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Outline

Lecture 1

• Broad introduction to glass-formers

• Microscopic aspects of the dynamics

• Dynamic heterogeneity at the particle level

• Application to gels

Lecture 2

• Clusters, etc.

• Four-point correlation functions

• More dynamic susceptibilities

• Structure or dynamics?
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A broad introduction to glass-formers
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Glass-formers & glasses

• Many materials (hard & soft) are glassy. Amorphous structure with slow
dynamics, trel ∼ texp. E.g. structural glasses [Debenedetti, Stillinger ’01]

• Angell and Tarjus.

• Glass ‘transition’
η(Tg) = 1013 Poise

• How to describe structural
relaxation?

• Microscopic mechanisms,
relevant fluctuations, length
scales?
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More ‘jamming’ transitions
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Vibrated grains [Philippe & Bideau, EPL ’02]

• Dense assemblies of grains, colloids
and bubbles stop flowing. Sollich.

Colloids [Phan et al., PRE ’96]

Sheared foam [Langer, Liu, EPL ’00] title – p.6



The glass conundrum

A liquid flows A glass does not

• Why don’t glasses flow? How do viscous liquids flow?

title – p.7



A challenging field

• Broad variety of materials made of:

Atoms – Molecules – Spins – Droplets – Colloids – Bubbles – Grains

• Many transitions from an ergodic/fluid phase to a non-ergodic/glassy
phase are empirically well-known.

• But poorly understood! Disorder, non-ergodicity, off-equilibrium,
experimental difficulties, etc.

• Most of them are not even ‘transitions’ in a statmech sense.

• Rich phenomenology to be studied and explained: rheology, aging,
memory, rejuvenation, hysteresis, non-linear response, effective
temperatures, etc.
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Slow dynamics in glassy materials:
Microscopic aspects
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Microscopic dynamics

• We want to understand the dynamics at a microscopic level.
E.g., self-intermediate scattering function Fs(q, t) = 〈eiq.(rn(t)−rn(0))〉 in a
silica melt SiO2: slow atomic motions. Kob.

• Broad distributions,
stretched exponential:
Fs ∼ exp[−(t/τα)β ], β < 1. 2750 K
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Oxygen

t

F
s
(q

,
t)

108107106105104103102101100

1

0.8

0.6

0.4

0.2

0

[Berthier, PRE ’07]
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Averaged displacements

Mean-squared displacement, ∆(t) = 〈|ri(t) − ri(0)|2〉, in a Lennard-Jones
mixture: non-Fickian dynamics at intermediate times.

∼ t

∼ t
2
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∆
(t
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Fickian (Gaussian) dynamics

• Fickian diffusion implies: Gs(x, t) = (4πDst)
−1/2 exp(−x2/4Dst).

• Implies simple diffusion: ∆(t) = 3〈x2〉 = 3

∫

∞

−∞

dxGs(x, t)x
2 = 6Dst.

• Fs(q, t) =

(∫

∞

−∞

dxeiqxxGs(x, t)

)3

= e−q
2Dst = e−q

2∆(t)/6

• Same information content from ∆(t) and Fs(q, t).

• Dispersion relation τ(q) =
1

q2Ds
.

• ‘Non-Gaussian parameter’, α2(t) =
〈x4〉
3〈x2〉 − 1, is zero for a Gaussian

process, also quite popular.
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Non-Gaussian local dynamics

• Comparison of Fs(q, t) and exp(−q2∆(t)/6): non-Gaussian diffusion at
low temperatures. Viscous liquids are ‘different’.

exp(−q2∆(t)2/6)
Fs(q, t)

t

F
s
(q

,
t)
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• Suggests that τα(q0, T ) ≈ η(T ) and Ds(T ) behave differently with
temperature, they ‘decouple’.
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Decoupling phenomena
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[Mapes et al., JCP ’06]

• Ds ∼ τα(q0, T )−ζ , with ζ ≈ 0.82 < 1 in LJ mixture. Fractional
Stokes-Einstein relation in OTP: Ds ∼ (T/η)ζ , ζ ≈ 0.82 < 1.

