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The glass transition
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Fundamental property of liquids -- they flow.

When viscosity reaches 103 poise, they stop flowing on experimental time
scales (relaxation times ~ 100 s)

“Laboratory glass transition” seen for wide range of substances, and is a
kinetic effect.




Volume

Tg3 Tg2 Tgi
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Property of the glass obtained will depend on method of
preparation.

E.g., the density will depend on the cooling rate.
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» Data collapse when T scaled

with Tg? — No, Instead, a
range of behavior.
How rapidly the viscosity

changes is called the fragility
of the glass former.

Well described by the VFT
(Vogel Fulcher Tammann)
form.

K -- fragility index



Thermodynamics
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» Heat capacity also shows a drop.

» Magnitude depends on fragility, location
depends on cooling rate.

» |s there an underlying thermodynamic
transition?



Kauzmann paradox
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Heat capacity of the liquid higher
than crystal.
By extrapolation, excess entropy

of the liquid over crystal appears
to vanish at a finite temperature.
Paradoxical.

Resolution in practice -- Glass
transition intervenes.

Resolution in principle -- Entropy
vanishing thermodynamic glass
transition??

Meaning of excess entropy? --
Corresponds to multiplicity of

distinct structures that a liquid can
be in.



Adam-Gibbs Theory

Builds on Gibbs-DiMarzio theory describing
the glass transition as an entropy vanishing
transition.

Connection to dynamics.

Views a liquid as divided into cooperatively
rearranging regions of size z.

Probability of rearrangement:
p(T) ~ exp(—fB o z)



« Entropy of each CRR roughly constant
regardless of size. N

» Total entropy of the system g —

So
Z

* Results in expression for relaxation times:
Ol S,

Ts. )

« Tested and found to be a good description of
experimental and simulation data.

T ~ exp(



K.

Results in VFT equation if AC, =

since
T -
AC K. T
AS =AS(Tw )= 0 p[T: - -1
AS = AS(Tg)| ]+/T’ 7 =771

i T
TAS =K. (— —1
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Plugging into the Adam-Gibbs relation

O[S
T ~ exp
Ko(7-—1)
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Hence,




Energy landscape approach: Intuitive picture |

Disordered liquid structure. Potential gasi /T':R;*;‘:"
energy a complicated function of [
coordinates, with many local energy
minima — energy landscape.

Local minima — many disordered
packings of atoms possible in the
liquid.

Premise: disorder and structure of

energy landscape play an essential
role in the physics of interest.

Expectation: likely to be true at low
temperatures and high densities.

Lowering temperature, the local

minima sampled get deeper, and it
gets harder to go from one to the
other.

Increasing relaxation times.

Local minima: Inherent structures
(Stillinger and Weber)

Potentid energy




lllustration

A particle moving in a complicated one dimensional potential
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time, t

Potential V(r)

Position, r

Many local minima of the potential energy — Inherent structures



Some observations:

 Fast equilibration in “basins” of local minima

* Transient localization at intermediate
temperatures

 “Trapping’ in local minima at low temperatures
 Barrier crossing to explore phase space;

(in higher dimensions) entropic barriers due to
connectivity of minima.

Statistical description of energy landscape:

Distribution of Minima: N(®) = number of minima in
(D, D + AD)

Configurational Entropy Density = S (®) = kg log(N(®P) )

Configurational Entropy S (T) = <S> = Sc(®(T))




Potential Energy Landscape Picture

Martin Goldstein, Viscous Liquids and the Glass Transition:

A Potential Energy Barrier Picture (1969): “...based on the idea

that in “viscous” liquids (shear relaxation time 107° sec) flow is dominated by
potential barriers high compared to thermal energies, while at higher temperature,

this will no longer be true.”

Stillinger and Weber (1982). Computer simulation studies of
local energy minima, termed Inherent Structures and the
formulation of thermodynamics of liquids in terms of the
partitioning of configuration space into basins of inherent
structures.



The potential energy of a liquid is a function of 3 N coordinates of the
atoms in the liquid, and forms a surface in 3N+1 dimensions. For a

given liquid, the potential energy surface is temperature
independent.

