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A coarse-grained effective segment description of polymer solutions is presented, based on soft,
transferable effective interactions between bonded and nonbonded effective segments. The number
of segments is chosen such that the segment density does not exceed their overlap threshold,
allowing polymer concentrations to be explored deep into the semidilute regime. This quantitative
effective segment description is shown to preserve known scaling laws of polymer solutions and
provides accurate estimates of amplitudes, while leading to a orders-of-magnitude increase in the
simulation efficiency and allowing analytic calculations of structural and thermodynamic
properties. © 2007 American Institute of Physics. #DOI: 10.1063/1.2803421$

Many conformational, structural, and thermodynamic
properties of semidilute polymer solutions, both in the bulk
and under confinement, can be qualitatively understood in
terms of scaling arguments based on the de Gennes–Pincus
“blob” picture.1 This picture is applicable whenever the char-
acteristic length scale of the polymer solution !e.g., the cor-
relation length !" or of the confinement is significantly
shorter than the radius of gyration Rg of an isolated polymer
chain. The blob picture suggests a systematic coarse-graining
procedure, whereby each polymer chain is divided into a
number n of effective segments, each containing the same
number of monomers of the initial coil, such that segments
of the same or different chains do not, on average, overlap.
In this letter we present and validate a quantitative formula-
tion of such an effective segment representation, which al-
lows a popular single soft segment coarse graining
procedure2–6 to be extended to highly concentrated solutions.

Consider a solution of N self-avoiding polymer chains of
L monomers !each of size b" in a volume V; the polymer
number density is "=N /V, and if Rg%bL# !with #&0.588
the Flory exponent" is the radius of gyration of an isolated
chain, the polymer overlap density is "*=3/ !4$Rg

3".
In the dilute regime, "%"*, where polymers do not, on

average, overlap, they may be represented by a single soft
segment !or “soft colloid”" of radius Rg; the effective inter-
action potential v!r" between the centers of mass !CMs" of
two soft colloids can be calculated by averaging over mono-
mer conformations for a given distance r between their CMs,
e.g., by Monte Carlo !MC" simulations of an isolated pair of
polymers.2–6 The resulting v!r" depends weakly on polymer
length L, and in the scaling limit !L→&", it is approximately,
but accurately represented by a Gaussian of width %Rg,6

v!r"
kBT

& A exp#− '!r/Rg"2$ , !1"

where A&1.75 and '&0.80. For finite L, the MC data6 for
the amplitude A can be fitted, for L(100 by A!L"=A&

+a /L), with A&=1.75, a=1.5, and )=0.33, while the coef-
ficient ' turns to be independent of L. The softness of the
repulsive interaction, characterized by a modest free energy
penalty of &2kBT at full overlap !r=0" of two polymers,
reflects the low average monomer concentration c%L1−3#

%L−0.77 inside each coil for long chains.
In the semidilute regime, "*"*, polymer coils overlap,

and this is reflected in a significant density dependence of the
effective interaction,5 which spoils the simplicity of the
coarse-graining procedure and introduces complications as-
sociated with state-dependent interactions.7 This density de-
pendence signals the fact that in the semidilute regime the
relevant length scale is no longer Rg, but the shorter correla-
tion length !%Rg!" /"*"−+, with +=# / !3#−1"&0.77.1

These shortcomings may be overcome by switching to a
multisegment representation, where each of the n effective
segments is made up of l=L /n monomers. If rg%bl# is the
segment radius of gyration, the segment overlap concentra-
tion is "s

*=3/ !4$rg
3"="*n3#. This means that the polymer

density "="s /n can be increased beyond "*, up to n3#−1"*

&n0.77"* before the segments overlap. In other words, the
more segments are used to represent one polymer, the deeper
one can penetrate into the semidilute regime without signifi-
cant segment overlap. Under those conditions the effective
interactions between the CMs of the effective segments are
expected to be practically independent of segment density "s
and may be taken equal to their zero density limit.

These effective interactions include the pair potential
v!r" between nonbonded segments, and the “tethering” po-
tential ,!r" between adjacent segments on a given chain. The
former is expected to be similar to the Gaussian repulsion in
Eq. !1", with Rg replaced by rg, i.e., the same as the effectivea"Electronic mail: bc299@cam.ac.uk
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• for               polymer do not overlap and the polymer-polymer effective potential is density independent 

• for               polymer starts to overlap and the effective potential by HNC is state dependent

• Multi-blob representation: 

     divide a long polymer of N monomers in n effective segments each grouping l=N/n monomers

     segment radius of gyration

     segment-segment overlapping density: 

     segment-segment effective interactions are density independent if 

    

      By increasing the number of segments per chain we can safely use density independent potentials.

                      

                     

ρ/ρ∗ ≤ 1

rg ∼ blν

ρ∗s =
3

4πr3
g

= ρ∗n3ν

1 ≥ ρs/ρ∗s = (ρ/ρ∗)n1−3ν =⇒ ρ/ρ∗ < n3ν−1 = n0.77

ρ/ρ∗ > 1

Can we use zero density potentials in the semidilute regime?
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Effective segment representation

• Potentials between two equal halfs of a single chain from MC:

• Transferability assumption:  use vss(r/rg) between any non adjacent pair of segments in the multi chains case.

vss(r)/kBT = Ae−α(r/rg)2

φb(r) = vss +
k

2
(r − r0)2 + const

potential between polymers in a single soft segment
representation.4–6 !!r", on the other hand, may be expected
to be the superposition of v!r" at short distances r, and a
harmonic spring at large elongation, similar to the entropic
spring of a Gaussian chain,1,8 albeit with a renormalized
spring constant,

!!r" = v!r" +
k

2
!r − r0"2 + c . !2"

These conjectures are borne out by MC simulations of an
isolated pair of self-avoiding walk !SAW" polymers on a
cubic lattice; each polymer is divided into two subchains of
equal length L /2, and the intramolecular distribution func-
tions s!r" of the CMs of the two effective segments, as well
as the intermolecular pair distribution function g!r" of the
CMs of segments on different chains, are monitored as func-
tions of the CM-CM distances r. !!r" follows directly from
s!r"#exp!−!!r" /kBT", while v!r" is related to g!r" and s!r"
via an exact inversion relation,9 which we used previously
for simple models of a diblock copolymer.10,11 The resulting
!!r" and v!r" are shown in Fig. 1. v!r" is indeed well fitted
by the Gaussian form $Eq. !1"%, and is practically indistin-
guishable from the low density limit of the effective pair
potential between the CMs of two polymers of the same
length, within the single effective segment case.5,6

So far no approximation has been made, and the effec-
tive potentials in Fig. 1 are “exact,” within the numerical
uncertainties of the MC simulations, for a given length L of
the polymer. We now make the reasonable transferability as-
sumption that the interaction potentials in Fig. 1, as functions
of the scaled distance r /rg, remain identical, whatever the
number n of segments into which a polymer chain is divided,
provided the number l of monomers in each effective seg-
ment remains sufficiently large. Note that within this as-
sumption, the potential $Eq. !2"% acts between adjacent !teth-
ered" segments only, while v!r" is the same for all pairs of
segments of the same, or different, chains. This defines the
effective multisegment model of homopolymer solutions and
applies as long as "s#"s

*. Note that in view of the “softness”

of the effective interactions the model is particularly well
suited for simulation purposes !apart from the obvious
speedup due to the considerable reduction of the number of
degrees of freedom from 3N ·L to 3N ·n" as well as for ap-
proximate theories,12,13 to which we shall return.

We now put the above effective segment representation
to the test, focusing on the structure factor S!k" of a solution
of N chains of n segments each,

S!k" =
1

Nn2 &"k"−k' = Sintra!k" +
1
n2(

$
(
%

s$%!k" , !3"

where

"k = (
i=1

N

(
$=1

n

exp!ik · ri$" !4"

and ri$ is the position of the center of segment $ on chain i;
s$%!k" is the partial intermolecular structure factor for seg-
ments $ and %, while Sintra!k" is the intramolecular structure
factor of one polymer. Consider first an isolated polymer of n
segments !S!k"=Sintra!k"". Results for the effective segment
model with n=62 and n=602 are plotted versus kRg on a
log-log scale and compared to the structure factor of a full
monomer representation of a SAW with 1000 monomers in
Fig. 2. All the data follow the power law S!k")a!kRg"−1/& in
the scaling regime 1#kRg#Rg /B, where B is the monomer
length !rg in the effective segment representation and b in the
full monomer representation", with &)0.5988, close to the
expected value of the Flory exponent, and a)1.15, close to
the renormalization group prediction.14 The effective seg-
ment representation does preserve the correct scaling behav-
ior of the single chain structure factor. The structure factor of
the full monomer representation is approximately related to
that of a single effective segment, sseg!k", and to the structure
factor of a chain of segments, Sc!k", by the factorization
approximation, S!k"=sseg!k" ·Sc!k".15 The small k limit of this
relation yields an estimate of the radius of gyration Rg of a
SAW in terms of those of the chain of effective segments
!Rgc" and of a single segment !rg", namely, Rg

2=Rgc
2 +rg

2. The
correction rg

2 accounts for coarse-graining effects, i.e., for the

FIG. 1. !Color online" Effective potentials !!r" between bonded !right-hand
scale, continuous line" and v!r" between nonbonded !left-hand scale,
crosses" effective segments in units of kBT, as computed by MC simulations
of an L=2000 SAW polymer, divided into two equal segments. v!r" is
accurately fitted by the Gaussian $Eq. !1"% with A=1.92 and $=0.80. !!r" is
represented by the form $Eq. !2"% !dashed curve" with the harmonic tethering
potential fitted by 0.534!r /rg−0.730"2−0.724 !dots".

FIG. 2. !Color online" Intramolecular structure factor Sintra!k" of a single
SAW polymer vs kRg on a log-log scale. Squares: MC data for an L
=1000 SAW polymer: closed circles and open circles: MC data for n=62
and n=602 segment representations, respectively. Full line: scaling regime
1.15!kRg"1/&, with &)0.5988; dashed line: Debye structure factor for a
Gaussian chain.
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The higher the density, the larger 
the  number of segments, the 
smaller their radius of gyration, the 
steeper the potential.

In the limit n=M, we go back to the 
full monomer representation (not 
gaussian though).
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potential between polymers in a single soft segment
representation.4–6 !!r", on the other hand, may be expected
to be the superposition of v!r" at short distances r, and a
harmonic spring at large elongation, similar to the entropic
spring of a Gaussian chain,1,8 albeit with a renormalized
spring constant,

!!r" = v!r" +
k

2
!r − r0"2 + c . !2"

These conjectures are borne out by MC simulations of an
isolated pair of self-avoiding walk !SAW" polymers on a
cubic lattice; each polymer is divided into two subchains of
equal length L /2, and the intramolecular distribution func-
tions s!r" of the CMs of the two effective segments, as well
as the intermolecular pair distribution function g!r" of the
CMs of segments on different chains, are monitored as func-
tions of the CM-CM distances r. !!r" follows directly from
s!r"#exp!−!!r" /kBT", while v!r" is related to g!r" and s!r"
via an exact inversion relation,9 which we used previously
for simple models of a diblock copolymer.10,11 The resulting
!!r" and v!r" are shown in Fig. 1. v!r" is indeed well fitted
by the Gaussian form $Eq. !1"%, and is practically indistin-
guishable from the low density limit of the effective pair
potential between the CMs of two polymers of the same
length, within the single effective segment case.5,6

So far no approximation has been made, and the effec-
tive potentials in Fig. 1 are “exact,” within the numerical
uncertainties of the MC simulations, for a given length L of
the polymer. We now make the reasonable transferability as-
sumption that the interaction potentials in Fig. 1, as functions
of the scaled distance r /rg, remain identical, whatever the
number n of segments into which a polymer chain is divided,
provided the number l of monomers in each effective seg-
ment remains sufficiently large. Note that within this as-
sumption, the potential $Eq. !2"% acts between adjacent !teth-
ered" segments only, while v!r" is the same for all pairs of
segments of the same, or different, chains. This defines the
effective multisegment model of homopolymer solutions and
applies as long as "s#"s

*. Note that in view of the “softness”

of the effective interactions the model is particularly well
suited for simulation purposes !apart from the obvious
speedup due to the considerable reduction of the number of
degrees of freedom from 3N ·L to 3N ·n" as well as for ap-
proximate theories,12,13 to which we shall return.