• Importance of statistical distributions and microscopic fluctuations. New
constraints for theories (e.g. MCT). Decoupling has been widely studied.
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Dynamic heterogeneity at the
single particle level
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‘Intermittent’ dynamics (movie)
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• This information cannot be captured by averaged statistical correlators.

• Need for temporally and spatially resolved experiments/simulations.
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Dynamic heterogeneity in liquids

• Non-Gaussian distribution of
particle displacements in a su-
percooled liquid.
Gs(r, t) = 〈δ(r − |ri(t) − ri(0)|)〉

• Gaussian part for small r, ex-
ponential tails at large distance.

r
G

s
(r

,t
)
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[Chaudhuri, Berthier, Kob, PRL’07]

• Coexistence of fast/slow populations of particles. ‘Historical’ definition of
dynamic heterogeneity: Hundreds of papers, several reviews (Ediger).

• The exponential tail is the analog, in space, of stretched exponential
decay of time correlation functions. Theoretical explanation? MCT?
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A random walk picture

• Particles perform random walks at random times, or “Continuous Time
Random Walk” (CTRW).
[Lax, Scher, Bouchaud, Odagaki, Berthier et al. EPL ’05, Chaudhuri et al. PRL’07]

• Compute Gs(r, t) using standard formalism of CTRW.

• Generically (saddle-point) leads to an exponential tail (with
log-corrections) for van Hove distribution.

• Conclusion: intermittent jump dynamics in supercooled liquids is
responsible for exponential tail of van-Hove distributions.
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Set up for computation

• Consider a stationary continuous time random walk. Measurement of
displacement starts at arbitrarily chosen t = 0.

tktk−1

time
t=0

p(t)ψ(t)

• Waiting time distribution, ψ(t).
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Standard CTRW

• Gs(r, t) =

∞
∑

n=0

p(n, t)f(n, r).

• p(0, t) =
∫

∞

t
dt′p(t′), time to the 1rst jump; f(0, r) = fvib(r).

• p(1, t) =
∫ t

0
dt′p(t′)Ψ(t− t′); Ψ(t) =

∫

∞

t
ψ(t′); ψ(t) is the waiting time

distribution; f(1, r) = [f(0, r) ⊗ fjump(r)] ⊗ fvib(r).

• p(n+ 1, t) =
∫ t

0
dt′p(n, t′)ψ(t− t′); f(n+ 1, r) = [f(n, r)⊗ fjump(r)]⊗ fvib(r).

• Solution: Gs(q, s) =

(

1 − p(s)

s

)

fvib(q) +
p(s)fvib(q)f(q)[1 − ψ(s)]

s[1 − f(q)ψ(s)]
,

with f(q) = fvib(q)fjump(q) [Tunaley, PRL ’74].

• Feller relation: p(t) =

∫

∞

t
dt′ψ(t′)

∫

∞

0
dt′t′ψ(t′)

→ 〈t〉p =
〈t2〉ψ
〈t〉ψ

.

First jump gives more weight to large waiting times.
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Fitting data in real materials

• Waiting time distributions are not known! → Simplified CTRW model.

• Timescales: p(t) = exp(−t/t1)/t1 and ψ(t) = exp(−t/t2)/t2; t1 > t2.

• Lengthscales: fvib ∼ exp(−r2/σ2
1) and fjump ∼ exp(−r2/σ2

2).

• Using (σ1, σ2, t1, t2), data for liquids, colloids and grains can be fitted for
many (t, T , ϕ).

• Typically, we find σ2 ≈ σ1.
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Lennard-Jones

r/σ
86420

Silicon

r (Å)
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... even in colloidal gels
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[Chaudhuri, Gao, Berthier, Kilfoil, Kob, JPCM ’08]
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Temperature evolution

• Distributions get broader at low temperature.

Lennard-Jones

r/σ
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• Waiting time distributions get broader (in model, t1/t2 increases).
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The Fickian lengthscale

• CTRW solution shows that τ(q) ≈ t1 + t2
q2 , with t2 ∼ 1/Ds. That is,

τ(q) × q2Ds ≈ 1 + (q`?)2, with `? =
√
t1Ds is a ‘Fickian lengthscale’, above

which the diffusion equation holds [Berthier, Chandler, Garrahan, EPL ’05].