The configuration space can be divided into basins of local energy
minima, and the properties of the liquid can be studied by
considering the temperature dependent sampling of the landscape.




Computer simulations

The analysis of the energy landscape has been
carried out using computer simulations extensively.

Molecular dynamics simulations to generate trajectory
of a collection of interacting particles (atoms) under
constant energy or temperature.

A sample of configurations is subjected to local
energy minimization to probe the energy landscape
sampled by the liquid at the studied state point.

The statistics of energy minima sampled, and
properties of such minima are calculated.

The dynamics of the liquid is probed by the diffusion
of particles, density correlation functions, etc.



Average Energy of Inherent Structures

Computer simulation of Kob-Andersen binary LJ mixture:

Liquid simulated at varying cooling rates.
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* Cooling rate = 1.08 x10
Cooling rate =270 x10
+ Cooling rate « 8.33x10™
Cooling rate = 333 x10 *

0.0 0
Temperature

Sastry et al 1998

* Nearly constant average
energy of inherent structures at
high temperature.

* Increasing depth of minima at
lower temperatures.

At the lowest temperatures,
liquid gets “stuck” in inherent
structures of depth that
depends on cooling rate.



Onset Temperature
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development of non-Arrhenius
dependence of relaxation times, and

stretched exponential relaxation.
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In the temperature range where dynamics of liquids begins to display
‘slow dynamics’ (super-Arrhenius T dependence, stretched exponential
relaxation), one must observe signatures in the energy landscape

sampled by the liquid.
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Sampling of Inherent Structures

Onset of significant temperature dependence of inherent
structure energies coincides with emergence of non-
Arrhenius T dependence of relaxation times.
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Time dependent correlation functions: Stretched exponential relaxation
of density correlation function —
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KWW exponent: 50:50 binary mixture, p = 1.296
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Decrease of KWW exponent tracks the sampling of deeper minima

Sastry et all 1999



The emergence of interesting dynamics in the liquid is
associated with a nontrivial sampling of the potential
energy surface.



Goldstein Crossover

Goldstein prediction: Crossover to activated dynamics
when relaxation time ~ 107° sec)

Associated with the mode coupling temperature.

Separation of vibrational and basin hopping times scales.
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To probe, generate a time series of configurations from molecular
dynamics, and a corresponding time series of inherent structures

(Schroeder et al 2000).

Calculate time correlation functions for both molecular dynamics and
inherent structure trajectory.
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at saddle points in addition to
minima.



n /3N

n /3N

Map instantaneous configurations to close by saddle points as
well as minima.

The order of the saddles vanishes as T is approached.
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Changes in the nature of dynamics captured by the
properties of the sampled energy landscape.



Configurational Entropy from
Inherent Structures

The partition function integral can be rewritten in terms | 7 / dr™ exp(—/3V)
of a sum over basins of local minima: |

A—

/ = Z exp(—7d,) / dr™ exp(—pV — @)

A

Defining Basin Free energy:  exp(—3Fpusin o) = / dr™N exp(—3V — @)

(83

Approximation: Basin free energy same for minima of same energy: F (P, T)

The partition function is expressed in terms of the density of
states of minima, 2, and the associated “Configurational Entropy” S,

/ = Z dd Q @}xl) 3[(1) + Fbasz’n((I)a T)])

7 = Z dD exp(—F[® + Frasin(®.T) — T'S.(P))])



Assumption: Basin free energies same for basins with same energy at
the minimum.

Can we make any simplifying assumptions?
For not too low temperatures, Q2(®) should be Gaussian.

Then, one can write

S.(P) (-, )2
Q —_

-'\';kB =L o<
o determines total number of energy minima.
®, — most probable energy of minima.

o determines the spread in energies.

For not too high temperatures, basins can be approximated by harmonic
wells.



Basin free energy Is given by:
Foip = kT l n e

kg T

v; — Vibrational frequencies.