We now put the above effective segment representation
to the test, focusing on the structure factor S!k" of a solution
of N chains of n segments each,

S!k" =
1

Nn2 &"k"−k' = Sintra!k" +
1
n2(

$
(
%

s$%!k" , !3"

where

"k = (
i=1

N

(
$=1

n

exp!ik · ri$" !4"

and ri$ is the position of the center of segment $ on chain i;
s$%!k" is the partial intermolecular structure factor for seg-
ments $ and %, while Sintra!k" is the intramolecular structure
factor of one polymer. Consider first an isolated polymer of n
segments !S!k"=Sintra!k"". Results for the effective segment
model with n=62 and n=602 are plotted versus kRg on a
log-log scale and compared to the structure factor of a full
monomer representation of a SAW with 1000 monomers in
Fig. 2. All the data follow the power law S!k")a!kRg"−1/& in
the scaling regime 1#kRg#Rg /B, where B is the monomer
length !rg in the effective segment representation and b in the
full monomer representation", with &)0.5988, close to the
expected value of the Flory exponent, and a)1.15, close to
the renormalization group prediction.14 The effective seg-
ment representation does preserve the correct scaling behav-
ior of the single chain structure factor. The structure factor of
the full monomer representation is approximately related to
that of a single effective segment, sseg!k", and to the structure
factor of a chain of segments, Sc!k", by the factorization
approximation, S!k"=sseg!k" ·Sc!k".15 The small k limit of this
relation yields an estimate of the radius of gyration Rg of a
SAW in terms of those of the chain of effective segments
!Rgc" and of a single segment !rg", namely, Rg

2=Rgc
2 +rg

2. The
correction rg

2 accounts for coarse-graining effects, i.e., for the

FIG. 1. !Color online" Effective potentials !!r" between bonded !right-hand
scale, continuous line" and v!r" between nonbonded !left-hand scale,
crosses" effective segments in units of kBT, as computed by MC simulations
of an L=2000 SAW polymer, divided into two equal segments. v!r" is
accurately fitted by the Gaussian $Eq. !1"% with A=1.92 and $=0.80. !!r" is
represented by the form $Eq. !2"% !dashed curve" with the harmonic tethering
potential fitted by 0.534!r /rg−0.730"2−0.724 !dots".

FIG. 2. !Color online" Intramolecular structure factor Sintra!k" of a single
SAW polymer vs kRg on a log-log scale. Squares: MC data for an L
=1000 SAW polymer: closed circles and open circles: MC data for n=62
and n=602 segment representations, respectively. Full line: scaling regime
1.15!kRg"1/&, with &)0.5988; dashed line: Debye structure factor for a
Gaussian chain.
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single chain in good solvent

The scaling exponent is independent on 
the chosen resolution 

S(k) ∼ k−1/ν kRg >> 1

potential between polymers in a single soft segment
representation.4–6 !!r", on the other hand, may be expected
to be the superposition of v!r" at short distances r, and a
harmonic spring at large elongation, similar to the entropic
spring of a Gaussian chain,1,8 albeit with a renormalized
spring constant,

!!r" = v!r" +
k

2
!r − r0"2 + c . !2"

These conjectures are borne out by MC simulations of an
isolated pair of self-avoiding walk !SAW" polymers on a
cubic lattice; each polymer is divided into two subchains of
equal length L /2, and the intramolecular distribution func-
tions s!r" of the CMs of the two effective segments, as well
as the intermolecular pair distribution function g!r" of the
CMs of segments on different chains, are monitored as func-
tions of the CM-CM distances r. !!r" follows directly from
s!r"#exp!−!!r" /kBT", while v!r" is related to g!r" and s!r"
via an exact inversion relation,9 which we used previously
for simple models of a diblock copolymer.10,11 The resulting
!!r" and v!r" are shown in Fig. 1. v!r" is indeed well fitted
by the Gaussian form $Eq. !1"%, and is practically indistin-
guishable from the low density limit of the effective pair
potential between the CMs of two polymers of the same
length, within the single effective segment case.5,6

So far no approximation has been made, and the effec-
tive potentials in Fig. 1 are “exact,” within the numerical
uncertainties of the MC simulations, for a given length L of
the polymer. We now make the reasonable transferability as-
sumption that the interaction potentials in Fig. 1, as functions
of the scaled distance r /rg, remain identical, whatever the
number n of segments into which a polymer chain is divided,
provided the number l of monomers in each effective seg-
ment remains sufficiently large. Note that within this as-
sumption, the potential $Eq. !2"% acts between adjacent !teth-
ered" segments only, while v!r" is the same for all pairs of
segments of the same, or different, chains. This defines the
effective multisegment model of homopolymer solutions and
applies as long as "s#"s

*. Note that in view of the “softness”

of the effective interactions the model is particularly well
suited for simulation purposes !apart from the obvious
speedup due to the considerable reduction of the number of
degrees of freedom from 3N ·L to 3N ·n" as well as for ap-
proximate theories,12,13 to which we shall return.

We now put the above effective segment representation
to the test, focusing on the structure factor S!k" of a solution
of N chains of n segments each,

S!k" =
1

Nn2 &"k"−k' = Sintra!k" +
1
n2(

$
(
%

s$%!k" , !3"

where

"k = (
i=1

N

(
$=1

n

exp!ik · ri$" !4"

and ri$ is the position of the center of segment $ on chain i;
s$%!k" is the partial intermolecular structure factor for seg-
ments $ and %, while Sintra!k" is the intramolecular structure
factor of one polymer. Consider first an isolated polymer of n
segments !S!k"=Sintra!k"". Results for the effective segment
model with n=62 and n=602 are plotted versus kRg on a
log-log scale and compared to the structure factor of a full
monomer representation of a SAW with 1000 monomers in
Fig. 2. All the data follow the power law S!k")a!kRg"−1/& in
the scaling regime 1#kRg#Rg /B, where B is the monomer
length !rg in the effective segment representation and b in the
full monomer representation", with &)0.5988, close to the
expected value of the Flory exponent, and a)1.15, close to
the renormalization group prediction.14 The effective seg-
ment representation does preserve the correct scaling behav-
ior of the single chain structure factor. The structure factor of
the full monomer representation is approximately related to
that of a single effective segment, sseg!k", and to the structure
factor of a chain of segments, Sc!k", by the factorization
approximation, S!k"=sseg!k" ·Sc!k".15 The small k limit of this
relation yields an estimate of the radius of gyration Rg of a
SAW in terms of those of the chain of effective segments
!Rgc" and of a single segment !rg", namely, Rg

2=Rgc
2 +rg

2. The
correction rg

2 accounts for coarse-graining effects, i.e., for the

FIG. 1. !Color online" Effective potentials !!r" between bonded !right-hand
scale, continuous line" and v!r" between nonbonded !left-hand scale,
crosses" effective segments in units of kBT, as computed by MC simulations
of an L=2000 SAW polymer, divided into two equal segments. v!r" is
accurately fitted by the Gaussian $Eq. !1"% with A=1.92 and $=0.80. !!r" is
represented by the form $Eq. !2"% !dashed curve" with the harmonic tethering
potential fitted by 0.534!r /rg−0.730"2−0.724 !dots".

FIG. 2. !Color online" Intramolecular structure factor Sintra!k" of a single
SAW polymer vs kRg on a log-log scale. Squares: MC data for an L
=1000 SAW polymer: closed circles and open circles: MC data for n=62
and n=602 segment representations, respectively. Full line: scaling regime
1.15!kRg"1/&, with &)0.5988; dashed line: Debye structure factor for a
Gaussian chain.
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contribution of monomers distributed around the CMs of the
n segments.

We next consider S!k" in the semidilute regime. Struc-
ture factors obtained from MC simulations of 108 and 500
chains of n=5, 10, and 20 segments are plotted in Fig. 3 for
! /!*=1.15 and 9.23 versus kRg, for a fixed overall length L
of the polymer !i.e., a fixed value of Rg". The overall agree-
ment between the three n-segment representations is seen to
be good for krg"1 !kRg"n#" at the lower density, as one
might expect within a consistent coarse-graining procedure.
The significant discrepancy observed at the higher density
illustrates the fact that for ! /!*=9.23, the minimum number
n of effective segments needed to satisfy the requirement
!s"!s

* is n=18. Figure 4 shows the intermolecular part of
the total structure factor #Eq. !3"$, as calculated with n=5,
10, or 20 segments; the agreement between the various
coarse-grained representations is excellent. The k→0 limit
of the structure factor yields the osmotic compressibility $T
via !kBT$T=S!k→0". In the same limit all partial intermo-
lecular structure factors become identical so that the com-

pressibility is also given by !kBT$T=1+s%&!k→0". The
polymer reference interaction site model !PRISM" approxi-
mation assumes all partial structure factors to be identical for
all k, i.e., s%&!k"=s!k"∀%&, which is only true in the limit of
very long polymers, where end effects may be neglected.12

PRISM then relates the total structure factor to the form fac-
tor '!k"=nSintra!k" of the polymer and to the Ornstein-
Zernike direct correlation function ĉ!k". For chains of n seg-
ment the relation reads

S!k" =
'̂!k"/n

1 − !s'̂!k"ĉ!k"
. !5"

Since the effective interaction between effective segments is
soft #cf. Eq. !1"$, the direct correlation function is well ap-
proximated by the random phase approximation !RPA"
closure13 ĉ!k"%−v̂!k" /kBT, where hats always refer to Fou-
rier transforms. Gathering results

S!k" %
'̂!k"/n

1 + !s'̂!k"v̂!k"/kBT
, !6"

which generalizes the classic RPA results for the structure of
polymer solutions16–18 to n-segment chains. The advantage
of the result #Eq. !5"$ is that the RPA on which it relies is
accurate because of the weakness of the interaction between
effective segments. Using '̂!k=0"=n and the Fourier trans-
form of Eq. !1" one arrives at the compressibility,

!kBT$T =
1

1 + !snA&(

%
'3/2

rg
3

. !7"

For given ! and polymer length L, the number n of segments
is chosen such that !s=n!=!s

*, i.e., n= !! /!*"1/!3#−1". Hence

!kBT$T =
1

1 + )!!/!*"1/!3#−1" , !8"

where )=3A!( /%"3/2 /4(%3.23. For !*!* Eq. !8" leads
back to the des Cloizeaux scaling for the osmotic pressure
+(!! /!*"3#/!3#−1"(!! /!*"2.3.1 Numerical values obtained
for the compressibility from Eq. !8" agree with MC data !as
shown in Fig. 3" within a few percent, except at the highest
density where a discrepancy of 20% is probably due to large
statistical uncertainties in the MC data. Another consequence
of the weakness of the effective interaction between effective
segments is that solutions of n-segment chains lend them-
selves readily to thermodynamic perturbation theory.19

Choosing a system of noninteracting Gaussian coils of length
n and spring constant8 k=3kBT /B0

2 as the reference system,
the free energy F of a solution of an equal number of
n-segment chains satisfies the Gibbs-Bogoliubov
inequality,10

F , F0 + )Vn − Vn
!0"*0 !9"

where F0 is the free energy of the reference system, Vn and
Vn

!0" are the total energies of the interacting n-segment system
and noninteracting reference system, and the average is taken
with Gaussian statistics. The two terms on the right-hand
side are readily calculated analytically as functions of the
bond length B0 of the Gaussian reference chains. The right-

FIG. 3. !Color online" Total !closed symbols" and intramolecular !open
symbols" structure factors vs kRg from MC simulations of n=5 !circles",
n=10 !squares", and n=20 !triangles" segment representations of SAW poly-
mers at ! /!*=1.15 !left frame" and 9.23 !right frame". The straight lines
correspond to the scaling regime as in Fig. 2.