• Broad waiting time distributions → t1 � t2.
Dynamic heterogeneity → large `?.

• New length scale `? is ob-
served in MD simulations
[Berthier, PRE ’04].

• Experiments are (were?)
being performed [Ediger et al.]
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Decoupling re-interpreted

• Compare α = t1/t2 from fitting van-Hove data, to Rdec =
Ds(T )τα(T )

Ds(T0)τα(T0)
, a

measure for translational decoupling.

Si

O

LJ

Tc/T

R
d
e
c
,
α

1.41.210.80.60.4

4

3

2

1

• Clear link between intermittency, Gs(x, t) tails, broad waiting time
distributions, and decoupling.
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A simple application:
Dynamic heterogeneity in gels
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Dynamic heterogeneity in gels

• Model system for complex transient net-
work fluid. A soft solid, a gel, with highly
non-linear rheology. Sciortino.

• Fractures? Percolation? Gelation?
Banding? Gel dynamics? Heterogeneity?

Volume fraction

N
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r 
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tic
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rs

[Porte, Appell et al., several papers]
40 ms2010t=0 30
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Hybrid MC/MD simulations

• Configuration: {ri(t),vi(t)} for droplets; connectivity matrix
{Cij = # polymers linking i and j} for polymers.

• Solve Newton’s equations for droplets with total Hamiltonian:

H =
1

2
m

N
∑

i=1

v2
i +

N
∑

i=1



Ciiεloop +
∑

j>i

[Vsoft sphere(rij) + CijVfene(rij)]





• Evolve the connectivity matrix {Cij} with
Monte Carlo dynamics. Acceptance rate:
τ−1
link min(1, exp[−∆Vfene/kBT ]).

• Control parameters

φ: droplet volume fraction;

R = 2Np/N : number of stickers per droplet;

τlink: attempt timescale for sticker escape.
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Equilibrium phase diagram
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• Equilibrium results in agreement with experiments.
[Hurtado, Berthier, Kob, PRL ’07]
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Gelation = geometric percolation

φ = 0.2, R = 2

• Homogeneous overall structure, but fractal stress-sustaining network at
thermal equilibrium.
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‘Slow’ dynamics in gels

• Self intermediate scattering function, Fs(q, t) = 〈eiq.(rj(t)−rj(0))〉, mean
squared displacement, ∆2(t) = 〈|rj(t) − rj(0)|2〉.

• Structure → Dynamics
percolation = plateau = vis-
coelasticity 6= glass transi-
tion.

• τlink controls the long-time
dynamics in the gel.
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• But: Fs(q, t) 6= exp(−q2∆(t)2/6). Non Gaussian effects, ‘decoupling’.
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Dynamic heterogeneity in gels
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• Non-Gaussian, ‘bimodal’ distributions of particle displacements.
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Heterogeneity is structural
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• Coexistence of an "arrested" gel and “freely” diffusing droplets, with
dynamic exchange between the 2 populations → Simple modelling.

• Fundamentally different from supercooled liquids.
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Conclusion Lecture 1

• Understanding the microscopic aspects of the glass formation through
atomic motions.

• Viscous liquids are different.

• Single particle diffusion strongly non-Fickian.

• Intermittent jumps and broad distributions: stretched exponential decays
(time) and exponential tails (space).

• Anomalous dispersion relation and Fickian lengthscale.

• Decoupling phenomena.

• A (simpler) application of these tools to a gel system.

• I did not address the microscopic origin of these behaviours.
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Outline

Lecture 1

• Broad introduction to glass-formers

• Microscopic aspects of the dynamics

• Dynamic heterogeneity at the particle level

• Application to gels

Lecture 2

• Clusters, etc.

• Four-point correlation functions

• More dynamic susceptibilities

• Structure or dynamics?
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Spatial aspect of dynamic
heterogeneity: Clusters
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Dynamic ‘populations’

• Non-Gaussian distribution of particle displacements in a supercooled
liquid. Where are the particles in the tail?

r

G
s
(r

,t
)
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• Coexistence of fast/slow populations of particles.

• Thresholding, e.g. µi(t = t?) = |ri(t?) − ri(0)| > ε, to identify populations.
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Clustering

• Use cluster analysis to study sub-populations.