As we expect the basin frequencies to depend on inherent structure
energy, a simple approximation is:

Foin(®,T) = Foin(®0,T) — TSS(® — o)
Foin(®.T)/kpT = Fi(T) + Fo(®g) — £2(® — ®o)

Equivalently
Sviv (P, T) = Suin(Po, T) + 65(P — Pog).

For these assumptions, the partition function can be solved, and yields

')

<®>(T)=ers(T) =05 — =2—=, where &'/ = d, + 7\2*

2NEkgT?

TS.(T) = K5EX(T)(T/Tic — 1)
K PLL(T) — (0\3/; 4+ f\“i;) (1 + i}h) - ?;2:3

Fp!




In words:
Inherent structure energy must vary at 1 /7"

Configurational entropy has nearly the correct form needed to justify
VFT relation.

Configurational entropy obtained in terms of a few parameters that
describe the energy landscape of the liquid: o, o, &g and 6 5.

We will see later that these predictions hold good.



Equation of state in landscape variables

So far, we have considered only constant density behaviour. To include
also the volume, we may write:

F(\V.T)=®(V,T) =TS(®(V.T)) + Foiu(P(v,T),V,T)
The volume dependence comes from the volume dependent

parameters o, o, ®g, Fy and 45.

The equation of state can be written as
P=—(57),=Ps(T.V)+ Pur(T,V)

NIV
The volume derivative applies to landscape parameters.

P;s(T, V') contains information on the ‘inherent structure’ contribution to

the pressure — i.e., the configurational pressure.
La Nave et al 2002



Harmonicity of basins:

Distributions of energy minima sampled used to obtain inherent
structure density of states.

Invert P(®.7) = exp [—3(P + Frasin(P,T) — TS.(P))] /Qn(p.T) t0
estimate S...

Assumption of harmonic basins in obtaining F..,, (®.7')

Correct procedure must result in consistent S. estimates from different
T.

Procedure holds at low T, but breaks down above a ‘crossover’
temperature.

Sastry 2000
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Harmonicity of basins: |l

e For harmonic basins, the average ‘instantaneous’ potential energy must
be given by u(T') = ¢(T) + SksT.

o Atlow temperatures u(7') — 5ksT = ¢(T'), but deviations found at high
temperature.

e Deviations permit identification of a crossover temperature
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Average energies of local minima

e Assumption of Gaussian configurational DOS, harmonic approximation
to basin free energy, permit prediction average inherent structure
energy vs. temperature, in terms of landscape parameters:

<O > (1) = ers(T) = 05/ — o, where @/ = @, + 32

e o, o0, Py describe Gaussian DOS, and § .5 the variation of basin entropy
with inherent structure energy.
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e High temperature deviations from — behaviour coincide with onset of
slow dynamics.



Crossover temperatures

e Crossover temperatures from dynamics and from energy landscape

characterization agree for a range of densities of the 80:20 binary
mixture.
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¢ Onset of slow dynamics marks a change in qualitative features of the
energy landscape sampled by the liquid.



Heterogeneous dynamics

e Non-gaussian parameter a, used an indicator for heterogeneous

. !
dynamics. a, = %2?3} —1

e - exhibit maximum value as function of time; maximum value indicative
of extent of heterogeneous dynamics.
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Heterogeneous dynamics

e Ratio of diffusivities of A and B particles shows similar behaviour

Kob-Andersen BMLg=12
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e Constant value above onset temperature; strong 1" temperature
dependence below.



Breakdown of Stokes-Einstein relation

as observed experimentally.

a good measure of breakdown.

e D= 3"rd
__ kg
° d= 3’TD7]
08 -
06
©
04
02
O
0 N 1
0 0.5

EMSsN

-6.85

69

-6.95

-7

*5L observed at high T, but breaks down near the glass transition,

4

.

4

o (d) KA BMLJ
1 ] Liquid
.
Y
.
.
Y

0 05 1 1.5 2 25
T

S S Ashwin, thesis



Response to shear deformation

Other clear-cut correpondence between mechanical properties
and dynamics?

Critical shear strain for inherent structure transitions relates to
onset of slow dynamics.

