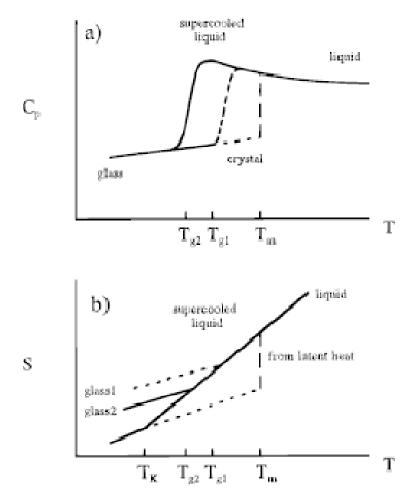
Experimental Techniques to Measure Properties of Glasses

Jaydeep Basu Department of Physics IISc Bangalore

International School on Glass Formers & Glasses, Jan 2010, Bangalore

Lecture Plan - Day 1


- Basics of Differential Scanning Calorimetry (DSC)
- Modulated DSC (MDSC)
- Examples

- Basics of Laser scanning confocal microscopy
- Single Molecule Spectroscopy
- Examples

Differerential Scanning Calorimetry

ICTAC definition: A technique in which the heat flow rate to the sample is monitored against time or temperature while the temperature is programmed. (International Confederation for Thermal Analysis and Calorimetry)

- Why is it a popular technique to study
- glasses?
- Can measure heat capacity, CP, which can
- be used to estimate the glass transition
- temperature TG.

Ediger et al JPC (1996)

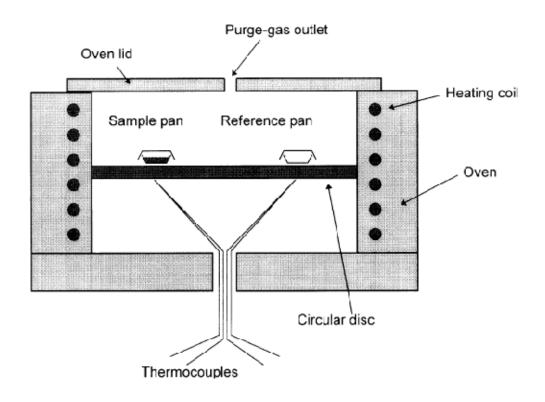
Some Basic Thermodynamic Definitions

$$C_{V} = \frac{dQ}{dT} = (\frac{\partial U}{\partial T})_{V,n} \qquad H = U + pV \qquad H = \int_{P} C_{p} dT$$

$$\frac{C_{p} = \frac{dQ}{dT} = (\frac{\partial H}{\partial T})_{p,n}}{T} \qquad \frac{dQ_{reversible}}{T} = dS \qquad S = \int_{P} (C_{p}/T) dT$$

$$\frac{dH}{dt} = C_{P} \frac{dT}{dt} \qquad H = \int_{Q} C_{p} dT + \Delta H_{f}$$

$$dU = TdS + dF \qquad 0 \qquad T$$


$$S = \int_{Q} C_{p} dT + \Delta H_{f}$$

G=H-TS

Modes of DSC

- Heat Flux
- Power Compensation

Heat Flux Calorimeter

Biot-Fourier Eqn. of steady state heat conduction

$$\frac{\phi}{A} = -\sigma \cdot \nabla T$$

 ϕ is heat flow rate; A is area of pans; σ is thermal conductivity; T is temperature

$$\frac{\phi_{FS}}{A} = \frac{\sigma(T_F - T_S)}{\Delta l}$$

and

$$\frac{\phi_{FR}}{A} = \frac{\sigma(T_F - T_R)}{\Delta l}$$

 T_F , T_R , T_S are the furnace, reference and sample temperatures, respectively.

If a constant (exothermic) heat flow rate ($\phi_r < 0$) is produced in the sample, T_S increases by ΔT_S , the temperature difference $T_{F^-}T_S$ and thus heat flow rate ϕ_{FS} decreases. Here, ϕ_r is the reaction heat flow rate consumed/produced by the sample. In the steady state, $\Delta \phi_{FS} = \phi_r$

$$\Delta\phi_{FS} = \phi_r = -\frac{A\sigma}{\Delta l} \Delta T_S = -K.\Delta T$$

$$\begin{array}{rcl} \text{Newton's Law} \\ \text{dQ}_s/\text{dt} &= \text{K}(T_b - T_s) \\ \text{dQ}_r/\text{dt} &= \text{K}(T_b - T_r) \end{array}$$