[Donati et al., PRL ’98].

• Identify ‘strings’, ’cooperatively rearranging regions’, ‘democratic
clusters’, etc. Very many contributions but no consensus?

• Problems: Clusters are reconstructed a posteriori; thresholding not
easily treated theoretically; comparisons between systems hard.
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Structure of mobile regions

• What is the structure of regions with distinct mobilities? Partial structure
factors of dynamic mixtures (‘four-point’ functions).

[Donati et al., PRE ’99].

• Clear indications that particles with similar mobilities increasingly cluster
in space as T decreases.
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Four-point functions:
Definitions and results
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Mobility field and its fluctuations

• Define mobility field: f(r, t) =
∑

i fi(t)δ(r − ri), and its fluctuating part:
δf(r, t) = f(r, t) − 〈f(r, t)〉.

• E.g. fi(t) = exp[ik · (ri(t) − ri(0))], or fi(t) = exp[−(ri(t) − ri(0))2/a2], etc.

• No thresholding; comparisons between different systems become easy;
theory can handle the following four-point correlations.

• Four-point structure factor: g4(r, t) = 〈δf(0, t)δf(r, t)〉.

• In Fourier space: S4(q, t) = 〈f(q, t)f(−q, t)〉.

• Susceptibility:

χ4(t) =

∫

g4(r, t)dr = N

[〈

(

1

N

∑

fi(t)

)2
〉

−
〈

1

N

∑

fi(t)

〉2
]

.

• These functions are the analog for f(r, t) of g(r), S(q), and κT from
density fluctuations ρ(r, t) =

∑

i δ(r − ri) of a liquid. Kob.
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Spatially heterogeneous dynamics

• Snapshots of δFj(k, t) = eik·[rj(t)−rj(0)] − Fs(k, t), for t ≈ τα.
[Berthier, PRE’04].

• Local dynamics becomes spatially correlated as T decreases.

• Similar snapshots of mobility fields have been published for liquids,
colloids, granular materials, etc.
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Growing χ4 in simulations

χ4 = N〈δF (k, t ≈ τα)2〉 is a ‘correlation volume’.

��� ��
��� ��

��� ��
�� �

��� � �
�� �

��� � �
� 	 ��
 �

�

�
�� �

�� ��� ��� ��� ���� �
��

��
��

�
�

• Growing χ4 reveals that dynamics is increasingly spatially
heterogeneous at low temperature. Viscous liquids are ‘different’.
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Behaviour of χ4(t)

τατβ

χ?
4 ∼ τ θ

α

tb

ta

Late betaEarly betaMicroscopic

t

χ
4
(t

)

108106104102100

102

100

10−2

• Comparison to theoretical predictions (MCT, KCM, RFOT) is possible
[Toninelli et al., PRE ’05]. Miyazaki, Jack, Biroli, Franz.
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Growing lengthscale in simulations
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• Simulations with N = 1000 particles, Lbox = 9.4, qmin = 2π/Lbox ≈ 0.67.

• Large peak at q = 0 indicates growing lengthscale, ξ4. Measurement?
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Growing length in simulations

• If not enough data, use scaling to get ξ4. E.g. S4(q, t) ≈
S0

1 + (qξ4)2
.

• No consensus on functional form, no agreed measurement of ξ4.
(Stein/Andersen, N = 27, 000, Karmakar et al., N = 300, 000). Hard!
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Growing length in experiments

• Eric Weeks has measured g4(r, t) in colloidal systems using confocal
microscopy. [Weeks et al., JPCM ’07]

• Simulations and experiments indicate ξ4 ≈ 5 particle diameters after 5
decades of slowing down.
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Dynamic scaling

• Dynamic scaling in LJ supercooled liquid [Whitelam, Berthier, Garrahan, PRL ’04].

Power laws: χ ∼ τ1/∆ and ` ∼ τ1/z.
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• Predicted by RG analysis of coarse-grained kinetically constrained spin
models [Whitelam et al. PRL ’04 - PRE ’05] and mode-coupling theory [Biroli,

Bouchaud, EPL ’05]. Coincidence?