Deformation: z; = x; + vy

Find critical v needed to jump to distinct minimum upon
reminimization of energy



Kob Andersen BMLg=1.2

0.136
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P
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v. displays significant 1" dependence below the onset
temperature.

Ashwin et al 2004



Significant Temperatures
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onset- 1emperature where glassy behavior begins

TI\/ICT: Divergence temperature of MCT

Tgi Glass transition temperature

TKZ Kauzmann or ideal glass transition temperature



Fragility

Fragility increases with increasing density of the liquid.
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Adam-Gibbs Plot

log(Diffusivity) varies as (7'S¢ )" at all densities
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T Dependence of S.

Temperature Dependence of Configurational Entropy:
e 7'S. nearly linear with T’

e Slope increases with increasing density. Correlates with increase of
Kinetic fragility.
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Inherent Structure Density of States:

Obtain distributions of energy minima sampled.

Invert P(®.7T) = exp [— (P + Frasin(®,T) — TS.(P))] /Qn(p, T) to
estimate S...

DOS assumed to be Gaussian.
The number of states (a) decreases with density.

The distribution becomes broader with density.
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Basin Entropy

Basin entropies decrease with increasing basin energy:
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Thermodynamic Expression for Fragility

Configurational entropy obtained in terms of parameters describing the
energy landscape:

TS.(T) = KYEE(T) (T/Tyx — 1)

- 1) 1'4' 1< PP o o \: o 2 ‘\ _H' r 1| ) ‘:72 .i ‘S‘
Kao (1) = ( — 1 _1_\-;‘.“) <l_ + == ) ~ N

a-—

Leads to VFT relation at high temperatures

When basin entropy changes are negligible, fragility given by breadth of
DOS

Basin entropy changes contribute to fragility

Common use of ‘excess entropy’ in place of configurational entropy
misleading.



Thermodynamic fragility in good quantitative agreement with kinetic
fragility.
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Fragile to Strong crossover

Silica: Archetypal strong liquid.

But shows fragile behavior at high temperatures.

However, diffusivity obeys Adam-gibbs relation.
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Deviation from 1/T dependence of inherent structure energies.
Leveling off of inherent structure energies, leads to strong behavior.

Departure from Gaussian density of states (Saksaengwijit et al 2004)
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Liquid limits:
The Glass Transition and Liquid-Gas
Spinodal Boundaries



Statistical geometry of inherent structures

e Inherent structures (IS) — local energy minimum configurations
e |S for liquids — disordered mechanically stable particle packings

e Statistical geometry through Voronoi analysis — statistics of ‘void sizes’
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Void Size

¢ Inherent structures display a ‘long tail’ in void size distribution

[Corti et al, 1997; Sastry et al 1997]

e \Where does it come from?



e Heterogeneous or ‘fissured’ structures
e Red - ‘bulk’ particles. Grey — ‘surface’ particles

e Is there a precise way to characterize the structure?



e Algorithm to determine connectivity, cavity volumes etc.
[Sastry et al PRE 56 5524 1997]

e Analysis of inherent structures — bicontinuous structure with ‘system
spanning’ cavity below a threshold density p* ~ 0.89. Compact
structures above.
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Inherent structure equation of state

e Calculate the pressure experienced by the inherent structures vs.
density

e Non-monotonic pressure dependence.

e Minimum of the pressure at p*!

Po'/e

[Sastry et al, PRE 56 5533 1997]
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e Is p* the T" = 0 limit of the liquid-gas spinodal?
e Does p* define the low density limit to glass formation?

e Do the spinodal and glass transition lines meet at zero or finite 7°7?



Calculation of the liquid - gas spinodal

Simulations for Kob-Andersen binary LJ mixture. p* = 1.08.