FIG. 4. !Color online" Intermolecular structure factor from MC simulation
of n=5 !circles", 10 !squares", and 20 !triangles" segment representations of
SAW polymers at densities ! /!*=1.15 !closed symbols" and 9.23 !open
symbols" vs kRg. The dashed curves are predictions of the RPA expression
#Eq. !5"$, using the intramolecular form factor !for n=10". The RPA is seen
to be accurate for kRg-2.5, but to underestimate short-range correlations
!kRg.2.5".
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up to 500 chains of given length N with different resolutions (n blobs)

Effective segment representation

Agreement among different 
resolution is expected for krg < 1 
(kRg ~ nv)
At r~9 the minimum number of 
blobs expected is 18
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contribution of monomers distributed around the CMs of the
n segments.

We next consider S!k" in the semidilute regime. Struc-
ture factors obtained from MC simulations of 108 and 500
chains of n=5, 10, and 20 segments are plotted in Fig. 3 for
! /!*=1.15 and 9.23 versus kRg, for a fixed overall length L
of the polymer !i.e., a fixed value of Rg". The overall agree-
ment between the three n-segment representations is seen to
be good for krg"1 !kRg"n#" at the lower density, as one
might expect within a consistent coarse-graining procedure.
The significant discrepancy observed at the higher density
illustrates the fact that for ! /!*=9.23, the minimum number
n of effective segments needed to satisfy the requirement
!s"!s

* is n=18. Figure 4 shows the intermolecular part of
the total structure factor #Eq. !3"$, as calculated with n=5,
10, or 20 segments; the agreement between the various
coarse-grained representations is excellent. The k→0 limit
of the structure factor yields the osmotic compressibility $T
via !kBT$T=S!k→0". In the same limit all partial intermo-
lecular structure factors become identical so that the com-

pressibility is also given by !kBT$T=1+s%&!k→0". The
polymer reference interaction site model !PRISM" approxi-
mation assumes all partial structure factors to be identical for
all k, i.e., s%&!k"=s!k"∀%&, which is only true in the limit of
very long polymers, where end effects may be neglected.12

PRISM then relates the total structure factor to the form fac-
tor '!k"=nSintra!k" of the polymer and to the Ornstein-
Zernike direct correlation function ĉ!k". For chains of n seg-
ment the relation reads

S!k" =
'̂!k"/n

1 − !s'̂!k"ĉ!k"
. !5"

Since the effective interaction between effective segments is
soft #cf. Eq. !1"$, the direct correlation function is well ap-
proximated by the random phase approximation !RPA"
closure13 ĉ!k"%−v̂!k" /kBT, where hats always refer to Fou-
rier transforms. Gathering results

S!k" %
'̂!k"/n

1 + !s'̂!k"v̂!k"/kBT
, !6"

which generalizes the classic RPA results for the structure of
polymer solutions16–18 to n-segment chains. The advantage
of the result #Eq. !5"$ is that the RPA on which it relies is
accurate because of the weakness of the interaction between
effective segments. Using '̂!k=0"=n and the Fourier trans-
form of Eq. !1" one arrives at the compressibility,

!kBT$T =
1

1 + !snA&(

%
'3/2

rg
3

. !7"

For given ! and polymer length L, the number n of segments
is chosen such that !s=n!=!s

*, i.e., n= !! /!*"1/!3#−1". Hence

!kBT$T =
1

1 + )!!/!*"1/!3#−1" , !8"

where )=3A!( /%"3/2 /4(%3.23. For !*!* Eq. !8" leads
back to the des Cloizeaux scaling for the osmotic pressure
+(!! /!*"3#/!3#−1"(!! /!*"2.3.1 Numerical values obtained
for the compressibility from Eq. !8" agree with MC data !as
shown in Fig. 3" within a few percent, except at the highest
density where a discrepancy of 20% is probably due to large
statistical uncertainties in the MC data. Another consequence
of the weakness of the effective interaction between effective
segments is that solutions of n-segment chains lend them-
selves readily to thermodynamic perturbation theory.19

Choosing a system of noninteracting Gaussian coils of length
n and spring constant8 k=3kBT /B0

2 as the reference system,
the free energy F of a solution of an equal number of
n-segment chains satisfies the Gibbs-Bogoliubov
inequality,10

F , F0 + )Vn − Vn
!0"*0 !9"

where F0 is the free energy of the reference system, Vn and
Vn

!0" are the total energies of the interacting n-segment system
and noninteracting reference system, and the average is taken
with Gaussian statistics. The two terms on the right-hand
side are readily calculated analytically as functions of the
bond length B0 of the Gaussian reference chains. The right-

FIG. 3. !Color online" Total !closed symbols" and intramolecular !open
symbols" structure factors vs kRg from MC simulations of n=5 !circles",
n=10 !squares", and n=20 !triangles" segment representations of SAW poly-
mers at ! /!*=1.15 !left frame" and 9.23 !right frame". The straight lines
correspond to the scaling regime as in Fig. 2.

FIG. 4. !Color online" Intermolecular structure factor from MC simulation
of n=5 !circles", 10 !squares", and 20 !triangles" segment representations of
SAW polymers at densities ! /!*=1.15 !closed symbols" and 9.23 !open
symbols" vs kRg. The dashed curves are predictions of the RPA expression
#Eq. !5"$, using the intramolecular form factor !for n=10". The RPA is seen
to be accurate for kRg-2.5, but to underestimate short-range correlations
!kRg.2.5".
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contribution of monomers distributed around the CMs of the
n segments.

We next consider S!k" in the semidilute regime. Struc-
ture factors obtained from MC simulations of 108 and 500
chains of n=5, 10, and 20 segments are plotted in Fig. 3 for
! /!*=1.15 and 9.23 versus kRg, for a fixed overall length L
of the polymer !i.e., a fixed value of Rg". The overall agree-
ment between the three n-segment representations is seen to
be good for krg"1 !kRg"n#" at the lower density, as one
might expect within a consistent coarse-graining procedure.
The significant discrepancy observed at the higher density
illustrates the fact that for ! /!*=9.23, the minimum number
n of effective segments needed to satisfy the requirement
!s"!s

* is n=18. Figure 4 shows the intermolecular part of
the total structure factor #Eq. !3"$, as calculated with n=5,
10, or 20 segments; the agreement between the various
coarse-grained representations is excellent. The k→0 limit
of the structure factor yields the osmotic compressibility $T
via !kBT$T=S!k→0". In the same limit all partial intermo-
lecular structure factors become identical so that the com-

pressibility is also given by !kBT$T=1+s%&!k→0". The
polymer reference interaction site model !PRISM" approxi-
mation assumes all partial structure factors to be identical for
all k, i.e., s%&!k"=s!k"∀%&, which is only true in the limit of
very long polymers, where end effects may be neglected.12

PRISM then relates the total structure factor to the form fac-
tor '!k"=nSintra!k" of the polymer and to the Ornstein-
Zernike direct correlation function ĉ!k". For chains of n seg-
ment the relation reads

S!k" =
'̂!k"/n

1 − !s'̂!k"ĉ!k"
. !5"

Since the effective interaction between effective segments is
soft #cf. Eq. !1"$, the direct correlation function is well ap-
proximated by the random phase approximation !RPA"
closure13 ĉ!k"%−v̂!k" /kBT, where hats always refer to Fou-
rier transforms. Gathering results

S!k" %
'̂!k"/n

1 + !s'̂!k"v̂!k"/kBT
, !6"

which generalizes the classic RPA results for the structure of
polymer solutions16–18 to n-segment chains. The advantage
of the result #Eq. !5"$ is that the RPA on which it relies is
accurate because of the weakness of the interaction between
effective segments. Using '̂!k=0"=n and the Fourier trans-
form of Eq. !1" one arrives at the compressibility,

!kBT$T =
1

1 + !snA&(

%
'3/2
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. !7"

For given ! and polymer length L, the number n of segments
is chosen such that !s=n!=!s

*, i.e., n= !! /!*"1/!3#−1". Hence

!kBT$T =
1

1 + )!!/!*"1/!3#−1" , !8"

where )=3A!( /%"3/2 /4(%3.23. For !*!* Eq. !8" leads
back to the des Cloizeaux scaling for the osmotic pressure
+(!! /!*"3#/!3#−1"(!! /!*"2.3.1 Numerical values obtained
for the compressibility from Eq. !8" agree with MC data !as
shown in Fig. 3" within a few percent, except at the highest
density where a discrepancy of 20% is probably due to large
statistical uncertainties in the MC data. Another consequence
of the weakness of the effective interaction between effective
segments is that solutions of n-segment chains lend them-
selves readily to thermodynamic perturbation theory.19

Choosing a system of noninteracting Gaussian coils of length
n and spring constant8 k=3kBT /B0

2 as the reference system,
the free energy F of a solution of an equal number of
n-segment chains satisfies the Gibbs-Bogoliubov
inequality,10

F , F0 + )Vn − Vn
!0"*0 !9"

where F0 is the free energy of the reference system, Vn and
Vn

!0" are the total energies of the interacting n-segment system
and noninteracting reference system, and the average is taken
with Gaussian statistics. The two terms on the right-hand
side are readily calculated analytically as functions of the
bond length B0 of the Gaussian reference chains. The right-

FIG. 3. !Color online" Total !closed symbols" and intramolecular !open
symbols" structure factors vs kRg from MC simulations of n=5 !circles",
n=10 !squares", and n=20 !triangles" segment representations of SAW poly-
mers at ! /!*=1.15 !left frame" and 9.23 !right frame". The straight lines
correspond to the scaling regime as in Fig. 2.

FIG. 4. !Color online" Intermolecular structure factor from MC simulation
of n=5 !circles", 10 !squares", and 20 !triangles" segment representations of
SAW polymers at densities ! /!*=1.15 !closed symbols" and 9.23 !open
symbols" vs kRg. The dashed curves are predictions of the RPA expression
#Eq. !5"$, using the intramolecular form factor !for n=10". The RPA is seen
to be accurate for kRg-2.5, but to underestimate short-range correlations
!kRg.2.5".

171102-3 Semidilute polymer solutions J. Chem. Phys. 127, 171102 !2007"
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At small k all sab(k) become equal and we can estimate the 
compressibility from Sinter(k) and from there the osmotic 
pressure

Agreement with the scaling law for the osmotic pressure is observed except at the higher density (9.2)
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Styrene-Isoprene in DEP/DBP

DEP/DBP solutions in the disordered state above the
cmt as a function of temperature. The solid lines are
obtained by the fitting with eqs 17-27, and the results
are summarized in Table 7. All the solutions given in
Figure 11 show scattering profiles with single peaks.
According to the mean-field theory the scattering vector
at the intensity maximum Imax, qmax, is independent of
temperature and the Imax decreases as temperature T
is increased. The qmax is also related to the correlation
holes reflecting the dominant mode of concentration
fluctuations on the scale of Rg. It is particularly inter-
esting to note that three solutions in Figure 11 show
the temperature independence of qmax at high temper-
ature, which is in agreement with the Leibler-Landau
theory, and as the temperature is lowered there exists
an onset temperature at which the qmax deviates from
the qmax at the high temperature (also see Table 7). The
small shift in qmax reflects the incipient point of the
nonmean-field effect.3 Accordingly, the TMF can be
accurately determined by this criterion and the TMF
values thus determined are between 100 and 110 °C for
a 25% SdI in DEP/DBP, between 150 and 160 °C for a
25% dSI in C14/dC14, and between 120 and 130 °C for
a 40% solution of SdI in DEP/DBP, which are in
excellent agreement with the values obtained by the
Imax

-1 vs T-1 plots shown in Figures 2, 6, and 8. The
comparison between the experimental data and the
theoretical predictions also shows some deviations at
low q (<qmax), and this discrepancy at low q tends to
increase with increasing temperature. We tentatively
attribute this to an increased contribution of concentra-
tion fluctuations between solvent and copolymer chains.22

On the basis of these experimental results, a sche-
matic illustrating the regions of the micelles in long-
range order, the disordered micelles, and the dominant
free chains along with associated transitions is given
in Figure 12. For SdI(15-14) in DEP/DBP, the solution
with polymer volume fraction φ ) 0.25 adopts the bcc
structure while for φ ) 0.40, the hex phase is observed.
The long-range order for both bcc and hex phases is
maintained up to the TODT, at which the long-range
lattice order is lost. At approximately 20-30 °C higher
than TODT, the disordered micelles were found to dis-
sociate into free chains, which is defined as the cmt in
present study. As a result, upon heating from a low-
temperature ordered state, the balance between the
chains in micelles and the free chains is shifted toward
the free chains, eventually disrupting all the micelles
at around TMF. The observed phase sequence is similar
to that in bcc-forming block copolymer melts:26,30-33 one
thermodynamic phase transition, the ODT, and one
phenomenological transition, the cmt, which lies within
the disordered phase.