• What happens closer to Tg? Hard to measure.
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More multi-point dynamic
susceptibilities
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Multi-point response functions

• Experiments (in liquids) only access averaged correlations: 〈F (t)〉.

• We define the linear response functions:

χT (t) =
∂

∂T
〈F (t)〉

χρ(t) =
∂

∂ρ
〈F (t)〉

⇒ χx(t) [with x = T, ρ] are experimentally accessible multi-point dynamic
susceptibilities quantifying dynamic heterogeneity in glass-formers.

[Berthier, Biroli, Bouchaud, Cipelletti, El Masri, L’Hôte, Ladieu, Pierno, Science’05]
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Spontaneous & induced fluctuations

• χT / χρ: part of the dynamic fluctuations induced by energy / density
fluctuations:

χ4(t) = χNV E4 (t) +
kB
cV
T 2χ2

T (t) + ρ3kBTκTχ
2
ρ

• χT / χρ provide a rigorous lower bound to χ4:

χ4(t) ≥
kB
cV
T 2χ2

T (t) for molecular liquids.

χ4(t) ≥ ρ3kBTκTχ
2
ρ for colloidal hard spheres.

• Theory and simulations of strong and fragile glasses and hard spheres
show that the bounds are good approximations. Experiments become
feasible.

[Berthier et al., JCP (I+II) ’07]

[Dalle-Ferrier et al., PRE’07]
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How to measure χT (t)?

• χT (t) can be estimated by finite difference (but check linear response):

χT (t) =
∂FT (t)

∂T
≈ FT+δT (t) − FT (t)

δT
.

• Works with any two-time dynamical correlator, dielectric susceptibility,
mechanical compliance, etc.
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• Simulations of a LJ glass-former: χT (t) has a growing peak when T
decreases: Growing dynamic fluctuations and related lengthscales.
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Reliable estimate of χ4?

• Yes!

• Numerical simulations of frag-
ile Lennard-Jones and strong
BKS silica models.
[Berthier et al., JCP ’07]

• Measure independently all
contributions to χNV T4 .

• The term with χ2
T dominates at

low T . Good news for experi-
ments close to Tg.

• Dynamic heterogeneity mostly
triggered by energy fluctuations.

T 2χ2

T
/cV

χNV E
4

χNV T
4

LJ

τα

10
6

10
4

10
2

10
0

10
2

10
0

T 2χ2

T
/cV

χNV E
4

χNV T
4

BKS - Si

τα (ps)
10410310210110010−1

101

100

10−1

title – p.56



Colloidal hard spheres

(ϕc − ϕ)−2

(ϕc − ϕ)−1

χ4|ϕ
ρkBTϕ2χ2

ϕ

ϕcϕonset

ϕ

605856545250

10
3

10
2

10
1

10
0

10
−1

[Brambilla et al., PRL ’09]

• χ4 can be safely estimated from response function χϕ = ∂F (t)/∂ϕ in
colloidal particles.
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Physical content of χT (t)

• For Newtonian dynamics in the NV T ensemble,

kBT
2χT (t) = N〈δF (t)δE(0)〉,

where E(t) is the energy (dynamic fluctuation-dissipation relation).

• With NF (t) = ρ
∫

d3~rf(~r, t) and NE(t) = ρ
√
kBcV T

∫

d3~rê(~r, t),

√

kB
cV
TχT (t) = ρ

∫

d3~r
〈

δf(~r, t)δê(~0, 0)
〉

≈
(

ξT
a

)ds

.

• Similarly for colloidal particles,

√

ρkBTκTϕχϕ(t) = ρ

∫

d3~r
〈

δf(~r, t)δρ̂(~0, 0)
〉

.

• Growing χT (t) directly reveals a growing dynamic lengthscale ξT : spatial
correlations between local dynamic and energy fluctuations.
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Another lengthscale?

0.43

0.47

0.5

T = 0.6

|ST (q, t)|/2

SN
4

(q, t)

SMC
4

(q, t)

q
10.5 5

10

1

0.1

0.01

• Theory: No. Data compatible with ξ4 ≈ ξT , but hard to know for sure.
More work needed here.

title – p.59



��� �� � ��� 	�

�� �� ��� �

� �
��

�� � �
� �

��
�

 ! " ! # ! $ !% # !% " !% & !% ' !% (

 ! !
 !