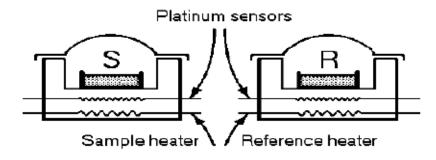
Since there is no change on the reference pan, $\Delta T_S = \Delta T_{SR} = T_S - T_R \text{ and } \phi_r = \Delta \phi_{SR} = \phi_{FS} - \phi_{FR}$

Hence,

$$\phi_r = -\frac{A\sigma}{\Delta l} \Delta T_{SR} = -K.\Delta T$$

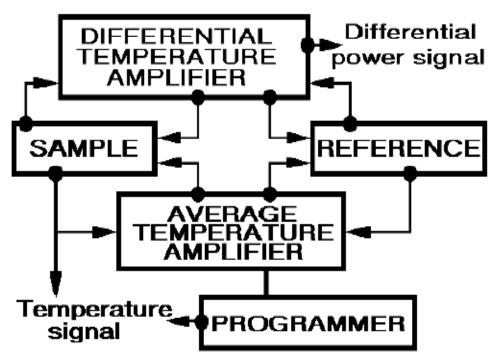
Finally,

$$\Delta \phi_{SR} = \beta (C_S - C_R) = -K.\Delta T$$


where, $\beta = \frac{dT}{dt}$ and $C_S and$ C_R are the respective specific heats. Thus for empty pan reference

$$C_S = -K \frac{\Delta T}{\beta}$$

while for a pan with reference material


$$C_S = C_R - K \frac{\Delta T}{\beta}$$

Power Compensation Calorimeter

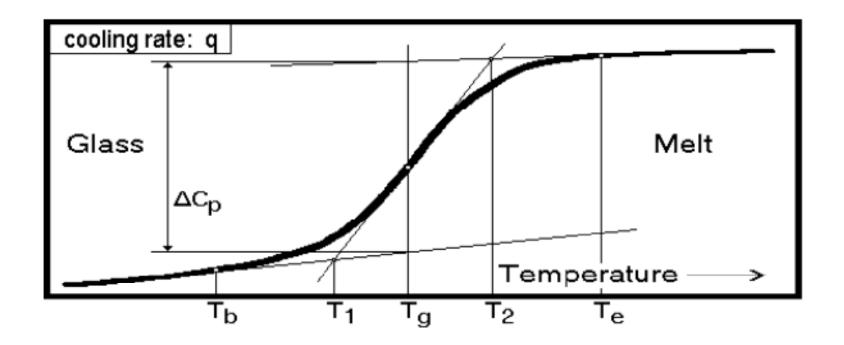
110-1000 K 0.1-500 K/min

noise $\pm 4 \, \mu W$ sample size up to 75 mm³

5-Jan-10

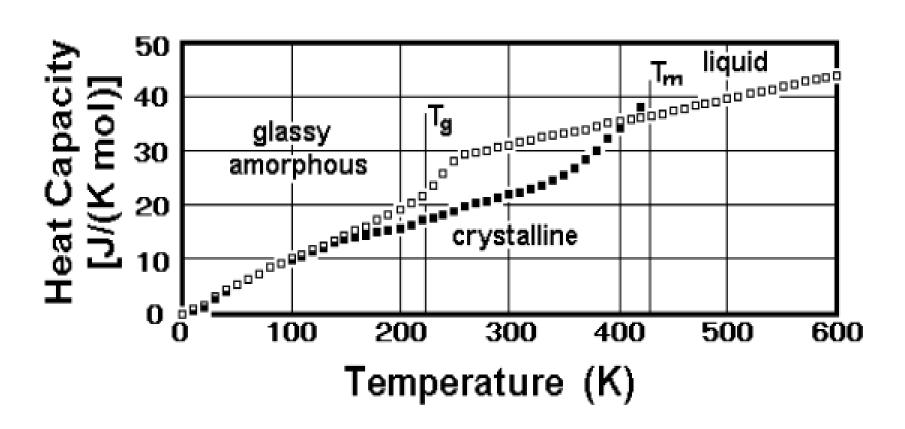
PC Calorimeter – Steps in Measurement

- Individual micro-furnaces heated separately
- Programmer supplies same power to the sample and reference micro-furnaces
- In case of thermal symmetry same heating power for sample and reference
- For sample thermal transitions involving heat exchange the sample's heating power is regulated by a proportional controller
- $\Delta P = k_1 * \Delta T$ and $\phi_m = k_2 * \Delta T$
- Measured ΔT thus directly gives heat flow rate in sample


Advantages of PC Calorimeter

- Fast heating/cooling rate
- Differential heating power directly measures heat flow

What can you measure using DSC?