Conclusions
1. We have examined the solution behavior just above

TODT by SANS with symmetric PS-dPI and dPS-PI
diblock copolymers in selective solvents. The model-
independent GIFT of the experimental data and the
direct model fitting with appropriate form factors and
structure factors were employed to analyze the SANS
data to make a close investigation of the solution
behavior in the disordered micelle regime.

2. The micelles were found to break up into free
chains at the cmt, which is experimentally determined
by an abrupt decrease in the size, aggregation number,
and volume fraction of micelles and is close to TS.
Notably, regardless of different ordered microstructures
prior to the disordered state, i.e., bcc and hex, the cmt
is approximately 20-30 °C higher than TODT.

3. It is interesting to note that for solutions undergo-
ing the bcc-to-disorder transition, a clear crossover
behavior of the domain spacing (D) upon heating across
the TMF was observed. However, the slope of D vs T-1

does not change around TMF for the hex-to-disorder
transition. In addition, for the hex-to-disorder transi-
tion, the cmt is harder to locate compared with bcc-to-
disorder transition. Interestingly, even in this case the
disordered micelles were approximately spherical.

4. Two transitions, one between ordered phase and
disordered micelles (ODT) and the other between dis-
ordered micelles and disorder (cmt) were identified and
consequently, three clear regimes were discussed: or-
dered-ODT-disordered micelles-cmt-mean field re-
gime.
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Table 7. Summary of the Leibler-Landau Fit Results for
25% SdI(15-14) in DEP/DBP (75/25 Vol %), 25%

dSI(16-15) in C14/dC14 (90/10 vol %), and 40% SdI(15-14)
in DEP/DBP (75/25 vol %)

Rg, Å

T, °C
25% SdI(15-14)

in DEP/DBP
25% dSI(16-15)

in C14/dC14
40% SdI(15-14)

in DEP/DBP

100 60
110 58 58
120 58 57
130 58 56
140 58 72 56
150 69
160 67
170 67

Figure 12. Phase behavior for 25% SdI(15-14) in DEP/DBP
(75/25 vol %) and 40% SdI(15-14) in DEP/DBP (75/25 vol %).
Bcc and HEX denote the body-centered cubic and the hexago-
nal cylinder, respectively, and ODT, cmt, TS, and TMF for the
two solutions are shown. A schematic illustrating the regions
of the micelles in long-range order, the disordered micelles
along with associated transitions is also given.
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A-B diblock copolymer solutions

it to some extent. In other words, PI “prefers” PS
relative to DEP and DMP.

The more interesting aspects of the phase behavior
occur when temperature is increased at fixed f and φ.
The boundaries between the various phases in the (φ,T)
plane tend to “lean” to the left (see Figures 6-10). This
is a direct result of the solvent becoming less selective
as T increases and consequently partitioning back into
the PI microdomain, thereby decreasing the effective f.8
This effect is captured, at least qualitatively, by self-
consistent mean-field theory.8,32 In the trajectory pic-
ture, this would amount to a diagonal trajectory across
the phase map with increasing temperature, corre-
sponding to a concurrent reduction in both the effective
f and the effective degree of segregation (!N).8 These
results underscore that the addition of selective solvent
is qualitatively different from the addition of homopoly-
mer.42 First, to a good approximation the addition of
homopolymer at fixed temperature does not modify the
degree of segregation and therefore amounts to a
horizontal trajectory across the melt phase map. Second,
increasing temperature does not lessen the partitioning
of homopolymer into the corresponding microdomain,
and so the resulting trajectory is essentially vertical.
As noted in the previous section, there are several

features of the various phase diagrams that simply
cannot be anticipated on the basis of knowledge of the
melt behavior. The two principal examples are the
replacement of G by broad regions of L + C coexistence
and the existence of both bcc and fcc micellar packings
for φ ≈ 0.2-0.4. The former is attributed to packing
frustration, which Matsen has proposed accounts for the
truncation of the G phase at high !N in the melt.34
Namely, in G there is differential chain stretching
between those minor blocks in the center of a “strut”
and those that must reach the center of the three-way
connection. As the mean stretching increases with
segregation, this differential becomes relatively more
costly. We hypothesize that the additional degree of
freedom in solution allows the system to lower its free

energy by separating from G into L + C, at segregations
significantly lower than where G is predicted to become
unstable in the melt. The bcc/fcc selection is more
complicated and will be analyzed in more detail in a
subsequent report.37 We can identify three broad re-
gimes of behavior. For small f, i.e., SI(11-21) and SI-
(11-32), fcc is more prevalent, whereas for large f, i.e.,
SI(22-12) and SI(38-14), bcc is observed. This is
qualitatively consistent with the McConnell and Gast
scenario, namely that “crew-cut” micelles prefer fcc and
“hairy” micelles prefer bcc.6,33 The intermediate regime,
with approximately symmetric copolymers, gives rise to
the thermotropic transition between fcc and bcc on
heating. This transition is reminiscent of many elemen-
tal systems36,43 and can be viewed as an example of the
Alexander and McTague conjecture44 that all spherical
objects with weakly first-order melting transitions adopt
the bcc packing near the melting line (the ODT in this
case), for generic entropic reasons.

The results presented here are sufficient to outline a
broad strategy for estimating the phase behavior of a
given block copolymer in a given solvent. The two crucial
pieces of information are the melt ODT of the copolymer
and the cmt of a dilute solution. The former depends
on f and !N and the latter primarily on !BS between the
solvent (S) and the unfavored block (B). In particular,
the cmt lies some tens of degrees below the Θ temper-
ature (!BS > 0.5), because it is easier to dissolve an AB
copolymer than a B homopolymer, but the cmt will
increase as f decreases. For example, the cmt is 145 °C
for SI(11-32) in DEP but falls to about 78 °C for SI-
(38-14); we estimate the Θ temperature to be above
160 °C. Given the melt ODT and the cmt, a line of ODTs
connects smoothly to a line of cmts, providing the
boundary between dispersed chains at high temperature
and either micelles or ordered phases at low tempera-
ture. In all cases considered here the boundary between
ordered phases and micelles occurs near φ ≈ 0.2, but
this will depend on N. For larger N, the micelles will
be larger and thus pack on a lattice at lower φ. We

Figure 13. Temperature vs composition maps for SI copolymers in DEP at concentrations of (a) 1, (b) 0.7, (c) 0.5, (d) 0.3, and (d)
0.2.

Macromolecules, Vol. 35, No. 12, 2002 Full Phase Behavior for Block Copolymers 4715
Styrene-Isoprene DEP

Lodge et al., Macromolecules 35, 4707 (2002)

Varying concentration:  0.9 ≥ φ ≥ 0.2

martedì 8 dicembre 2009



Coarse Graining Strategy

1. Full monomer description: 
a. linear chain models on a cubic lattice
b. implicit solvent represented by the monomer-monomer interactions
c. Monte Carlo evaluation of chain properties

2. First step of coarse graining
a. group a number of monomers around their centre of mass and represent that part of the 
chain by an effective monomer (blobs) with renormalized interactions
b. the interaction between effective monomers are derived “ab-initio” from liquid state theory 
(HNC, RISM)
c. Monte Carlo simulation of the effective chains system

3. Second step of coarse graining
a. if spontaneous formation of aggregates is observed at the previous level of coarse graining, 
reduce each aggregate to its centre of mass.
b. the interactions are again obtained by inverting the liquid structure
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Di-block copolymers
•N linear chains of M=MA+MB physical monomers on a cubic lattice.

•Athermal ISS model:  A-A ideal,  A-B and B-B self-avoiding.

•For M~103 and N~102 (chains per aggregate) each aggregate would have 105 
monomers.

•Coarse graining: from linear chains to dumbbells

‣represent all monomers of each block by their centre of mass 

‣potentials are obtained by inverting the CM-CM pair distribution 
functions generated in a full monomer simulation of two chains of 
MA=MB=500 monomers

‣approximation: zero density potentials are used at finite density 
(reasonable approximation for homopolymers up to                )ρ/ρ∗ ∼ 4
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FIG. 6: Zero density limit of the CM pair distribution functions gAA(r), gAB(r), gBB(r) and gCC(r) versus r/Rg . The results
are from MC simulations of 2M=500 copolymers.

lim
ρ→0

hAA(r) = fAA(r) + [1 + fAA(r)]

{
∫

dx [fAB(x)sBA(x − r) + sAB(x)fBA(x − r)]

+

∫

dx

∫

dysAB(x)sBA(y − r) [fBB(x − y) + fAB(y)fBB(x − y) + fBA(x − r)fBB(x − y)

+fAB(y)fBA(x − r) + fAB(y)fBA(x − r)fBB(x − y)]

}

(8)

lim
ρ→0

hAB(r) = fAB(r) + [1 + fAB(r)]

{
∫

dx [fAA(x)sAB(x − r) + sAB(x)fBB(x − r)]

+

∫

dx

∫

dysAB(x)sAB(y − r) [fBA(x − y) + fAA(y)fBA(x − y) + fBB(x − r)fBA(x − y)

+fAA(y)fBB(x − r) + fAA(y)fBB(x − r)fBA(x − y)]

}

. (9)

where hαβ(r) = gαβ(r) − 1 and the fαβ(r) are the Mayer functions

fαβ(r) = fβα(r) = exp [−βvαβ(r)] − 1, (10)

The inversion procedure now amounts to solving the coupled integral equations 8 and 9 for the fαβ(r), using the
hαβ(r) and sαβ(r) from the MC simulations as input. Once the fαβ(r) have been calculated by an appropriate iterative
solution of the two coupled integral equations, the effective intermolecular potentials vαβ(r) follow from equation 10.
The numerical solution of equations 8 and 9 is facilitated by the fact that all integrals on the r.h.s. are convolution
integrals, and hence easily evaluated by Fourier transformation, except the last term of the double integrals, which
involves five factors and corresponds to a fully connected “bridge” diagram, which cannot be resolved by Fourier
transformation. If the bridge term is left out, in the spirit of the familiar hyper-netted chain (HNC) approximation[10],
major difficulties are encountered when attempting a numerical solution, because of the inconsistency introduced by
neglecting the bridge term, which is a violation of the connectivity constraints. However the task of including the

Zero density effective potentials between dumbbells

Downloaded 01 Dec 2005 to 131.111.115.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sAB(r) = −kBT log[gAB(r)]

• solution of a four-body problem
• extension to finite density is not trivial
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First coarse graining step

For diblock copolymer we used two different sets of potentials:
• from homopolymers simulations: 
• from “diatomic molecule”:  RISM integral equation (Ladanyi Chandler, J. Chem. 

Phys. 1975)
• the intramolecular A-B interaction is extracted from the intrachain CM-
CM pair correlation function φαβ(r) = − log[gαβ(r)]
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• Two sets of potentials are very 
close except for  VAA

• Potentials are repulsive and 
finite at R=0

• Interaction range ~ 2Rg

• AB and BB potentials are well 
represented by gaussians
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RPA prediction of clustering (B. Capone et al, JPCB 113, 3629 (2009))

the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep

TABLE 1: Paramenters of Effective Blob-Blob Pair
Potentials (eqs 5 and 6)a

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB k/(2kBT) r0/Rg
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4/5 0.11 2.19 2.00 0.51 1.52 1.76 1.08 1.01
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Binary Mixture
1/5 0.0 0.92 1.97 0.0 1.87 0.98
2/5 0.0 1.74 1.95 0.0 1.94 1.11
3/5 0.0 2.61 1.90 0.0 1.85 1.26
4/5 0.0 2.82 1.99 0.0 1.61 1.76

a Diblock: parameters determined from MC data for a pair of AB
copolymers. Binary mixture: parameters for the A-B binary
mixture.
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Figure 3. RPA predictions (eqs 9 and 10) for the partial structure
factors SR! as functions of the reduced wavenumbers kRg for AB diblock
copolymers with f ) 0.6 in the soft dumbbell representation. The full
curve, dashes, large dots, and small dots are for reduced densities F/F*
) 0.5, 1, 1.5, and 1.85 respectively, while the crosses and squares are
MC data for F/F* ) 2.5 and 3.