 

MontpellierSaclay

)+* ,.-/ 021 3 425/ 5 1
6 71 8

9:
;

< =
> ?

@ A@ BC
D E

FG HFG IF GJ HFGJ K

FG H
FG I

FGJ H
FGJ K

• Dynamic lengthscale
grows with viscosity

• Few hundreds of
molecules move coop-
eratively at Tg.

[Berthier et al., Science ’05]
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Growing length near Tg

• χ∗

4(T ) ≈
(

ξ

a

)ds

, with ds = 2 − 4, a is a molecular lengthscale.

• For glycerol (Tg = 185 K), ξ = 0.9 nm at 232 K to ξ = 1.5 nm at 192 K

Similar to Ediger’s 4D NMR data: ξhet = 1.3 ± 0.5 nm at 199 K.

• If F (t) = F(t/τα), χ∗

4(Tg) ≈ [F ′(1)]2
kB
cP

(

∂ ln τα
∂ lnT

∣

∣

∣

Tg

)2

.

�

�
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Few hundreds of molecules move
cooperatively at Tg.
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Evolution of dynamic lengthscale

Decaline
m-toluidine

B2O3

Propylene glycol
3-Fluoroaniline
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• Ncorr ≡ χ4 ∝ χ2
T from

temperature derivative for
many different liquids.
[Dalle-Ferrier et al., PRE ’07]

• Crossover from
algebraic to logarithmic
growth.

• ξ4 does not ‘diverge’.
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Structure or dynamics?
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Isoconfigurational ensemble

• ’Propensity’ 〈µi(t)〉iso = 〈|ri(t) − ri(0)|〉iso by averaging at constant initial
structure.

[Widmer-Cooper et al., PRL ’04]
title – p.64



Correlation is not prediction

• Propensity fluctuations show that
‘something’ in the structure causes
‘some’ dynamic heterogeneity.

• Echoes a long list of ‘correlation’ be-
tween structural and dynamical fluctua-
tions. Not necessarily causal, not nec-
essarily meaningful...

[Widmer-Cooper et al., JPCM ’04]

• Harrowell and coworkers report strong (almost predictive) correlation
between propensity fluctuations and vibrational properties (mode
spectrum). No consensus. Barrat.
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Structure or dynamics?

• Harrowell et al. replaced the structure → dynamics problem by structure
→ propensity.

• What about propensity → dynamics? What about predictability?
[Berthier, Jack, PRE ’07]

• Let’s start with single particle dynamics: µi = |ri(t) − ri(0)|, 〈µi〉iso.

〈µ2

i
(t)〉

µ
2 i
(t

)
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0
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P
(l

og
1
0
µ
)
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4

2

0

• Fast/slow character
lost.

• Correlation is not pre-
diction.

• Single particle dynamic
heterogeneity is not pre-
dictible from the struc-
ture.
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Predictability at large lengthscales

• ∆(t) = E
[

〈µ2
i (t)〉iso

]

− E
2 [µi(t)] = ∆iso(t) + δ(t)

∆iso(t) = E
[

〈µ2
i (t)〉iso − 〈µi(t)〉2iso

]

at constant structure (dynamical origin)
δ(t) = E

[

〈µi(t)〉2iso
]

− E
2[µi(t)] propensity fluctuations (structural origin)

• Simulations indicate δ(τα)/∆(τα) < 4 %: dynamical origin of single
particle heterogeneity. Don’t try to explain fast/slow particles from their
local structure!

• Decompose also global fluctuations: F (t) = 1
N

∑

i µi(t):
χ4(t) = N{E

[

〈F 2(t)〉iso
]

− E
2 [C(t)]} = ∆iso

4 (t) + δ4(t)

• δ4(τα)/χ4(τα) grows rapidly and ≈ 35 % at lowest temperature: structure
is back!

• Dynamic heterogeneity dynamical in essence at single particle level, but
structural origin of fast and slow domains. [Berthier, Jack, PRE ’07]
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Conclusion Lecture 2

• Increasing lengthscale of dynamic heterogeneity with viscosity.

• Multi-point dynamic susceptibilities to quantify early observations of
clusters.