- Specific Heat (C_P)
- Entropy, S $s = \int (C_p/T) dT$
- Enthalpy, H $H = \int C_p dT$

Measurement of Glass Transition by DSC

Wunderlich, Thermal Analysis of Polymers (Springer)

Measurement of Glass Transition by DSC

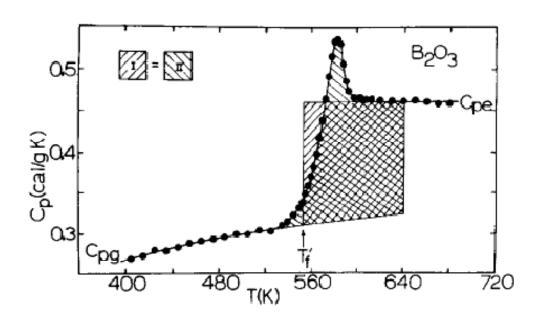
Wunderlich, Thermal Analysis of Polymers (Springer)

Fictive Temperature



Fig. 1. Schematic plot of enthalpy H and fictive temperature $T_{\rm f}$ versus time during isothermal structural relaxation following a step change in temperature.

Fictive Temperature

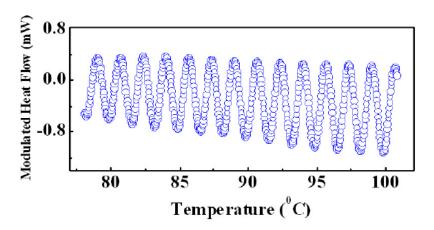

$$\phi(t) = \frac{T_{\rm f}(t) - T_2}{T_1 - T_2} = \sum_i g_i \exp\left(-\int_0^t {\rm d}t'/\tau_i\right)$$

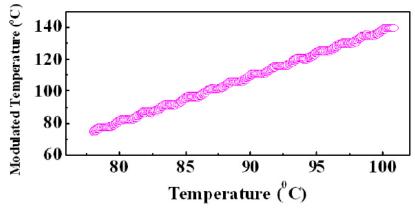
$$x \ (0 \le x \le 1)$$

Non-linearity parameter

$$\ln \tau_i = \ln \tau_{i0} + \frac{x\Delta H^*}{RT} + \frac{(1-x)\Delta H^*}{RT_f}$$

TNM Eqn




Modulated Differential Scanning Calorimetry (MDSC)

- In MDSC, a sinusoidal heating profile is overlaid on the standard linear ramp
- From this experiment, the standard Heat Flow curve is separated into two components called the Reversing Heat Flow and the Non-Reversing Heat Flow
- Total Heat Flow is the same as in standard DSC
- Reversing Heat Flow is the Cp component
- Non-Reversing Heat Flow is the Kinetic Component
- Available frequency range 2-200 mHz

Principle of MDSC

$$T(t) = T_0 + \beta_0 t + T_a \sin(\omega_0 t)$$

Theory of MDSC

$$X(t) = \alpha_{\rm st} F(t) + \frac{d}{dt} \int_{-\infty}^{\infty} \alpha(t-t') F(t') \, dt'$$

Linear Response theory - FDT

$$\lim_{t\to 0} \alpha(t) = \alpha_{\rm st}$$

$$\alpha(\omega) = \alpha_{\rm st} + \int_{-\infty}^{\infty} \dot{\alpha}(t) e^{-i\omega\tau} dt$$

$$\alpha(\omega) = \alpha'(\omega) - i\alpha''(\omega)$$

$$\langle X^2\rangle_{\!\omega}=\frac{kT}{\pi\omega}\,\alpha''(\,\omega\,)$$

$$dS(t) = \frac{C_{\rm st}}{T} \, \Delta T(t)$$

$$\Delta T(t) = F(t)$$
 and $dS(t) = X(t)$.

$$-\int_{-\infty}^{t} \frac{\dot{C}_{\text{dyn}}(t-t')}{T} \Delta T(t') dt'$$

Theory of MDSC ..

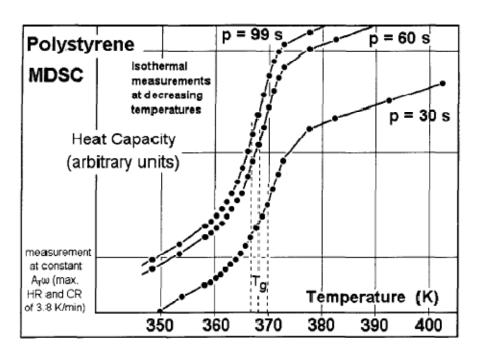
$$C(t) = C_{\rm st} + C_{\rm dyn}(t)$$

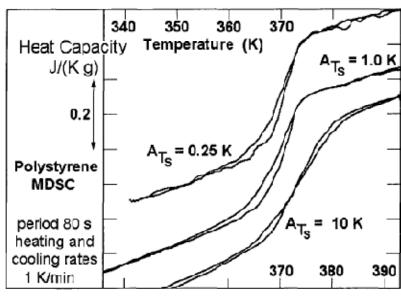
$$C(\omega) = C_{\rm st} + \int_0^\infty \dot{C}_{\rm dyn}(t')e^{-i\omega t'}dt' = C'(\omega)$$
$$-iC''(\omega) = C_{\rm st} + C'_{\rm dyn}(\omega) - iC''(\omega)$$