TABLE 2: Critical Density Gc at which the RPA Structure
Factors Diverge, Using the Diblock Copolymer Effective
Potential Parameters (Diblock Copolymer Potentials DBP)
and the Binary Mixture Effective Potential Parameters,
Combined with the Diblock Tethering Potential (Binary
Mixture Potentials BMP)a

f DBP BMP cmc

1/5 25.0 12.57 F/F* > 7
2/5 4.97 4.27 4 < F/F* < 4.5
1/2 2.83 2.44 3 < F/F* < 3.5
3/5 2.02 1.85 2.5 < F/F* < 3.
4/5 1.65 1.13 2 < F/F* < 2.5

a The MC estimates of the cmc are given in the right-hand
column.
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the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep
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the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep

TABLE 1: Paramenters of Effective Blob-Blob Pair
Potentials (eqs 5 and 6)a

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB k/(2kBT) r0/Rg

Diblock
1/5 0.40 1.08 1.97 2.16 1.79 0.98 1.44 0.78
2/5 0.25 1.81 1.95 1.41 1.82 1.11 1.57 0.91
3/5 0.16 2.52 1.90 0.98 1.74 1.26 1.53 1.07
4/5 0.11 2.19 2.00 0.51 1.52 1.76 1.08 1.01
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1/5 0.0 0.92 1.97 0.0 1.87 0.98
2/5 0.0 1.74 1.95 0.0 1.94 1.11
3/5 0.0 2.61 1.90 0.0 1.85 1.26
4/5 0.0 2.82 1.99 0.0 1.61 1.76

a Diblock: parameters determined from MC data for a pair of AB
copolymers. Binary mixture: parameters for the A-B binary
mixture.
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Figure 3. RPA predictions (eqs 9 and 10) for the partial structure
factors SR! as functions of the reduced wavenumbers kRg for AB diblock
copolymers with f ) 0.6 in the soft dumbbell representation. The full
curve, dashes, large dots, and small dots are for reduced densities F/F*
) 0.5, 1, 1.5, and 1.85 respectively, while the crosses and squares are
MC data for F/F* ) 2.5 and 3.

TABLE 2: Critical Density Gc at which the RPA Structure
Factors Diverge, Using the Diblock Copolymer Effective
Potential Parameters (Diblock Copolymer Potentials DBP)
and the Binary Mixture Effective Potential Parameters,
Combined with the Diblock Tethering Potential (Binary
Mixture Potentials BMP)a

f DBP BMP cmc

1/5 25.0 12.57 F/F* > 7
2/5 4.97 4.27 4 < F/F* < 4.5
1/2 2.83 2.44 3 < F/F* < 3.5
3/5 2.02 1.85 2.5 < F/F* < 3.
4/5 1.65 1.13 2 < F/F* < 2.5

a The MC estimates of the cmc are given in the right-hand
column.
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the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep

TABLE 1: Paramenters of Effective Blob-Blob Pair
Potentials (eqs 5 and 6)a

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB k/(2kBT) r0/Rg

Diblock
1/5 0.40 1.08 1.97 2.16 1.79 0.98 1.44 0.78
2/5 0.25 1.81 1.95 1.41 1.82 1.11 1.57 0.91
3/5 0.16 2.52 1.90 0.98 1.74 1.26 1.53 1.07
4/5 0.11 2.19 2.00 0.51 1.52 1.76 1.08 1.01

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB

Binary Mixture
1/5 0.0 0.92 1.97 0.0 1.87 0.98
2/5 0.0 1.74 1.95 0.0 1.94 1.11
3/5 0.0 2.61 1.90 0.0 1.85 1.26
4/5 0.0 2.82 1.99 0.0 1.61 1.76

a Diblock: parameters determined from MC data for a pair of AB
copolymers. Binary mixture: parameters for the A-B binary
mixture.
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Figure 3. RPA predictions (eqs 9 and 10) for the partial structure
factors SR! as functions of the reduced wavenumbers kRg for AB diblock
copolymers with f ) 0.6 in the soft dumbbell representation. The full
curve, dashes, large dots, and small dots are for reduced densities F/F*
) 0.5, 1, 1.5, and 1.85 respectively, while the crosses and squares are
MC data for F/F* ) 2.5 and 3.

TABLE 2: Critical Density Gc at which the RPA Structure
Factors Diverge, Using the Diblock Copolymer Effective
Potential Parameters (Diblock Copolymer Potentials DBP)
and the Binary Mixture Effective Potential Parameters,
Combined with the Diblock Tethering Potential (Binary
Mixture Potentials BMP)a

f DBP BMP cmc

1/5 25.0 12.57 F/F* > 7
2/5 4.97 4.27 4 < F/F* < 4.5
1/2 2.83 2.44 3 < F/F* < 3.5
3/5 2.02 1.85 2.5 < F/F* < 3.
4/5 1.65 1.13 2 < F/F* < 2.5

a The MC estimates of the cmc are given in the right-hand
column.
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the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep

TABLE 1: Paramenters of Effective Blob-Blob Pair
Potentials (eqs 5 and 6)a

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB k/(2kBT) r0/Rg

Diblock
1/5 0.40 1.08 1.97 2.16 1.79 0.98 1.44 0.78
2/5 0.25 1.81 1.95 1.41 1.82 1.11 1.57 0.91
3/5 0.16 2.52 1.90 0.98 1.74 1.26 1.53 1.07
4/5 0.11 2.19 2.00 0.51 1.52 1.76 1.08 1.01
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1/5 0.0 0.92 1.97 0.0 1.87 0.98
2/5 0.0 1.74 1.95 0.0 1.94 1.11
3/5 0.0 2.61 1.90 0.0 1.85 1.26
4/5 0.0 2.82 1.99 0.0 1.61 1.76

a Diblock: parameters determined from MC data for a pair of AB
copolymers. Binary mixture: parameters for the A-B binary
mixture.

S0(k) ) ( 1 ŝAB(k)
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Figure 3. RPA predictions (eqs 9 and 10) for the partial structure
factors SR! as functions of the reduced wavenumbers kRg for AB diblock
copolymers with f ) 0.6 in the soft dumbbell representation. The full
curve, dashes, large dots, and small dots are for reduced densities F/F*
) 0.5, 1, 1.5, and 1.85 respectively, while the crosses and squares are
MC data for F/F* ) 2.5 and 3.
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Factors Diverge, Using the Diblock Copolymer Effective
Potential Parameters (Diblock Copolymer Potentials DBP)
and the Binary Mixture Effective Potential Parameters,
Combined with the Diblock Tethering Potential (Binary
Mixture Potentials BMP)a

f DBP BMP cmc

1/5 25.0 12.57 F/F* > 7
2/5 4.97 4.27 4 < F/F* < 4.5
1/2 2.83 2.44 3 < F/F* < 3.5
3/5 2.02 1.85 2.5 < F/F* < 3.
4/5 1.65 1.13 2 < F/F* < 2.5

a The MC estimates of the cmc are given in the right-hand
column.
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the 2 × 2 matrix of partial blob-blob structure factors SR!(k),
S0(k) is the corresponding matrix for noninteracting blobs (VR!(r)
) 0), that is

and V̂(k) is the matrix of Fourier transforms (FT) V̂R!(k) of the
blob-blob interaction potentials VR!(r), then the RPA simply
reads39

In eq 7, ŝAB(k) is the FT of the intramolecular CM-CM
distribution function sAB(r),and ! ) 1/kBT in eq 8.

Equation 8 also applies to binary A-B mixtures, with S0(k)
) 1, that is, ŝAB ≡ 0 in eq 7.

The resulting partial structure factors are of the generic form

where

These expressions are identical to those obtained from the
“reference interaction site model” (RISM) equations for dumb-
bells40 with an RPA closure; the resulting explicit expressions
for the fR!(k, F) are given in ref 41. The three partial structure
factors (eq 9) are shown in Figure 3 for the case f ) 0.6 and
several values of F/F*, together with some MC data (cf. section
V). A peak develops in all three structure factors around q )
kRg = 2, the amplitude of which diverges for F/F* > 2. The
divergence occurs when the common denominator Dc(k, F) of
all three SR!(k) goes to zero at a critical reduced wavenumber
qc ) kcRg beyond a critical reduced density Fc/F*. For higher
densities, the structure factors become unphysical (in particular
SAA(k) and SBB(k) become negative), signaling an instability of

the homogeneous solution of copolymers, and providing an
estimate of the onset of clustering associated with microphase
separation.

The MC data presented in the following sections show micelle
formation at sufficiently high F/F*, so that the divergence of
the RPA structure factors may be interpreted as providing a
rough estimate of the critical micellar concentration (cmc). The
critical densities Fc/F* are listed in Table 2.

In the case of a binary A-B mixture (i.e., setting ŝAB(k) ) 0
in eq 10), Dc(k, F) goes first to zero at k ) 0 as F reaches a
critical value Fc, that is, the three partial structure factors diverge
at the origin, signaling a bulk (macroscopic) phase separation.

One immediately derives the osmotic compressibility from
the kf 0 limit of the partial structure factors (eq 9); integration
of the latter over the copolymer density yields the osmotic
pressure P, and further integration leads to the free energy and
hence to the chemical potential within the RPA.

V. Clustering and Self-Assembly of Soft Dumbbells

We have carried out extensive MC simulations of systems
of N ) 5000 soft dumbbells interacting via the effective pair
potentials discussed in section III within the NVT ensemble.
Taking into account the guidelines provided by the RPA results
of section IV, as well as our earlier results for the symmetric
model (f ) (1/2)),28 we have explored the density range of 2 e
F/F* e 7 for f ) 0.2, 0.4, 0.6, and 0.8. Because the effective
interactions are short-ranged, linked list tables were used to keep

TABLE 1: Paramenters of Effective Blob-Blob Pair
Potentials (eqs 5 and 6)a

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB k/(2kBT) r0/Rg

Diblock
1/5 0.40 1.08 1.97 2.16 1.79 0.98 1.44 0.78
2/5 0.25 1.81 1.95 1.41 1.82 1.11 1.57 0.91
3/5 0.16 2.52 1.90 0.98 1.74 1.26 1.53 1.07
4/5 0.11 2.19 2.00 0.51 1.52 1.76 1.08 1.01

f AAA/kBT AAB/kBT ABB/kBT aAA aAB aBB

Binary Mixture
1/5 0.0 0.92 1.97 0.0 1.87 0.98
2/5 0.0 1.74 1.95 0.0 1.94 1.11
3/5 0.0 2.61 1.90 0.0 1.85 1.26
4/5 0.0 2.82 1.99 0.0 1.61 1.76

a Diblock: parameters determined from MC data for a pair of AB
copolymers. Binary mixture: parameters for the A-B binary
mixture.

S0(k) ) ( 1 ŝAB(k)
ŝAB(k) 1 ) (7)

S-1(k) ) S0
-1(k) + F!V̂(k) (8)

SR!(k) )
fR!(k, F)

Dc(k, F)
(9)

Dc(k, F) ) 1 + F![V̂AA(k) + V̂BB(k) - 2ŝAB(k)V̂AB(k)] +
F2!2[V̂AA(k)V̂BB(k) - V̂AB

2 (k)][1 - ŝAB
2 (k)] (10)

Figure 3. RPA predictions (eqs 9 and 10) for the partial structure
factors SR! as functions of the reduced wavenumbers kRg for AB diblock
copolymers with f ) 0.6 in the soft dumbbell representation. The full
curve, dashes, large dots, and small dots are for reduced densities F/F*
) 0.5, 1, 1.5, and 1.85 respectively, while the crosses and squares are
MC data for F/F* ) 2.5 and 3.

