reasonable proton-proton potential. The equilibrium distribution can be

written as:

P (S) ∝ e−β[EBO(S)−Vcl(S)]e−βVcl(S) = P2(S)P1(S)

A trial move is proposed and accepted or rejected based on a classical potential

A1 = min

»

1,
T (S → S′)

T (S′ → S)
exp(−β[Vcl(S

′) − Vcl(S)])

–

If we accept at the first level, the QMC energy difference is computed and the move

accepted with probability

A2 = min
ˆ

1, exp(−β∆EBO − uB) exp(β[Vcl(S
′) − Vcl(S)]

˜

where uB is the noise penalty.
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The electronic problem

System of Np ions and Ne electrons. We need to compute the BO energy

EBO(S) = < Φ0(S)|Ĥ|Φ0(S) >

|Φ0(S) >= electronic ground state w.f. for ionic state S = {!s1, . . . ,!sNp}.

In configurational space X = (R, Σ) = ({r1, . . . , rNe}, {σ1, . . . , σNe})

EBO(S) =

Z

dX |Φ0(X|S)|2 EL(X|S); EL(X|S) =
Ĥ(R, S)Φ0(X|S)

Φ0(X|S)

σ2(S) =

Z

dX |Φ0(X|S)|2 [(EL(X|S) − EBO(S)]2
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Φ0(X|S)

σ2(S) =

Z

dX |Φ0(X|S)|2 [(EL(X|S) − EBO(S)]2

If |Φ0(S) > is an eigenfunction of Ĥ

8

<

:

EL(X|S) = EBO(S)

σ2(S) = 0 zero variance principle
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Variational Monte Carlo - VMC 1

The “Variational Theorem”: assume a trial wave function for the electrons in the external

field of the ions ΨT (X|S) and compute the total energy as the average of the local

energy EL = Ψ−1
T HΨT

E0 ≤ ET =
< ΨT |Ĥ|ΨT >

< ΨT |ΨT >
=

R

dX|ΨT (X; S)|2Ψ−1
T (X; S)ĤΨT (X; S)

R

dX|ΨT (X; S)|2

The functional form of the trial wave function must be suitable

continuous

of proper symmetry

normalizable

with finite variance (for MC only)

Parametrized: for a given functional form ΨT depends on a number of parameters

!α = (α1, . . . , αn)

ΨT (X|S, !α) =⇒ ET (S, !α) = 〈EL(X|S, !α)〉
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VMC 2

1. Since |ΨT |2 ≥ 0, VMC uses Metropolis MC to sample P (X|S, α) = |ΨT |2/
R

dr|ΨT |2.

2. take averages of the local energy and the variance

3. optimize over {αi} by minimizing energy and/or variance

4. repeat until convergence is reached

in CEIMC VMC-optimization should be done for each protonic configuration:

major bottleneck for the method

possible solutions

use an automatic optimization method such as Projection MC

in special cases use trial wave functions without variational parameters

(mono-atomic metallic hydrogen)
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Reptation QMC: RQMC-1

Assume a trial state |ΨT >

|ΨT >=
P

i ci |Φi > eigenstates of Ĥ

|Ψ(t) >≡ e−tĤ |ΨT >=
X

i

cie
−tEi |Φi >=⇒ lim

t→∞
|Ψ(t) >∝ |Φ0 >

E0 =
< Φ0|Ĥ|Φ0 >

< Φ0|Φ0 >
= lim

t→∞

(

E(t) =
< Ψ(t/2)|Ĥ|Ψ(t/2) >

< Ψ(t/2)|Ψ(t/2) >
=

< ΨT |e−
t
2

ĤĤe−
t
2

Ĥ |ΨT >

< ΨT |e−tĤ |ΨT >

)

Define the generating function of the moments

Z(t) =< ΨT |e−tĤ |ΨT > =⇒

8

>

>

<

>

>

:

E(t) = −∂t log Z(t) =< EL >t −→ E0

t → ∞

σ2(t) = ∂2
t log Z(t) = −∂tE(t) > 0 −→ 0

- The energy converges monotonously from above (∂tE(t) ! 0)

- At any finite time t, E(t) is a variational upper bound to E0: E(t) " E0
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< Ψ(t/2)|Ĥ|Ψ(t/2) >

< Ψ(t/2)|Ψ(t/2) >
=

< ΨT |e−
t
2
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RQMC - 2

In configuration space

Z(t) =

Z

dRdR′ < ΨT |R > ρ(R, R′, t) < R′|ΨT >

ρ(R, R′, t) =< R|e−tĤ |R′ > is the thermal density matrix at inverse temperature t.

Factorization (t = Mτ ) =⇒ path integral

ρ(R, R′, t) =< R|(e−τĤ)M |R′ >=

Z

dR1 · · · dRM−1

M−1
Y

k=1

ρ(Rk−1, Rk, τ)

R0 = R, RM = R′ paths boundary conditions in imaginary time

Importance sampling

Z(t) =

Z

dRdR′ΨT (R)
D

e−
R t
0

dτEL(R(τ))
E

DRW
ΨT (R′)
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Summary of FN-RQMC

Build a path Q = (R0, . . . , RM ) for the system of Ne electrons at fixed ionic

configuration S.

Sample the path space according to the distribution

Π(Q|S) = exp
ˆ

− U(R0|S) − U(RM |S) − A(Q|S)
˜

U(R|S) = "[lnΨT (R|S)]

A(Q|S) = path action

FN: check ΨT (Rk−1)ΨT (Rk) > 0 along the path. Otherwise reject the new path.

Compute the local energy and the variance at path ends, other properties at the middle:

O(t) =
1

Z(t)

Z

dR1dR2dR3Ψ∗
T (R1)ρ(R1, R2|

t

2
) < R2|Ô|R2 > ρ(R2, R3|

t

2
)ΨT (R3)

no mixed estimators bias!!!

ensure convergence to the continuum limit (τ → 0) and to the ground state (t → ∞)
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Sampling the electrons

VMC: in classical systems it is usually more efficient to move the particles one at a time by

adding a random vector to a particle’s coordinate. This remains true in VMC if we can update

the Slater determinant efficiently (single row and column updates).

With backflow wave functions we would need to recompute the entire Slater determinant

after any single particle move =⇒ global moves.

RQMC: at each move one end of the many-body polymer is randomly chosen.

A number of links are cut at the sampled end and added to the opposite end.

Detailed balance is imposed by computing the probability of the reverse move.

Problems: a) the memory of this algorithm in MC step scales as (#beads)2/acceptance.

b) persistent configurations can appear

Bounce algorithm: we propose to choose at random one end of the chain at the beginning of

the calculation and to reverse the growth direction upon rejection only.

It is possible to prove that it samples the correct probability distribution (Pierleoni Ceperley,

ChemPhysChem 2005).

Nice scaling of the memory.

No persistent configurations observed.
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The bounce algorithm

Bounce algorithm: choose at random one end of the chain at the beginning of the Markov

chain and reverse the growth direction upon rejection only. Minimal modification of the

algorithm and solve both problems

Proof of the Bounce algorithm:

- enlarge the configurational space {Q, d} and define P (Q, d → Q′, d′).

- assuming ergodicity, the Markov chain converges to a unique stationary state, Υ(Q, d)

solution of the eigenvalue equation:

X

Q,d

Υ(Q, d) P (Q, d → Q′, d′) = Υ(Q′, d′).

- allowed transitions

P (Q, d → Q′, d′) "= 0 ⇐⇒

8

<

:

d = d′ , Q "= Q′ accepted move

d′ = −d , Q = Q′ rejected move.