Often the measured heat capacities are also interpreted in terms of <u>reversing</u> and <u>non-reversing</u> heat capacities.

The reversing heat capacity is given by

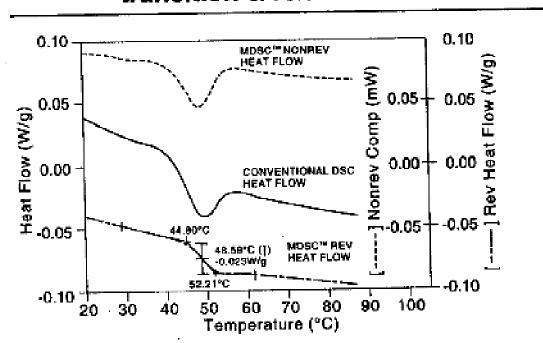
$$|C(\omega_0)|$$


$$|C_p^*(\omega)| = \frac{A_{HF}}{A_q}$$


 A_{HF} is the ampl of modulation of the heat flow (response) A_{q} is the ampl of modulation of the heating rate (Force)

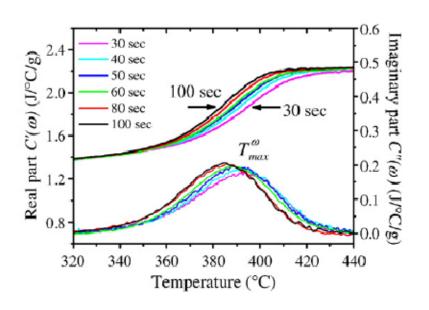
Typical Parameters for MDSC

- Modulation Periods 10 200 secs
- Amplitude 0.1- 2.0 K


MDSC - Examples

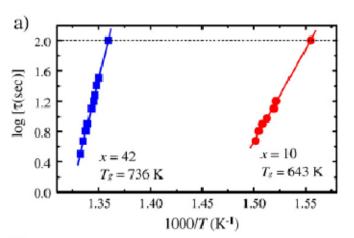
MDSC - Examples

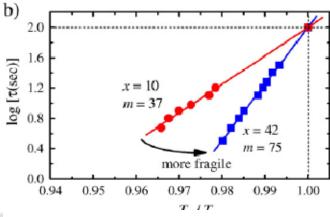
Separation of glass transition & relaxation



MDSC - Examples

Glass Transition of Polymethyl methacrylate


MDSC -Spectroscopy



Matsuda Solid State Ionics (2008)

$$\tau = \frac{P}{2\pi} = \frac{1}{\omega}$$

$$m = \lim_{T \to T_g} \left| \frac{d \log \tau}{d(T_g/T)} \right|$$

Heat Capacity Spectroscopy

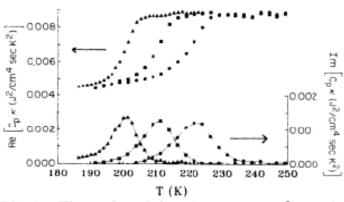


FIG. 1. The real and imaginary parts of $c_p \kappa$ (units of $J^2/\text{cm}^4 \sec K^2$) for glycerol as a function of temperature. The measurement frequencies are f = 0.62 Hz (\blacktriangle), f = 34 Hz (\blacksquare), and f = 1100 Hz (\bullet). This figure is taken from Ref. 4, but with the vertical scale corrected.

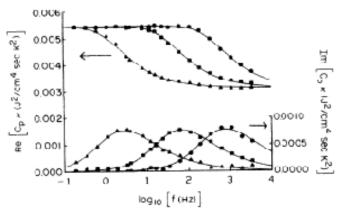


FIG. 3. The real and imaginary parts of $c_{\rho}\kappa$ (units of $I^2/\text{cm}^4 \sec K^2$) for propylene glycol as a function of frequency. The temperatures are T=180.5 K (\triangle), T=188 K (\blacksquare), and T=195.5 K (\bullet). The solid lines are fits to the data with a Kohlrausch-Williams-Watts function with $\beta=0.61$.