TABLE 2: Critical Density Gc at which the RPA Structure
Factors Diverge, Using the Diblock Copolymer Effective
Potential Parameters (Diblock Copolymer Potentials DBP)
and the Binary Mixture Effective Potential Parameters,
Combined with the Diblock Tethering Potential (Binary
Mixture Potentials BMP)a

f DBP BMP cmc

1/5 25.0 12.57 F/F* > 7
2/5 4.97 4.27 4 < F/F* < 4.5
1/2 2.83 2.44 3 < F/F* < 3.5
3/5 2.02 1.85 2.5 < F/F* < 3.
4/5 1.65 1.13 2 < F/F* < 2.5

a The MC estimates of the cmc are given in the right-hand
column.
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• Systems of 104 dumbbells at constant density in the range 

• Spontaneous self-assembling in spherical micelles with A specie in the core 
and B specie in the corona at 

Self-assembling of effective copolymers 
(C. Perleoni et al., PRL 96 128302 (2006))
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Critical Micelle Concentration (CMC)
bimodal distribution P(n), then, upon increasing the polymer
density, the cmc is reached when

The resulting cmc values are listed in Table 2 and are seen
to correlate with the trend predicted by the RPA.

The onset of clustering is also apparent in the partial
intermolecular blob-blob pair distribution functions gR!(r),
examples of which are shown in Figure 9. Strong oscillations
build up at higher densities, signaling the spatial inhomogeneity
associated with micellization. Upon Fourier transformation,
yielding the partial structure factors SR!(k), these oscillations
give rise to the pronounced peaks shown in Figure 3, which
eventually diverge near the cmc.

We have also looked for a possible thermodynamic signature
of microphase separation associated with micellization. Obvi-
ously, one does not expect the singularities associated with bulk
phase separation, but some rapid continuous changes may be
apparent near the cmc. The chemical potential µ of the

copolymers is easily estimated by the Widom insertion
method,39,42 based on the exact relation for the excess (nonideal)
part

where

The statistical average in eq 14 is taken over a canonical
ensemble of N copolymers. The rbA and rbB are the positions of
the centers of the additional A and B blobs which are inserted
into a system of N copolymers.

Figure 9. Partial blob-blob pair distribution functions gR!(r) versus
reduced CM-CM distance r/Rg for f ) 0.6 and F/F* ) 3 (pluses), 4.5
(crosses), 5 (stars), and 6 (squares).

Figure 10. Reduced excess (nonideal) chemical potential !µex (left
frame), and osmotic equation of state !Pex/F (right frame) versus
reduced copolymer density F/F* for f ) 0.2 (pluses), 0.4 (crosses), 0.6
(stars), and 0.8 (squares). The corresponding slopes of the RPA
prediction (eq 15) are " ) 3.48 for f ) 0.2, 4.20 for f ) 0.4, 4.68 for
f ) 0.6, and 4.7 for f ) 0.8.

!
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Figure 11. Radial densities FA (left-hand curve and scale in each frame)
and FB (right-hand) as a function of the reduced distances r ) rCM/Rg

of the CMs of A and B blobs from the micelle CM for (a) f ) 0.2,
F/F* ) 6.; (b) (0.4, 5); (c) (0.6, 4) and (d) (0.8, 3.5). Note that the case
where f ) 0.2 is irrelevant because of the absence of micellization.

Figure 12. The three asphericity ratios, core (crosses), corona (pluses),
and total (stars), for the micelles as defined in eq 20. The four panels
shows the cases (f ) 0.4, F/F* ) 6), (f ) 0.6, F/F* ) 5), (f ) 0.6, F/F*
) 6), and (f ) 0.8, F/F* ) 4).

!µex ) -[ln(I1) - ln(I2)] (12)

I1 ) ∫∫ d rbAd rbB exp{-!ΨAB(| rbA - rbB|)}"exp{-!∆V}#N

I2 ) ∫∫ d rbAd rbB exp{-!ΨAB(| rbA - rbB|)}
(13)

∆V( rbA, rbB) ) !
i)1

N

!
R!

VR!(| rbR - rbi
!|) (14)
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• CMC is defined as the density at which                              where n0 is the size 
at which P(n) has a minimum

• thermodynamic signature of the microphase separation associated with 
micellization

bimodal distribution P(n), then, upon increasing the polymer
density, the cmc is reached when

The resulting cmc values are listed in Table 2 and are seen
to correlate with the trend predicted by the RPA.

The onset of clustering is also apparent in the partial
intermolecular blob-blob pair distribution functions gR!(r),
examples of which are shown in Figure 9. Strong oscillations
build up at higher densities, signaling the spatial inhomogeneity
associated with micellization. Upon Fourier transformation,
yielding the partial structure factors SR!(k), these oscillations
give rise to the pronounced peaks shown in Figure 3, which
eventually diverge near the cmc.

We have also looked for a possible thermodynamic signature
of microphase separation associated with micellization. Obvi-
ously, one does not expect the singularities associated with bulk
phase separation, but some rapid continuous changes may be
apparent near the cmc. The chemical potential µ of the

copolymers is easily estimated by the Widom insertion
method,39,42 based on the exact relation for the excess (nonideal)
part

where

The statistical average in eq 14 is taken over a canonical
ensemble of N copolymers. The rbA and rbB are the positions of
the centers of the additional A and B blobs which are inserted
into a system of N copolymers.

Figure 9. Partial blob-blob pair distribution functions gR!(r) versus
reduced CM-CM distance r/Rg for f ) 0.6 and F/F* ) 3 (pluses), 4.5
(crosses), 5 (stars), and 6 (squares).

Figure 10. Reduced excess (nonideal) chemical potential !µex (left
frame), and osmotic equation of state !Pex/F (right frame) versus
reduced copolymer density F/F* for f ) 0.2 (pluses), 0.4 (crosses), 0.6
(stars), and 0.8 (squares). The corresponding slopes of the RPA
prediction (eq 15) are " ) 3.48 for f ) 0.2, 4.20 for f ) 0.4, 4.68 for
f ) 0.6, and 4.7 for f ) 0.8.
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and FB (right-hand) as a function of the reduced distances r ) rCM/Rg

of the CMs of A and B blobs from the micelle CM for (a) f ) 0.2,
F/F* ) 6.; (b) (0.4, 5); (c) (0.6, 4) and (d) (0.8, 3.5). Note that the case
where f ) 0.2 is irrelevant because of the absence of micellization.

Figure 12. The three asphericity ratios, core (crosses), corona (pluses),
and total (stars), for the micelles as defined in eq 20. The four panels
shows the cases (f ) 0.4, F/F* ) 6), (f ) 0.6, F/F* ) 5), (f ) 0.6, F/F*
) 6), and (f ) 0.8, F/F* ) 4).
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RPA:

The Widom method is particularly efficient in MC simulations
because of the softness of the blob-blob interactions, which
allows a high acceptance rate of the attempted insertions. The
µex is easily calculated within the RPA, as explained in section
IV, and turns out to be a linear function of the density:

MC estimates of the osmotic equation of state (e.o.s) Z )
!P/F are calculated from the standard virial expression

where the prime denotes a derivative with respect to the
argument.

The RPA leads to the linear expression

MC results for !µex and (!Pex)/F are plotted in Figure 10 as
functions of F/F* for f ) 0.2, 0.4, 0.6, and 0.8. The variation is
practically linear in the case where f ) 0.2, with slopes
comparable to the RPA predictions (eqs 15 and 18). For larger
size ratios f, there is clear evidence of a break in the slope at a
density F/F* which decreases as f increases; these crossover
densities correlate well with the estimated values of the cmc
listed in Table 2. As expected, the osmotic pressure rises less
rapidly with density once micellization sets in.

VI. Internal Structure of Micelles

Once large clusters and micelles have been identified as
explained in the previous section, the MC code determines, for
each micelle, its CM, radius of gyration Rgm as well as the A-B
bond length RAB and the radial blob densities FA(r) and FB(r)
as functions of the distance r of their CMs from the micelle
CM. Examples for f ) 0.4, 0.6, and 0.8, close to their estimated
cmc’s, are shown in Figure 11.

In all three cases, the A blobs are seen to be confined to a
core (FA(r) = 0 for r g 2Rg), while the B blobs form an external
corona. The interface between the core and corona is relatively
sharp, as expected from the repulsion between A and B blobs.
The variation of the radii of gyration and that of RAB (the bond
length of the copolymers) with n is plotted in Figure 13. As
expected, the radii of gyration and the bond length increase with
aggregation number, that is, the copolymers are more stretched
when n increases.

The average shape of the micelles is conveniently character-
ized by asphericity parameter A defined as follows.43 We first
introduce the gyration tensor of a micelle of n effective
dumbbells

Core and corona contributions to the tensor can be separated
by restricting the sum over A and B to one of the two blobs;
rCM,R are the coordinates of the micelle CM.

If ga e gb e gc are the three eigenvalues of this tensor, the
latter will be equal for a spherical micelle. The asphericity A(n),
as a funcion of the number of particles per cluster, is then
defined as

For a spherical micelle, A(n) ) 0, while for a cylindrical
micelle, A(n) ) 1. The variation of A(n) with aggregation
number, as estimated from our MC simulations for a few values
of f and F/F*, is illustrated in Figure 12, which features the
values of A(n) for the micellar core, the corona, and the complete
micelle. The asphericity is seen to be small in all cases. The
significant increase of A(n) at large n in some cases is due to
the fact that some micelles nearly touch and are seen as
nonspherical fused micelle pairs within the convention adopted
to define clusters.

There has been some debate about the copolymer length
dependence of the micelle size, as predicted by self-consistent
field theory and by computer simulation.8,43 In the highly
concentrated solution or melt regimes considered in these
studies, where the chains obey Gaussian statistics, the micelle
radius scales, to leading order, like L1/2. On the other hand, the
present work deals with the semidilute regime, where Gaussian
statistics no longer apply, so that a direct comparison with
previous predictions is not possible. In the present soft dumbbell
representation of the copolymers, the micelle size is controlled
by the effective blob-blob interactions in eqs 5 and 6. The only
length scale in the latter is the radius of gyration Rg of an isolated
copolymer, so that, for a given copolymer concentration, the

Figure 13. Bond length RAB of AB dumbbells (plus signs), radius
of gyration RgA of the micellar core (crosses), radius of gyration of
the corona RgB (stars), and total micellar radius of gyration Rgm

(squares) as functions of the aggregation number n of micelles for
(f, F/F*) ) (0.4, 6); (0.6, 5); (0.6, 6); and (0.8, 4) (from top left to
bottom right); all lengths are in units of the zero-density copolymer
radius of gyration Rg.
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The Widom method is particularly efficient in MC simulations
because of the softness of the blob-blob interactions, which
allows a high acceptance rate of the attempted insertions. The
µex is easily calculated within the RPA, as explained in section
IV, and turns out to be a linear function of the density:

MC estimates of the osmotic equation of state (e.o.s) Z )
!P/F are calculated from the standard virial expression

where the prime denotes a derivative with respect to the
argument.

The RPA leads to the linear expression

MC results for !µex and (!Pex)/F are plotted in Figure 10 as
functions of F/F* for f ) 0.2, 0.4, 0.6, and 0.8. The variation is
practically linear in the case where f ) 0.2, with slopes
comparable to the RPA predictions (eqs 15 and 18). For larger
size ratios f, there is clear evidence of a break in the slope at a
density F/F* which decreases as f increases; these crossover
densities correlate well with the estimated values of the cmc
listed in Table 2. As expected, the osmotic pressure rises less
rapidly with density once micellization sets in.

VI. Internal Structure of Micelles

Once large clusters and micelles have been identified as
explained in the previous section, the MC code determines, for
each micelle, its CM, radius of gyration Rgm as well as the A-B
bond length RAB and the radial blob densities FA(r) and FB(r)
as functions of the distance r of their CMs from the micelle
CM. Examples for f ) 0.4, 0.6, and 0.8, close to their estimated
cmc’s, are shown in Figure 11.

In all three cases, the A blobs are seen to be confined to a
core (FA(r) = 0 for r g 2Rg), while the B blobs form an external
corona. The interface between the core and corona is relatively
sharp, as expected from the repulsion between A and B blobs.
The variation of the radii of gyration and that of RAB (the bond
length of the copolymers) with n is plotted in Figure 13. As
expected, the radii of gyration and the bond length increase with
aggregation number, that is, the copolymers are more stretched
when n increases.

The average shape of the micelles is conveniently character-
ized by asphericity parameter A defined as follows.43 We first
introduce the gyration tensor of a micelle of n effective
dumbbells

Core and corona contributions to the tensor can be separated
by restricting the sum over A and B to one of the two blobs;
rCM,R are the coordinates of the micelle CM.