- assume d′ = +1. Since Π(Q) does not depend on d

Π(Q′)P (Q′,−1 → Q′, 1) +
X

Q "=Q′

Π(Q)P (Q, 1 → Q′, 1) = Π(Q′).
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The bounce algorithm

- DB (Π(Q)P (Q, 1 → Q′, 1) = Π(Q′)P (Q′,−1 → Q,−1)) provides

Π(Q′)

2

4P (Q′,−1 → Q′, 1) +
X

Q

P (Q′,−1 → Q,−1)

3

5 = Π(Q′)

The term in the bracket exhausts all possibilities for a move from the state (Q′,−1), thus it

adds to one. Hence Π(Q) is a solution and by the theory of Markov chains, it is the unique

probability distribution of the stationary state.
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Energy difference method

In CEIMC we need to evaluate the energy difference between two closeby protonic

configurations (S,S’).

Two independent electronic calculations (uncorrelated sampling) is very inefficient for

∆E << E.

Optimal sampling function: minimizes the variance of the energy difference

P (Q|S, S′) ∝
˛

˛Π(Q|S)(ES− < ES >) − Π(Q|S′)(ES′− < ES′ >)
˛

˛

but it requires an estimate of < ES >, < ES′ >.

simpler form: P (Q|S, S′) ∝ Π(Q|S) + Π(Q|S′)

These two forms have the properties that

- sample regions of both configuration spaces (S and S’)

- make the energy difference bounded

compute properties for the system S by reweighting technique (RQMC easier than

DMC).
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Finite size effects: TABC

In the metallic systems finite size effects coming from the discrete structure of the Fermi

surface are dominant and must be carefully treated.

The finite size effects can be reduced to the classical 1/N behavior averaging over the

undetermined phase of the wave function (Li et al. PRE 2001). For periodic systems we

have

Ψ(!r1 + L!̂x,!r2, · · · ) = eiθxΨ(!r1,!r2, · · · ) θ ∈ [−π, π)

TABC:

A =
1

(2π)3

Z π

−π
d3θ < Ψθ|A|Ψθ >

In practice θ can be chosen on a 3D grid and independent calculations are performed

for each grid point.

(Almost) no extra cost for TABC in CEIMC since we sum over twist angles to reduce the

noise.
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Finite size effects: TABC

Lin, Zong, Ceperley PRE 64, 016702 (2001)
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Quantum protons

By increasing pressure or decreasing temperature, ionic quantum effects start to

become relevant. Those effects are important for hydrogen at high pressure.

Static properties of quantum systems at finite temperature can be obtained with Path

Integral Monte Carlo method (PIMC).

We need to consider the thermal density matrix rather than the classical Boltzmann

distribution:

ρP (S, S′|β) =< S|e−β(Kp+EBO)|S′ >

The same formalism as in RQMC applies. However

1 - β is the physical inverse temperature now.

2 - to compute averages of diagonal operators we map quantum protons over ring

polymers

3 - we limit to distinguishable particle so far (T > Td), but Bose or Fermi statistics could

be considered.

Factorization β = P τp and Trotter break-up

For efficiency introduce an effective proton-proton potential Ĥeff = K̂P + V̂eff

ρ̂P (τp) = e−τp[Ĥeff +(ÊBO−V̂eff )] ≈ e−τpĤeff e−τp[ÊBO−V̂eff ]
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Quantum protons - 2

We compute numerically the matrix elements of the effective pair density matrix

ρ̂
(2)
eff (τp) (see lecture notes). The effective N-body density matrix is approximated by

< S|ρ̂(N)
eff (τp)|S′ >≈

Y

ij

< si, sj |ρ̂
(2)
eff (τp)|si, sj > +O(n3)

We add the remaining term of the original Hamiltonian (EBO − Veff ) at the level of the

primitive approximation.

With this Trotter break-up we found convergence to the continuum limit (τp → 0) for

1/τp ! 3000K which allows to simulate systems at room temperature with only

M ≈ 10 proton slices (for metallic hydrogen at rs = 1).
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Quantum protons - 3

In CEIMC quantum protons are (almost) for free !