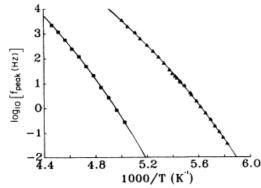
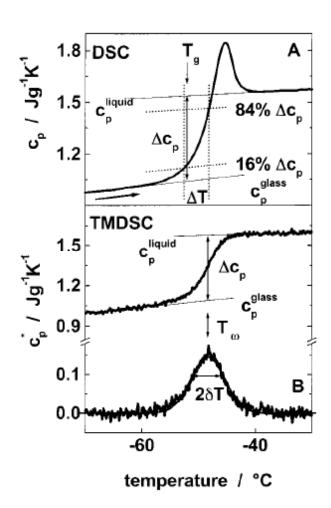



FIG. 4. The peak frequency, on a log scale, versus inverse temperature for glycerol () and for propylene glycol (). The solid lines in both cases are two indistinguishable fits to the data with a Vogei-Fulcher-Tammann law and with a scaling law. The parameters for the fits are given in Table II.

Birge, PRB (86)

Dynamic heterogeneity or CRR from DSC

$$V_{\alpha} = \xi_{\alpha}^{3} = k_{\rm B} T^{2} \Delta (1/c_{V}) / \rho \delta T^{2}$$
$$N_{\alpha} = V_{\alpha} \rho / M_{0}$$

Hempel et al, J Phys Chem B 104, 2460 (2000).

Assumptions

- δT is the temperature fluctuation of one CRR
- T fluctuation is obtained from FDT
- Central part of imaginary C_P is Gaussian

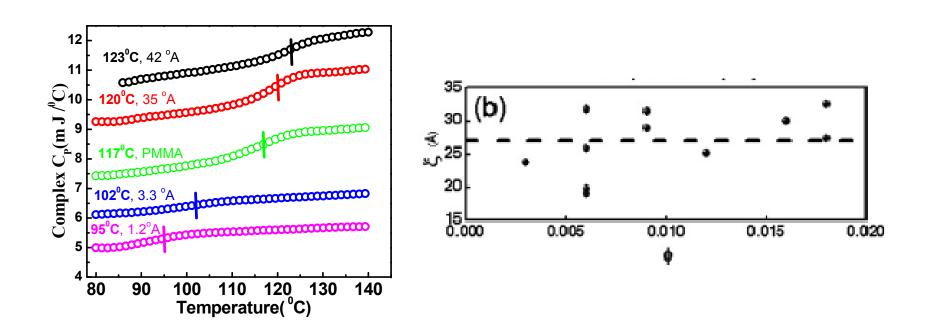
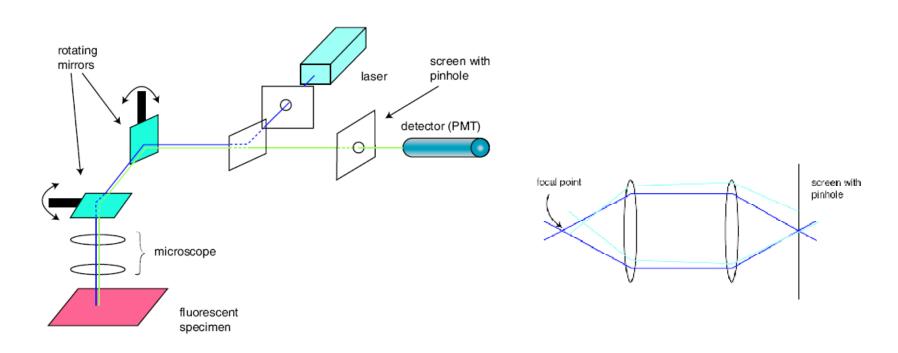