If ga e gb e gc are the three eigenvalues of this tensor, the
latter will be equal for a spherical micelle. The asphericity A(n),
as a funcion of the number of particles per cluster, is then
defined as

For a spherical micelle, A(n) ) 0, while for a cylindrical
micelle, A(n) ) 1. The variation of A(n) with aggregation
number, as estimated from our MC simulations for a few values
of f and F/F*, is illustrated in Figure 12, which features the
values of A(n) for the micellar core, the corona, and the complete
micelle. The asphericity is seen to be small in all cases. The
significant increase of A(n) at large n in some cases is due to
the fact that some micelles nearly touch and are seen as
nonspherical fused micelle pairs within the convention adopted
to define clusters.

There has been some debate about the copolymer length
dependence of the micelle size, as predicted by self-consistent
field theory and by computer simulation.8,43 In the highly
concentrated solution or melt regimes considered in these
studies, where the chains obey Gaussian statistics, the micelle
radius scales, to leading order, like L1/2. On the other hand, the
present work deals with the semidilute regime, where Gaussian
statistics no longer apply, so that a direct comparison with
previous predictions is not possible. In the present soft dumbbell
representation of the copolymers, the micelle size is controlled
by the effective blob-blob interactions in eqs 5 and 6. The only
length scale in the latter is the radius of gyration Rg of an isolated
copolymer, so that, for a given copolymer concentration, the

Figure 13. Bond length RAB of AB dumbbells (plus signs), radius
of gyration RgA of the micellar core (crosses), radius of gyration of
the corona RgB (stars), and total micellar radius of gyration Rgm

(squares) as functions of the aggregation number n of micelles for
(f, F/F*) ) (0.4, 6); (0.6, 5); (0.6, 6); and (0.8, 4) (from top left to
bottom right); all lengths are in units of the zero-density copolymer
radius of gyration Rg.
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Micelles crystallization at higher density

• At                the system of micelles with f=0.5 undergoes a 
spontaneous crystallization into an ordered structure with defects

ρ/ρ∗ = 6
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Second coarse graining step
Reduce each aggregate to a point particle located at its center of mass. The interaction 
potential is extracted by inverting gmm(R) within the HNC approximation

βvm(R) = gmm(R) − 1 − cmm(R) − log[gmm(R)]

• The density dependent potential 
develops an attractive part at intermediate 
distances

•The effect is purely entropic!!

•The stiffness of the potential rapidly 
increases with density

Special care is needed here because of the partial knowledge of g(r) at large R.
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Second coarse graining step 

The effective potentials provide an accurate structure for all f and all densities

similar results. Yet another extrapolation scheme,
based on fitting the available MC data to an
exponentially damped sinusoidal function, was found
to be inadequate because the simulations yield too few
oscillations in g(r), due to the small system size. Once
h(r) and c(r) are known for all r, the effective potential
between micelles can be extracted from the HNC
closure:

vðrÞ ¼ kBT hðrÞ $ cðrÞ $ ln 1þ hðrÞð Þ½ ': ð12Þ

This closure is only approximate, and has proved
inadequate in earlier attempts to extract pair potentials
from structural data of atomic liquids, like liquid
metals. However the effective interaction between
micelles is expected to be much softer than atom–
atom potentials and to stay finite, even at full overlap,
since the pair interactions of the self-assembled soft
dumbbells are gaussian-like, with a range ’ Rg and an
amplitude ’ kBT. The HNC closure has been shown to
be very accurate for such soft, bounded potentials [30],
and hence we believe that Equation (12) is sufficient to
extract reliable estimates of v(r) without resorting to
more advanced inversion schemes which are necessary
for strongly repulsive potentials between atoms [26,27].

The accuracy of the HNC inversion procedure is
illustrated in Figure 1, where the pair distribution
function g(r) determined in the dumbbell level MC
simulations, which is the starting point of our inversion
procedure, is compared to the g(r) calculated with the
resulting effective micelle–micelle potential v(r) (shown
in Figure 3, discussed later). The agreement is seen to
be excellent (a similar conclusive comparison for
f¼ 0.5 and !/!*¼ 5 was made in [10] and for f¼ 0.6
and !/!*¼ 3.5 in [11]). It is worth stressing that
micelle-level MC simulations are considerably faster
(by two orders of magnitude) than the effective
dumbbell-level simulations.

A comparison between the v(r) extracted from MC
data for g(r) via Equation (12), based on the two
extrapolation procedures described earlier is made in
Figure 2. The agreement is seen to be quite satisfac-
tory, and we will henceforth only present results
obtained from MC simulations using the effective
potentials derived from the S(k) extrapolation scheme.
As expected, the effective potential is seen to be quite
soft. Nonetheless there remain large uncertainties for
micelle CM–CM distances r9 2Rg, because the pair
distribution function g(r) is practically zero when
micelles overlap strongly, due to a potential barrier
of several kBT. This is not a major problem for our
subsequent results, because strong micelle overlap is
a very rare event due to the strong (but finite) repulsion
between the coronae.

It is important to stress that the extrapolation and
inversion schemes of the pair structure only apply to
disordered (fluid) states of the micelle solutions, since
they explicitly assume continuous translational invar-
iance, i.e. a homogeneous one-particle density, which
does not hold for ordered (crystalline) states. In the
remainder of this paper, we will use the micelle–micelle
g(r) generated in the MC simulations of [10] and [11]
at the highest f-dependent densities where no
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Figure 1. (Colour online). Micelle–micelle pair distribution
function g(r) calculated from dumbbell-level and micelle level
MC simulations, for f¼ 0.4 and !/!*¼ 6. The former data
have large statistical uncertainties for the range of micelle–
micelle distances L/25 r5L31/2/2, where the upper limit is
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We investigate the relative stability of the disordered phase and of four crystal structures of micelles resulting
from the self-assembly of AB diblock copolymers in semi-dilute solutions. Starting from the micelle–micelle pair
distribution functions determined previously in the disordered fluid phase by Monte Carlo simulations of
a coarse-grained model of diblock copolymers, we extract effective pair potentials v(r) between micelle centres
of mass by a novel extrapolation/inversion technique. These v(r) are used in extensive Monte Carlo simulations of
micellar assemblies to determine the structures, mean-square displacements, and free energies of four ordered
phases including FCC, BCC, diamond and the less common A15 crystals. For micelle densities close to melting,
we predict the most stable structures to be FCC and A15, with the latter phase having the lowest free energy for
micelles with small cores and large coronae, in agreement with recent predictions for micelles forming in
copolymer melts [G.M. Grason et al., Phys. Rev. Lett. 91, 058304 (2003)].
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1. Introduction

Diblock copolymers are known to self-assemble into
ordered or disordered supra-molecular aggregates or
microphases, including micelles, lamellae, cylinders or
bicontinuous structures, both in the melt [1,2] and in
selective solvents [3,4]. Self-consistent mean-field
theory, which is well adapted to melts [5], does not
apply to semi-dilute solutions of copolymers, where
concentration fluctuations are dominant, as signalled
by a large osmotic compressibility. Molecular simula-
tion is well adapted to copolymer solutions, but due to
the large number of copolymers required to observe
micro-phase separation, simulations of fully atomistic,
monomer-level models are restricted to rather short
copolymer chains [6–8].

To overcome this limitation and model long chains,
we have developed a systematic coarse-graining
strategy which reduces the computational effort by
orders of magnitude [9–11]. The basic idea generalises
earlier work on homopolymer solutions, where each
polymer is represented by a single blob, and interac-
tions between polymer coils reduce to an effective
pair potential between the centres of mass (CM) of the
coils [12–14].

The effective pair potential v(r) is calculated from
a fully microscopic, monomer-level simulation of two
isolated polymer chains (corresponding to the infinite
dilution limit); v(r) is easily extracted as the potential of
mean force associated with the measured CM–CM pair
distribution function g(r), according to:

vðrÞ ¼ $kBT ln gðrÞ ð1Þ

where kB is the Boltzmann constant and T is the
temperature. Even for polymers with excluded volume
correlations between monomers, v(r) turns out to be
soft and finite at full overlap (i.e. for r¼ 0) [13–15]. In
fact v(r) turns out to be accurately represented by
a gaussian function of amplitude v(r¼ 0)’ 2kBT and
width practically equal to the polymer radius of
gyration Rg. At higher polymer concentration v(r) is
extracted from g(r) by the hypernetted chain (HNC)
integral equation [16] and turns out to depend weakly
on concentration [14]. This concentration dependence
of the effective interaction may be eliminated by
switching to a multi-blob representation of long
polymer chains [17].

Returning to copolymers, the minimal coarse-
grained model of an AB diblock copolymer is a ‘soft
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the large number of copolymers required to observe
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copolymer chains [6–8].

To overcome this limitation and model long chains,
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orders of magnitude [9–11]. The basic idea generalises
earlier work on homopolymer solutions, where each
polymer is represented by a single blob, and interac-
tions between polymer coils reduce to an effective
pair potential between the centres of mass (CM) of the
coils [12–14].

The effective pair potential v(r) is calculated from
a fully microscopic, monomer-level simulation of two
isolated polymer chains (corresponding to the infinite
dilution limit); v(r) is easily extracted as the potential of
mean force associated with the measured CM–CM pair
distribution function g(r), according to:

vðrÞ ¼ $kBT ln gðrÞ ð1Þ

where kB is the Boltzmann constant and T is the
temperature. Even for polymers with excluded volume
correlations between monomers, v(r) turns out to be
soft and finite at full overlap (i.e. for r¼ 0) [13–15]. In
fact v(r) turns out to be accurately represented by
a gaussian function of amplitude v(r¼ 0)’ 2kBT and
width practically equal to the polymer radius of
gyration Rg. At higher polymer concentration v(r) is
extracted from g(r) by the hypernetted chain (HNC)
integral equation [16] and turns out to depend weakly
on concentration [14]. This concentration dependence
of the effective interaction may be eliminated by
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Pair distribution functions obtained, starting from
the four crystal structures as initial configurations, for
f¼ 0.4 but at the higher density !/!*¼ 7 are shown in
Figure 6. The peak positions for the FCC, BCC, and
A15 crystals are seen to coincide with the correspond-
ing positions of neighbouring shells in a perfect lattice.
This is no longer true when the starting configuration
is a perfect diamond lattice. The final structure is
clearly no longer crystal like, but resembles that of
a disordered, glassy system. The diamond structure is
thus unstable, and this is confirmed by the time
evolution of the mean-square displacement of the
micelles from their initial positions, to be discussed
later in this section. Note that a similar instability has
been found for the full dumbbell representation as
mentioned above.

Very similar behaviour is observed for f¼ 0.5,
!/!*¼ 6 and f¼ 0.6, !/!*¼ 4 (not shown). While the
FCC, BCC, and A15 structures appear to be stable
under those conditions, the diamond lattice always
melts into a disordered structure. The reason for this
appears to be the low (four-fold) coordination which
forces the first shell of neighbours to be at a distance
from a central micelle well inside the repulsive part of
the effective pair potential v(r), while for the other
three crystal structures, the corresponding distances
fall into the attractive part of v(r).

The previous observations are confirmed by
inspection of the static structure factor S(k), shown
in Figure 7 for f¼ 0.5, !/!*¼ 6 for both the soft
dumbbell and the effective micelle representations.
The agreement between both sets of data is seen to be
reasonable, keeping in mind that the effective micelle
representation ignores the polydispersity of micelles
observed in the full dumbbell representation.