1. Restricted Ensemble Monte Carlo (REMC) [constrain density
fluctuations]. Locate pressure minima along isotherms.

2. Extrapolate isothermal compressibility from ‘normal’ MC and MD
data.

3. Polynomial fits to pressure vs. p data. Locate minima.

4. Empirical equation of state — liquid free energy from simulation data,
via thermodynamic integration, and fits to potential energy of the form
Eo + E1T*"? [Rosenfeld and Tarazona prediction of E> = 3/5]
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Calculation of the glass transition line

1. From VFT extrapolation of diffusivities D(T') = Do exp( = j‘TO ).

2. Thermodynamic estimate based on inherent structure approach —
Q(p,T) = [ dPexp [-B(P + Fyasin(P,T) — TSc(®))] /Qn(p, T)
Total free energy F'(p,T) = & + Frasin — T'Se

At each p, T, total free energy from thermodynamic integration.
Basin free energy from harmonic approximation to minima.

Se(Tk ) = Stotal — Svasin = 0 defines the glass transition line.
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Behaviour below temperature of intersection

Prediction of Glass-gas limit of mechanical stability.
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Integral Equation/Mezard-Parisi method
calculation of T, and T

e Motivation: Seek support for the simulation based calculations based on
calculations by other methods.

e What we do: Following Coluzzi et al, we perform calculations based on

— The Zerah-Hansen scheme to solve for the liquid g(r) to obtain the
equation of state, and the spinodal line.

— The Mezard-Parisi method for calculating configurational entropy, and
the glass transition line.



Zerah Hansen liguid state calculation

Ornstein-Zernicke relation: h(r) = ¢(r) 4+ ph(r) * c(r)
“Exact closure™ g(r) = exp|—pv(r)|explh(r) — ¢(r) + B(r)]
B(r) =0-HNC

9(r) = expl—Bo(r)][L + h(r) - ()] = PY

g(r) = exp[—pPui(r)][1 + h(r) — e(r) — Bv2(r)] — SMSA

g(r) = exp[—Pvy(r)] (1 - ef"’p[f("){h(”‘)}?'{;”)—!"31’2(7‘)}]—1) — Zerah-Hansen

f(r) =1 — exp(—r/k) — switching function



e Switching parameter k£ interpolates between SMSA (k — oc; small
distances) and HNC closures (k — 0; large distances) of
Ornstein-Zernicke relation.

e Chosen by Zerah-Hansen to match virial and compressibility EOS.

e We choose k£ =11.17 — 11.7p + 6.653 to match simulation data over
some density and temperature range.



e Good agreement between equation of state and energy vs
temperature between simualtion and present calculation.

Comparison of results
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e Pressure not as good, but reasonable. Comparison is with
empirical EOS constructed earlier with simulation data.
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e Spinodal densities are estimated from the location of the minima
of the isotherms.
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Mezard Parisi Method

e Thermodynamic theory for the glass transition employing a
system of m coupled replicas of the liquid.

e Glass transition condition translates to liquid’s entropy = “solid
entropy” calculated through the curvature matrix.



Glass Transition

e Estimates of glass transition by S. = 0 as before.

e /H equations cannot be solved to the lowest temperatures. We
extrapolate with £ ~ 7'3/% as done by Coluzzi et al before.
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Phase diagram

e Finite T intersection of spinodal and glass transition lines.

e Agreement only qualitative. Location of spinodal, glass transition line
shifted by a considerable amount.
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Results from other work

e Calculation for soft spheres (Speedy 2003; Shell and
Debenedetti PRE 2004) confirm the same scenario:
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Results from other work Il

e Simulation study of a model of OTP (La Nave et al JCP 2004) also
confirm the same scenario:
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Simulation results and calculations predict a finite T intersection
of liquid-gas spinodal and glass transition lines

The intersection occurs at the density where IS pressure
displays a minimum.

Glass-gas limit of mechanical stability at low T

Calculations using liquid state theory and the Mezard Parisi
approach to the glass transition yield results that are in
qualitative, but modest quantitative, agreement.



Phase separation

binodal Expected density

of the patticle ,\-\\OQ
rich phase

o
s
\&Q"

4+— G—g spinodal

Prediction of intersection of glass transition and spinodal lines
relevant for structural arrest during phase separation (gelation)



Phase diagram of spherical

pOte ntials* |Borrowed from
0.13<¢.<0.27 Sciortino ACS

[if the attractive range
is very small ( <10%)]

* “Hard-Core” plus attraction
(Foffi et al PRL 94, 078301, 2005)



How to go to low T at low ¢

(in metastable eqU|I|br|um) ?
Are there other possible scenarios?