Suppose we run classical ions with a given level of noise (βσcl)2. Consider now

representing the ions by P time slices. To have a comparable extra-rejection due to the

noise we need a noise level per slice given by: (τpσk)2 ≈ (βσcl)2/P which provides

σ2
k ≈ Pσ2

cl. We can allow a noise per time slice P times larger which means considering

P times less independent estimates of the energy difference per slice. However we

need to run P different calculations, one for each different time slice, so that the amount

of computing for a fixed global noise level is the same as for classical ions.

When using TABC, for any proton time slice we should in principle perform a separate

evaluation of the BO energy difference averaging over all twist angles. We have

checked that, at each proton step, we can randomly assign a subset of twists at each

time slice and get the same results.

We need to move all slices of all protons together. This limits the length of proton paths,

therefore the temperature we can achieve. It is essential to use the best possible Trotter

factorization!!
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Summary of CEIMC

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic

path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition

probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many

independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution

depending on both P and P ′.

Use reweighting to compute energy difference∆ and variance σ2 by averaging results

over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.
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Backflow-3body trial functions

ΨT (!R|S) = det(ei!ki·!xj )exp

0

@−
Ne
X

i=1

2

4

1

2

Ne
X

j !=i

ũee(rij) −

Np
X

j=1

ũep(rij) −
1

2
!G(i) · !G(i)

3

5

1

A

backflow: !xi = !ri +
Ne
X

j !=i

ηee(rij)(!ri − !rj) +

Np
X

j=1

ηep(rij)(!ri − !rj)

ηα(r) = λα
b exp[−(r/wα

b )2]

3body: G(i) =
Ne
X

j !=i

ξee(rij)(!rl − !rj) +

Np
X

j=1

ξep(rij)(!ri − !rj)

ũee(r) = uee(r) − ξ2
ee(r)r

2

ũep(r) = uep(r) − ξ2
ep(r)r2

ξ(r) = λα
T exp[−(r/wα

T )2]
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• DFT/band orbitals (cusp corrected) + J-RPA + eeBF-A.

• eeBF improves the energy and reduces the variance by two!!!              
(RQMC: ∆t=0.01 a.u., T=1.5 a.u.)

CEIMC: trial functions
DFT+eeBF

DFT/band orbitals (cusp corrected) + J-RPA + eeBF-A.

eeBF improves the energy and reduces by a factor of two the variance !!!

(RQMC:τe = 0.01, βe = 1.5)
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CEIMC: trial functions
Metallic vs DFTBF
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total energy for static configurations
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EDFT BF < EMet; ODFT BF < OMet

Energy dispersions (mH/at)

- ∆dftbf =2.54(4); ∆met=4.68(4) almost a factor of 2!

- ∆rqmc=2.54(4); ∆vmc=2.88(4) ∆vmc/∆rqmc ∼ 1.13
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Metallic hydrogen: liquid phase rs=1
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classical protons,  TABC

DFTBF wf is in good agreement with CPMD data but not with the Metallic wf.

We don’t expect RQMC to change the picture.

Metallic: Pierleoni, Ceperley, Holzmann 2004
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Metallic liquid hydrogen: Rs=1, T=1000K

CPMD: Kohanoff Hansen 1995



Liquid-liquid phase transition: CEIMC

centered on 1.3–1.5 Bohr. gat is a fit to the next-nearest
neighbor distribution. We find that the quality of the fit is
insensitive to the choice of gat; the molecular fraction
varies by no more than 3% for different choices. The
molecular order parameter, !, the fraction of protons that
are bound into a molecule, is plotted against pressure in
Fig. 3 for T ! 2000 K.

We find that the CEIMC simulations using VMC energy
differences (left pane Figs. 2 and 3) yield an irreversible
transition with hysteresis. This implies a free-energy bar-
rier that is difficult to overcome during the simulations,
hence a metastable state is obtained. The large width of the

hysteresis loop is indicative of a transition that is weakly
first order. We therefore expect that T ! 2000 K is close to
the VMC critical point.