• $dT/d \ln \omega$ is constant across the dispersion zone

TABLE 1: Summary of the Investigated Substances

				DSC				TMDSC				
no.	substance, abbreviation	M_0 , g/mol	fullname	T _p	δT, K	Δc_p , J/g K	$\xi_{\alpha}(T_{\xi}),$	$T_{\omega} \stackrel{(t_p/s)}{\circ C}$,	δΊ, K	Δc_p , J/g K	$\xi_{\alpha}(T_{\omega}),$ nm	rem.
1	PMMA	100	poly(methyl methacrylate)	95	5.1	0.25	1.5	97.5 (60)	8.5	0.23	1.1	e, g
2	PEMA	114	poly(ethyl methacrylate)	70	3.8	0.26	1.8	75.5 (60)	7.5	0.22	1.1	g
3	PPrMA	128	poly(n-propyl methacrylate)	51	4.8	0.20	1.4	56.5 (60)	10.0	0.18	0.9	g
4	PnBMA	142	poly(n-butyl methacrylate)	25	5.4	0.19	1.2	32.5 (60)	8.0	0.16	0.9	g
5	PnPenMA	156	poly(n-pentyl methacrylate)	7	7.0	0.29	1.0	8.5 (60)	11.3	0.20	0.8	g
6	PnHMA	170	poly(n-hexyl methacrylate)	-20	8.8	0.29	1.0	-12 (60)	12.1	0.33	0.9	g
7	BIBE	268	benzoin isobutyl ether	-52	2.1	0.49	3.2	-48.5(60)	2.8	0.49	2.7	
8	AMPEK	196	poly(ether ketone) from ICI	153	2.0	0.25	3.2	153 (600)	2.2	0.24	3.0	a, g
9	PS	104	poly(styrene) PS168N BASF	100	2.3	0.28	3.0	103.5 (60)	3.4	0.28	2.5	a, g
10	PVAC	86	poly(vinyl acetate)	40	2.3	0.44	3.2	45.5 (24)	3.6	0.39	2.3	b, g
11	CKN	126	40Ca(NO ₃) ₂ 60KNO ₃	64	2.4	0.55	3.2	68.5 (60)	2.9	0.46	2.6	b, g
12	Na ₂ O·SiO ₂	91	natrium disilicate	458	8.0	0.27	1.8	470 (750)	12.1	0.28	1.4	b, g
13	DGG	59	standard glass 1 from DGG ⁴⁵	538	12.1	0.25	1.4	576 (120)	14.0	0.23	1.3	b, g
14	2SN4	954	liquid sulfur bridged twin crystal45	78	2.5	0.45	1.1	84 (100)	2.7	0.42	1.1	b, g
15	SBR1500	61	styrene-butadiene-rubber, 23% styrene	-58	2.4	0.46	2.7	-56 (60)	3.2	0.45	2.2	g
16	P(nBMA-stat-S) 2%S	141	poly(n-butyl methacrylate- stat-styrene) 2% styrene	30	43	0.22	1.5	34 5 (48)	107	0.22	0.9	a,f,g
17	Zr65A175Cu175Ni10	78	metallic glass	373	6.3	0.24	2.6	389 (60)	13.4	0.18	1.6	d, h
18	MAG	65	mixed alkali glass	477	10.8	0.22	1.5					c,52 i
19	glycerol	92		-84	2.5	1.02	2.9	-80(60)	2.6	0.97	2.6	í
20	salol	214	phenyl salicylate	-54	1.8	0.53	3.1	-51 (60)	2.3	0.55	3.3	n
21	OTP	230	o-terphenyl	-24	2.3	0.46	3.0					c, i
22	sorbitol	182	D(-) sorbitol	-12	2.0	1.04	3.0					c, 1
23	BMPC	296	bis(methoxy phenyl)cyclohexane	-31	2.1	0.41	3.0	-26.5(60)	2.5	0.36	3.1	h
24	selenium	79		37	2.7	0.38	3.0					c,53 i
25	PVC	62	poly(vinyl chloride)	80	2.4	0.31	3.1					c,44 i
26	silicate glasses	3058		476-545	17.6 ± 5.3	0.27 ± 0.05	1.2					c, ⁵⁴ i
27	cyclohexanol	100	phase I (ODIC)	-124	2.0	0.26	2.4					c,55 i
28	B ₂ O ₃	70	bortrioxid	274	8.1	0.50	1.5	305 (60)	12.5	0.61	1.3	i

5-Jan-10 31


Examples

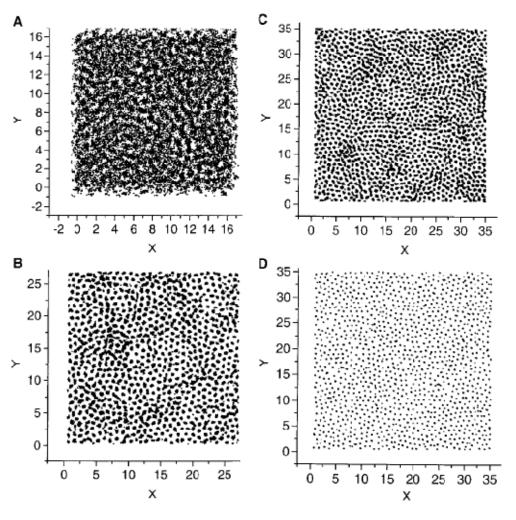
Srivastava and Basu, PRL, 98 165701 (07)

However DSC does not provide the spatio-temporal picture of the glass formation

Imaging and Particle Tracking in Glasses

Schematic of a Laser Scanning Confocal Microscope (LSCM)