How to suppress phase separation ?

¢

-The role of the “valence” Borrowed from
Sciortino ACS




Valence-Controlled Patchy particles

maximum # of “bonds”,

M=2 M=3 M=4 M=5
Hard-Core ( ) Short-range Square-Well ( )
Borrowed from No dispersion forces

Sciortino ACS The essence of bonding !!!




Metabasins

Transitions between inherent structure basins are correlated.
One must consider ways of grouping inherent structures so that
transitions between them — metabasins — can be analyzed to
developed a model of dynamics. [Heuer et al 2003 - |

Effective activation energy associated with dynamics.

Description of dynamics in terms of effective activation energies.

Metabasins identified through dynamics of the system [Wales
lecture for identification through disconnectivity graphs]



Analysis of aging from energy landscape picture

The separation of time scales between relaxation within basins
of a minimum and relaxation from hopping between minima
suggests the use of IS energies as a way of identifying the
effective temperature experienced by the system.
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Sciortino and Tartaglia 2001 and subsequent
papers by them with co-workers.




Upon a temperature quench, the system rapidly relaxes
within a given basin, and relaxes to an equilibrium sampling
of basins on a much longer time scale.
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Writing the total free energy of the system as

F(T')=-TS.onf€1s(T)) + frasin(T,€15(T"))

One can obtain the equilibrium condition by

dF o —Teq U‘S'cor.f( €]8s ' + Ufba ein l Teq% €18 ' — 0

de is o de is de IS

If e, does not correspond to the equilibrium value, what are

the relevant temperatures?

For the basin free energy it is the equilibrium temperature.
For the first term, assume that this is an ‘internal temperature

to be determined by imposing the observed value of e:

1+ %!vasb(Tf.. €1s)

7 o .
Dars '—Sconf(. €IS )

Tintlers,Tf) =



FDT ratio: Test using computer simulation, using perturbation
Hamiltonian: Hp = —V,BaN)0(t—t.,)

with A E-pf(‘. B = (p2 + p&*)

Vo o ir rmrms
FDT relatlon ':_.4(.7').:' = —kBY- [':‘.4(7')8(_0)':'03 - ‘:"4(_0)3(_0)‘:']0]

V,
kT

(83

Becomes (pr(T)) =

[S" (1) — Sk (0)]

with Sk (t) = (pic(t)pi" (0))o
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The lines, calculated from the bath and internal temperatures,
agree with observed slopes!



Does that mean the the IS energy can be used as a good
fictive parameter? One can write a out-of-equilibrium free
energy, as

F(Teﬁ's 4T~ V) = — efme:-nf( “-_']'S) -+ fbasin (CISn ‘T, 1'1

And the volume derivative, with a known time dependent

e s as input, should predict, eg, the pressure of an OOE
system:
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But in general, this should not work, as illustrated by the
Kovacs crossover experiment:
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history dependent.
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Another puzzle..

Expectation: Landscape Dominated Normal
activated “Diffusive” liquid
MCT
A A A A
@ @ @ @ >
\Y, \Y, \Y, \Y,
TK Tg TMCT Tonset

What we find: Landscape influenced
MCT

Puzzle: MCT and landscape descriptions appear to apply in
the same temperature regime.

Possible solution: Mixing of mechanisms (MCT + hopping)
[Bhattacharyya, Bagchi, Wolynes PNAS 2008]



Qutlook

Analysis of dynamics in liquids through the energy landscape
provides a useful way of understanding processes leading to
relaxation.

However, a satisfactory dynamical description is lacking.

No satisfactory rationalization of Adam-Gibbs relation through
this approach yet, though central to many studies.

The observed significance of the sampling of the potential
energy landscape to the dynamics of the liquid below the
onset temperature, well above the Goldstein crossover is in
need of better understanding.
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