In contrast, the much more accurate RQMC simulations
(right pane Figs. 2 and 3) yield a reversible and continuous
molecular dissociation upon increasing pressure. Both mo-
lecular and atomic states are mechanically unstable in the
range of densities simulated, and the system quickly
evolves, with no discernible free-energy barrier, to a stable
part-molecular, part-atomic state. This behavior implies
the lack of an underlying first-order transition, a behavior
which would not change as the thermodynamic limit is
approached. The likely reasons for the change in character
of the crossover is that the BO energy surface of the
assumed Slater-Jastrow trial function is inaccurate under
conditions at which molecules are short-lived transient
entities. As discussed above, these deficiencies are cor-
rected by the imaginary-time projection of RQMC, if they
are due to errors in the modulus of the trial wave function
and not its phase.

We have assessed the finite-size errors in the cell volume
by repeating a selection of simulations with 54 atoms. The
proton-proton correlation functions in Fig. 4 show the
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FIG. 3 (color online). Molecular order parameter [! in Eq. (2)]
evaluated for simulation results from Fig. 2. Two curves are
obtained for each method from different initial conditions (see
text). VMC (dashed lines) simulations indicate an irreversible,
weakly first-order phase transition for molecular dissociation in
the fluid with increasing or decreasing pressure. This picture is
compatible with conclusions from CPMD DFT-LDA. Accurate
RQMC (solid lines) simulations find a reversible crossover.
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(right pane) and the wave function is a Slater-Jastrow type with
bare electron-proton bands (see text). Gray lines are simulations
initially prepared with a molecular fluid and black with an
atomic fluid. Hysteresis is evident. Pat and Pm are the computed
pressures for simulations prepared with an atomic and a mo-
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correlated sampling [9,10], and eliminated by using the
penalty method [16].

For electronic sampling, we use either VMC or reptation
quantum Monte Carlo (RQMC) methods. RQMC [17] is a
projector method that does not suffer from the mixed-
estimator bias of DMC and allows efficient calculations
of energy differences. To handle electron antisymmetry, we
use the fixed-phase method [18] which allows the modulus
of the many-electron wave function to be fully optimized
while the phase is held fixed. This gives an estimate of the
ground-state energy much lower than that of the variational
estimate (by typically 2500 K=atom) but above that of the
exact ground-state energy. Analysis of related electron
systems suggest that the error of the fixed-phase energy
will be between 10% and 30% of the VMC error [19], i.e.,
between 250 and 750 K=atom. We expect relative errors,
between different proton configurations, to be even less
[20]. We also employ twist-averaged boundary conditions
[21] in the electronic calculation to greatly reduce finite-
size effects, a problem that has caused substantial errors in
earlier simulations of fluid hydrogen [22]. Well-converged
energies and correlation functions are achieved using,
depending on the density, between 108 and 500 twist
angles.

In the CEIMC approach, one is free to choose any trial
wave function for the electronic ground state. An important
consideration is the computer time required per step, be-
cause the wave function must be calculated for many
nuclear configurations. When studying dense liquid hydro-
gen, we require a general wave function that is equally
accurate for both molecular and nonmolecular configura-
tions. Therefore, we employ a fast band-structure calcula-
tion with an effective one-electron potential designed to
produce accurate single-particle orbitals for a Slater-
Jastrow type wave function. Within the fixed-phase ap-
proach, it is only the orbitals that affect the systematic
bias. One such set of orbitals would be those computed
within Kohn-Sham theory. However, full self-consistency
for each proton displacement would be too expensive for
generating a large number of nuclear configuration-space
samples. Consequently, we use a bare electron-proton po-
tential for the effective single-particle potential. Further
screening and correlation effects are introduced with a
Slater-Jastrow wave function; the Jastrow factor is from
the RPA pseudopotential, including the one-body
(electron-proton) term [12]. Such an approach is surpris-
ingly good, as demonstrated by Fig. 1 which shows VMC
and RQMC total energies for five different frozen nuclear
configurations. This trial function is comparable in quality
to one using Kohn-Sham LDA orbitals in the Slater deter-
minant for all configurations and densities tested, while
being faster to generate. It is also more transferable than
both localized molecular orbitals [9] (which cannot be used
for nonmolecular systems) and analytic backflow [23]
(which is highly accurate only for high-density metallic
systems).