Prasad, Weeks et al J Phys Cond Matt 19, 113102 (2007)


5-Jan-10 33

LSCM - Applications

Advantages over conventional fluorescence microscope

- Rejection of out-of-focus light better visibility
- Ability to perform depth resolved measurements
 Disadvantages
- Image acquisition rate slower than video rate
 Systems which can be studied
- Colloids and nanoparticles

LSCM - Examples

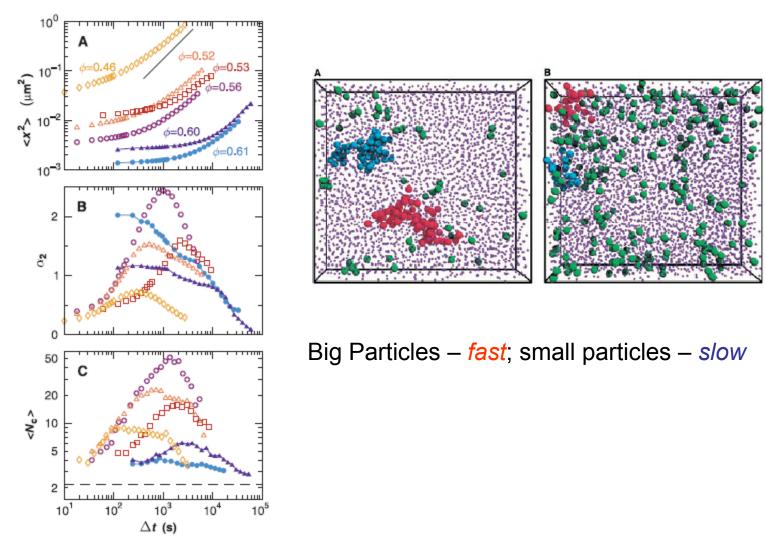
5-Jan-10

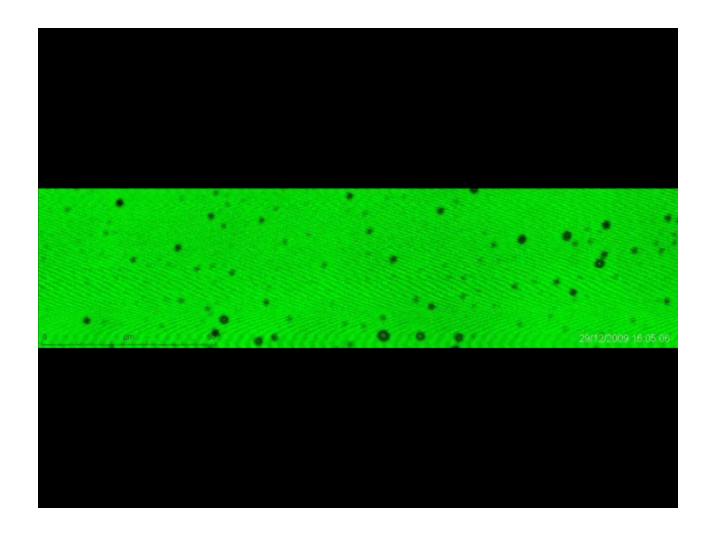
Kegel et al Science 287, 290 (2000)

What can you measure?

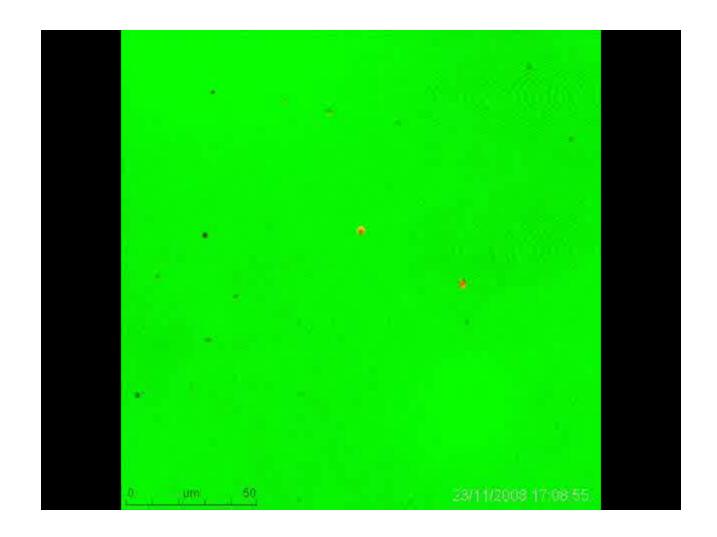
Van Hove Correlation function,

$$G_{s}(x,\tau) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta[x + x_{i}(0) - x_{i}(\tau)] \right\rangle$$
$$= \frac{N(x,\tau)}{N}$$