The S(k) of the FCC, BCC, and A15 crystals are
dominated by Bragg peaks at their expected locations,
while the structure factor resulting from an initial
diamond structure no longer exhibits Bragg peaks, but
resembles that of a dense disordered fluid or glass.
Similar behaviour is observed for the other two cases
studied, f¼ 0.4, !/!*¼ 7 and f¼ 0.6, !/!*¼ 4. Within
harmonic theory, the amplitude of the Bragg peaks is
governed by the Debye–Waller factor proportional to
the mean-square displacement of particle positions ri
from the equilibrium lattice sites ri,0:

W ¼ k2
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Figure 4. (Colour online). (a) MC-generated g(r) for f¼ 0.4,
!/!*¼ 6, starting from a perfect FCC configuration of the
micelles. The vertical segments indicate the positions of the
first shells of nearest neighbours in the initial FCC lattice,
and their height indicates the corresponding coordination
number (right-hand scale). (b) Corresponding structure
factors S(k) (pluses). The structure factor calculated directly
from dumbbell level MC simulations is shown as crosses.
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f¼ 0.4 but at the higher density !/!*¼ 7 are shown in
Figure 6. The peak positions for the FCC, BCC, and
A15 crystals are seen to coincide with the correspond-
ing positions of neighbouring shells in a perfect lattice.
This is no longer true when the starting configuration
is a perfect diamond lattice. The final structure is
clearly no longer crystal like, but resembles that of
a disordered, glassy system. The diamond structure is
thus unstable, and this is confirmed by the time
evolution of the mean-square displacement of the
micelles from their initial positions, to be discussed
later in this section. Note that a similar instability has
been found for the full dumbbell representation as
mentioned above.

Very similar behaviour is observed for f¼ 0.5,
!/!*¼ 6 and f¼ 0.6, !/!*¼ 4 (not shown). While the
FCC, BCC, and A15 structures appear to be stable
under those conditions, the diamond lattice always
melts into a disordered structure. The reason for this
appears to be the low (four-fold) coordination which
forces the first shell of neighbours to be at a distance
from a central micelle well inside the repulsive part of
the effective pair potential v(r), while for the other
three crystal structures, the corresponding distances
fall into the attractive part of v(r).

The previous observations are confirmed by
inspection of the static structure factor S(k), shown
in Figure 7 for f¼ 0.5, !/!*¼ 6 for both the soft
dumbbell and the effective micelle representations.
The agreement between both sets of data is seen to be
reasonable, keeping in mind that the effective micelle
representation ignores the polydispersity of micelles
observed in the full dumbbell representation.

The S(k) of the FCC, BCC, and A15 crystals are
dominated by Bragg peaks at their expected locations,
while the structure factor resulting from an initial
diamond structure no longer exhibits Bragg peaks, but
resembles that of a dense disordered fluid or glass.
Similar behaviour is observed for the other two cases
studied, f¼ 0.4, !/!*¼ 7 and f¼ 0.6, !/!*¼ 4. Within
harmonic theory, the amplitude of the Bragg peaks is
governed by the Debye–Waller factor proportional to
the mean-square displacement of particle positions ri
from the equilibrium lattice sites ri,0:
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first shells of nearest neighbours in the initial FCC lattice,
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number (right-hand scale). (b) Corresponding structure
factors S(k) (pluses). The structure factor calculated directly
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Crystal structure stability at high density

• At                the effective-micelles system is able to sustain crystal structures

• We have studied the relative stability of BCC, FCC and A15 structures

ρ/ρ∗ = 6

Figure 4.8: A15 unit cell and views (top and front), FCC and BCC unit cells.

We need to use a number of particles in the system adapted to the exact structure. As

we can see in figure (4.8) the number of particles per unit cell is different for the mentioned

structures (2 in BCC, 4 in FCC and 8 in A15). Then, we choose the number of micelles in such

a way to form a perfect lattice without vacancies. The number of micelles used in our study is

reported in the table (4.1) for each lattice structure.

Structure Number of Micelles

FCC 500

BCC 432

A15 512

Table 4.1: Number of micelles used in the simulation for the different structures analyzed.

In order to obtain the micelles RDFs we run long simulations at ρ/ρ∗ = 5.5 and 6.0, and the

results are given in figure (4.4).

40

• A15 minimize the ratio area/volume of the Voronoi cells (Weaire and Phelan, Phil.Mag. Lett, 69, 

107 (1994))
• A15 is not a close-packed structure, it has been predicted in micelles of 
dentritic polymers (Ziherl and Kamien, Phys. Rev. Letts. 85, 3528 (2000))
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Crystal structure stability at high density

• At                  the system rapidly melts for all initial conditions
• At                 the three structures are stableρ/ρ∗ = 6

ρ/ρ∗ = 5.5

Figure 4.9: RDF starting from BCC, A15 and FCC lattices, respectively. We have run simula-

tions using 400 blocks with 40 MC steps in each one.

Observing the RDFs we can see that at density ρ/ρ∗ = 5.5 the system, which was initially

solid, goes to a characteristic curve of a liquid phase. Otherwise, for ρ/ρ∗ = 6.0 we can see a

RDF characteristic of a solid system, with long range order.

Another criterion about the system phase is provided by the Lindemann ratio. The Linde-

mann ratio, γ, is defined as the root-mean-square displacement of particles in a crystalline solid

about their equilibrium lattice positions, divided by their nearest neighbor distance d:

41

Figure 4.9: RDF starting from BCC, A15 and FCC lattices, respectively. We have run simula-

tions using 400 blocks with 40 MC steps in each one.

Observing the RDFs we can see that at density ρ/ρ∗ = 5.5 the system, which was initially

solid, goes to a characteristic curve of a liquid phase. Otherwise, for ρ/ρ∗ = 6.0 we can see a

RDF characteristic of a solid system, with long range order.

Another criterion about the system phase is provided by the Lindemann ratio. The Linde-

mann ratio, γ, is defined as the root-mean-square displacement of particles in a crystalline solid

about their equilibrium lattice positions, divided by their nearest neighbor distance d:

41

BCC phase may only be metastable under those
conditions. Finally, for f¼ 0.6 and !/!*¼ 4, LBCC

first appears to stabilise at a value about 20% above
those for FCC and A15, but when the MC run is
extended to longer ‘times’, LBCC is eventually seen to

drift continuously to larger values, suggesting that the
BCC phase is unstable under those conditions.

To summarise the above results, we have found
that in the three cases which we have examined in
detail, the diamond structure is always highly unstable
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Free energy calculations for the effective micelles model

f = 0.4, ρ/ρ∗ = 7

f = 0.5, ρ/ρ∗ = 6

f = 0.6, ρ/ρ∗ = 4

system BCC FCC A15 LIQUID

-20.4343(4) -20.8418(1) -21.1049(1) -----

-13.419(1) -13.508(1) -13.554(1) -12.843(1)

----- -1.1222(1) -1.1215(1) -1.076(1)

Ladd-Frenkel method in the crystal phases
Coupling constant integration in the liquid phase

martedì 8 dicembre 2009



Conclusions

• We have developed a consistent and efficient strategy for the coarse graining of diblock copolymer 
solutions.

• The coarse-grained ISS dumbbells model exhibits the spontaneous self-assembling of the polymers 
into spherical micelles and the micelle crystallization for increasing density in qualitative agreement 
with experiments

• Signature of the micellization (CMC) are observed in thermodynamic properties and can be 
anticipated within the RPA, with good agreement with simulations  

•Above the CMC, micelles of dumbbells can be safely replaced by point particles with suitably 
extracted pair potentials, providing an effective micelles model to study the relative stability of various 
phases

•By free energy methods we have found the A15 structure to be the most stable structure among our 
three candidates, while diamond structure, observed in star polymers, is always dynamically unstable.

martedì 8 dicembre 2009



Open issues

• Our coarse graining strategy from full monomer to dumbbells is based on the use of potentials 
extracted at zero density.  The use of such potentials for concentrated solutions is an untested 
approximation. Needs for a multi-blob approach (work in progress by B. Capone)

• In going from dumbbells micelles to effective point particles important aspects of the original 
systems, such as polydispersity of the aggregates, dynamical fluctuations of the number of aggregates 
in the systems, chemical equilibrium between free molecules and aggregates, are lost.

• Although predictions from the effective micelle model are in qualitative agreement with results for 
the dumbbells model, a quantitative validation of this further coarse-graining step is still missing. 

• Calculation of crystal free energies for dumbbells micelles are in progress (G. D’Adamo) by using a 
recently developed method:

Phase Coexistence of Cluster Crystals: Beyond the Gibbs Phase Rule

Bianca M. Mladek,1 Patrick Charbonneau,2 and Daan Frenkel2,*
1Center for Computational Materials Science and Institut für Theoretische Physik, Technische Universität Wien,

Wiedner Hauptstrasse 8-10, 1040 Wien, Austria
2FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

(Received 17 August 2007; published 7 December 2007)

We report a study of the phase behavior of multiple-occupancy crystals through simulation. We argue
that in order to reproduce the equilibrium behavior of such crystals, it is essential to treat the number of
lattice sites as a constraining thermodynamic variable. The resulting free-energy calculations thus differ
considerably from schemes used for single-occupancy lattices. Using our approach, we obtain the phase
diagram and the bulk modulus for a generalized exponential model that forms cluster crystals at high
densities. We compare the simulation results with existing theoretical predictions. We also identify two
types of density fluctuations that can lead to two sound modes and evaluate the corresponding elastic
constants.
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At finite temperatures, all crystals contain point defects.
This means that the ratio between N, the number of parti-
cles, and Nc, the number of unit cells is not fixed by
geometry. In the language of Ref. [1], Nc is a ‘‘con-
strained’’ thermodynamic variable. A general variation of
the Helmholtz free energy for a one-component crystal can
be written as

 dF ! "SdT " PdV #!dN #!cdNc; (1)

where S is the entropy, T the absolute temperature, P the
pressure, V the volume, ! the chemical potential of the
constituent particles, and !c the ‘‘cell chemical potential’’
conjugate to the number of unit cells. If Nc is free to
change, it will take on a value such that !c ! 0 to mini-
mize the system’s free energy; hence, its value is a function
of N, V, and T. While in a bulk equilibrium crystal this can
be realized by making adjustments at surfaces, interfaces,
and boundaries, in a simulation box or in a quenched
sample the initial lattice geometry constrains the system.
In simple crystals, however, the equilibrium concentration
of point defects is usually so low that their effect on the
phase behavior is negligible [2,3]. For instance, at melting,
the chemical potential of a hard-sphere crystal with vacan-
cies roughly differs by as little as 10"3kBT from that of a
defect-free crystal for which Nc ! N [3].

Interestingly, the situation is dramatically different for
systems that form hypercrystals, such as certain liquid
crystal phases [4], quantum Hall effect bubble solids
[5,6], or, as in this Letter, ‘‘cluster crystals’’ [7–12].
These unusual crystalline materials can have a number of
particles per lattice site much larger than 1. These last
solids form in systems of particles that interact via a
bounded, short-ranged, and purely repulsive pair potential
whose Fourier transform has negative regions, as has been
anticipated for amphiphilic dendrimers [13]. The effect of
!c on the phase behavior then becomes all important,
which has profound consequences for the numerical study

of their phase transitions. The reason is that in almost all
simulations involving crystals, the average number of par-
ticles per unit cell is fixed at the outset of the simulation.
After that, a change in the density " $ N=V of the system
may still change P and ! but, as the ratio N=Nc is fixed, !c
will in general not be zero. Hence, conventional simula-
tions do not probe the lowest free-energy state of the
crystal. At constant P and T, a small variation in Gibbs
free energy G $ F# PV is of the form !dN #!cdNc. If
we fix the ratio nc $ N=Nc, then both ! and !c are
constant, so we can integrate to obtain

 G ! N!# Nc!c (2)

and hence

 Nc!c ! F# PV "!N: (3)

For a given N, V, T, and Nc, we can use Monte Carlo (MC)
simulations to compute F, P, and ! [14]. As all quantities
on the right-hand side of Eq. (3) can be determined nu-
merically, while Nc is known, we can also compute !c.
This is important because the condition for phase coex-
istence involving cluster crystals requires equality of !, P,
and T in the coexisting phases and of !c ! 0 in all
crystalline phases. This latter condition is not normally
considered in the discussion of the Gibbs phase rule.
However, in his original formulation, Gibbs does allow
for the possible existence of other thermodynamic ‘‘fields’’
in addition to !, P, and T [15].

As an application of this approach, we consider the
numerical determination of the phase diagram for the gen-
eralized exponential model (GEM-n) !%rij& ! "e"%rij=#&n

with n ! 4, where " and # determine, respectively, the
energy and the length scales. For convenience, we set them
to unity and consider only reduced units from this point
forward. For n > 2, this system is known to form cluster
solids at high densities [7,8,11,16]. Its phase diagram is
known qualitatively, but not quantitatively: at high T, the
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