We investigate the atomic-molecular transition in liquid
hydrogen at fixed density (1:35 ! rs ! 1:55 where
4!r3s=3"1=ne) and temperature (T"2000 and 1500 K).
The pressure, estimated using the virial theorem, an ap-
proach that is accurate with RQMC due to the lack of a
mixed-estimator bias, lies between 135 and 290 GPa for
this range of densities. Using a classical Monte Carlo
simulation with an empirical potential [10], the system is
prepared either in a purely molecular or a purely atomic
fluid initial configuration. During the subsequent simula-
tion the system evolves to its equilibrium state, subject to
overcoming any free-energy barriers during the simulation.
A typical simulation has 14 000 ionic moves with a step
size of 0.006–0.016 Bohr. We collect statistics along the
sequence of ionic states, particularly the proton-proton
correlation functions which give insight into the state of
the liquid through a distinctive peak at rpp # 1:4 Bohr
when molecules are present. Figure 2 shows a set of
proton-proton correlation functions for simulations at sev-
eral densities prepared with either a molecular or atomic
fluid as the initial state.

For a quantitative analysis, a method for estimating the
average number of molecules from the pair-correlation
function at each phase point is required. A rough estimate
would involve integrating the pair-correlation function up
to the first minimum, but such an approach does not take
into account the ‘‘baseline’’ caused by nearby molecules
and unbound atoms; see Fig. 2. To remove the baseline, we
fit each of the pair-correlation functions to the functional
form

 g$r% " "gm$r; f#g% & $1' "%gat$r; f$g%; (2)

where f#;$g are fitting parameters and gm is a Gaussian
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FIG. 1. VMC and RQMC total energies for five different
crystal configurations at two different densities (left graphs V "
9:42 a:u:=atom or rs " 1:31; right graphs V " 33:51 a:u:=atom
or rs " 2:0) using a number of different Slater-Jastrow wave
functions. Configuration 1 is molecular, 2–5 are nonmolecular.
Owing to the variational principle, a lower energy implies a
better wave function. DFT-LDA and bare electron-proton bands
(see text) provide the best and most transferable orbitals for the
Slater determinant. Gaussian for configuration 1 refers to local-
ized molecular orbitals.
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Liquid-liquid phase transition: CEIMC
• Simulation details

•32 and 54 protons at NVT conditions (T=1500K and 2000K) 
• Slater determinant with band orbitals 
• 216 twists
• classical protons

• Main conclusions
• at the VMC level a clear hysteresis is observed signaling the presence of 
metastable states: first order phase transition?
•qualitative agreement with CPMD (Scandolo)
•at the RQMC level the hysteresis goes away: continuous molecular dissociation
•qualitative agreement with BOMD(GGA) at NVT conditions where a 
continuous molecular dissociation is observed (Vorberger et al. 2007, Holst et 
al. 2008)
•VMC exhibit large size effects
•no size effects are detected at the RQMC level

.... but ....

    what will it happen at NPT conditions....
 .... for quantum protons ?



melting of the atomic crystal: in progressrs = 1.31 diamond melting
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rs = 1.31 diamond melting
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rs = 1.31 diamond melting

Crystal energies are lower than corresponding liquid energies.

Quantum protonic kinetic energies is sligthly larger in the liquid than in the crystal

system Etot(h/part) Ekin × 103

Diamond(cl) -0.25483(3) 1.5833

Diamond(qu) -0.25761(4) 2.95(7)

Liquid(cl) -0.25359(2) 1.5833

Liquid(qu) -0.2513(1) 3.18(4)

Still very preliminary results !!!!

CNRS Grenoble, 19 May 2008 – p. 41/41
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