• Can be measured and compared in different systems, analyzed by
theory, simulations and experiments.

• Crossover from early power law growth to modest logarithmic increase:
length scales remain modest even at Tg.

• Tools are now commonly used outside the glass transition field: granular
problems, jamming of soft particles, colloidal gels, etc.

• Many open problems were discussed.
Tarjus, Miyazaki, Jack, Biroli, Franz, many of your posters.

title – p.68


	 	extcolor {red}{Acknowledgments} 
	 	extcolor {red}{Outline} 
	 	extcolor {red}{} 
	 	extcolor {red}{Glass-formers & glasses} 
	 	extcolor {red}{More `jamming' transitions} 
	 	extcolor {red}{The glass conundrum} 
	 	extcolor {red}{A challenging field} 
	 	extcolor {red}{} 
	 	extcolor {red}{Microscopic dynamics} 
	 	extcolor {red}{Averaged displacements} 
	 	extcolor {red}{Fickian (Gaussian)
dynamics} 
	 	extcolor {red}{Non-Gaussian local dynamics} 
	 	extcolor {red}{Decoupling phenomena} 
	 	extcolor {red}{} 
	 	extcolor {red}{`Intermittent' dynamics (movie)}

	 	extcolor {red}{Dynamic heterogeneity in liquids} 
	 	extcolor {red}{A random walk picture} 
	 	extcolor {red}{Set up for computation} 
	 	extcolor {red}{Standard CTRW}
	 	extcolor {red}{Fitting data in real materials} 
	 	extcolor {red}{} 
	 	extcolor {red}{... even in colloidal gels} 
	 	extcolor {red}{Temperature evolution}
	 	extcolor {red}{The Fickian lengthscale}
	 	extcolor {red}{Decoupling re-interpreted} 
	 	extcolor {red}{} 
	 	extcolor {red}{Dynamic heterogeneity in gels} 
	 	extcolor {red}{Hybrid MC/MD simulations}
	 	extcolor {red}{Equilibrium phase diagram} 
	 	extcolor {red}{Gelation = geometric percolation} 
	 	extcolor {red}{`Slow' dynamics in gels} 
	 	extcolor {red}{Dynamic heterogeneity in gels} 
	 	extcolor {red}{Heterogeneity is structural}
	 	extcolor {red}{Conclusion Lecture 1} 
	 	extcolor {red}{Acknowledgments} 
	 	extcolor {red}{Outline} 
	 	extcolor {red}{} 
	 	extcolor {red}{Dynamic `populations'} 
	 	extcolor {red}{Clustering} 
	 	extcolor {red}{Structure of mobile regions} 
	 	extcolor {red}{} 
	 	extcolor {red}{Mobility field and its fluctuations} 
	 	extcolor {red}{Spatially heterogeneous dynamics} 
	 	extcolor {red}{} 
	 	extcolor {red}{Growing $chi _4$ in simulations} 
	 	extcolor {red}{Behaviour of $chi _4(t)$}

	 	extcolor {red}{Growing lengthscale in simulations} 
	 	extcolor {red}{Growing length in simulations} 
	 	extcolor {red}{Growing length in experiments} 
	 	extcolor {red}{Dynamic scaling}
	 	extcolor {red}{} 
	 	extcolor {red}{Multi-point response functions} 
	 	extcolor {red}{Spontaneous & induced fluctuations} 
	 	extcolor {red}{How to measure $chi _T(t)$?}

	 	extcolor {red}{Reliable estimate of $chi _{4}$?} 
	 	extcolor {red}{Colloidal hard spheres} 
	 	extcolor {red}{Physical content of $chi _T(t)$}

	 	extcolor {red}{Another lengthscale?} 
	 	extcolor {red}{} 
	 	extcolor {red}{Growing length near $T_g$} 
	 	extcolor {red}{Evolution of dynamic lengthscale} 
	 	extcolor {red}{} 
	 	extcolor {red}{Isoconfigurational ensemble}
	 	extcolor {red}{Correlation is not prediction}
	 	extcolor {red}{Structure or dynamics?}
	 	extcolor {red}{Predictability at large lengthscales}
	 	extcolor {red}{Conclusion Lecture 2} 