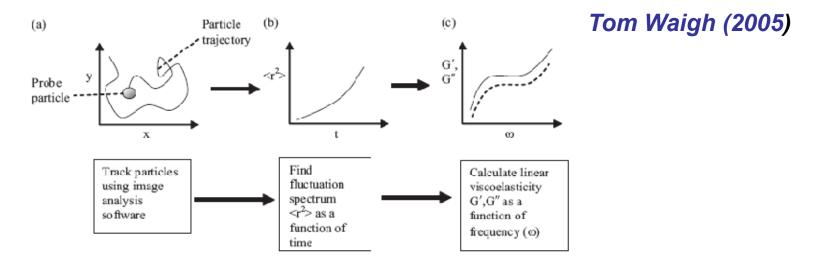

Non-Gaussian parameter,


$$\alpha_2(\tau) = \frac{\langle x^4(\tau) \rangle}{3\langle x^2(\tau) \rangle^2} - 1$$

Mean Squared Displacement,



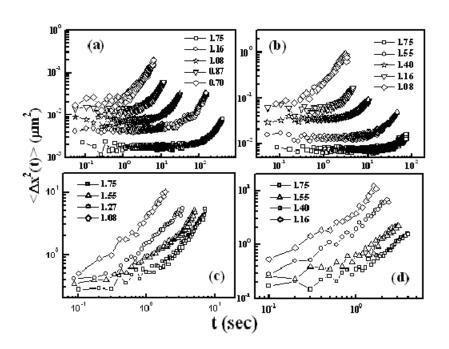
What can you measure?

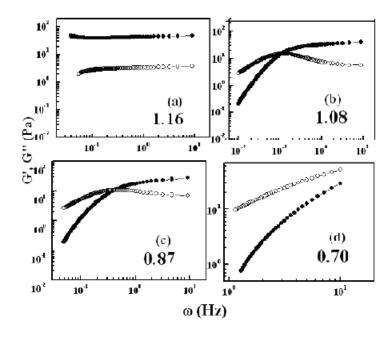

5-Jan-10 38

5-Jan-10 39

Other applications...

Particle Tracking Micro-rheology (MR)


Generalised Stokes-Einstein relation


$$\tilde{G}(s) = \frac{2K_BT}{3\pi Rs \langle \Delta \tilde{x}^2(s) \rangle}$$

Mason & Weitz, PRL (95)


You can now connect to conventional Rheology discussed by

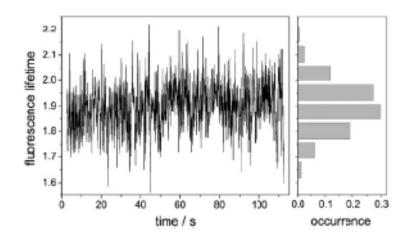
MR - Examples

Dynamic Heterogeneity from Spatially resolved single molecule dynamics (SMD)

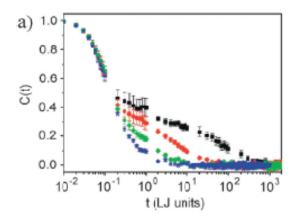
Schematic of a SMD experiment configuration

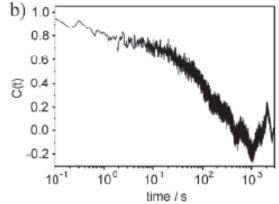
5-Jan-10 42

Specifications of SMD


- Fluorescence lifetime fluctuations and their time autocorrelations
- Fluorescence intensity anisotropy and its time autocorrelations
- Measurements are usually made with dyes or quantum dots in glasses within a temperature range TG ± 10-15K.

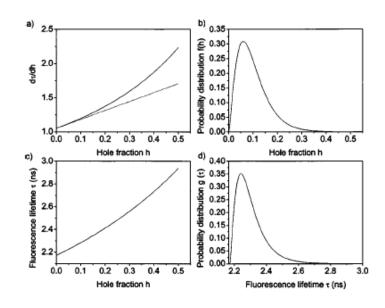
SMD – Lifetime Fluctuations


For lifetime fluctuations one can write


$$C(\tau) = \frac{\langle A(t+\tau)A(t)\rangle}{\langle A(t)A(t)\rangle}$$

where A(t) is the Fluorescence lifetime at time t.

SMD – Lifetime Fluctuations



Correlate fluctuation in fraction of holes to fluctuation of lifetime!!

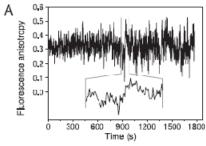
$$\Gamma = \frac{2\pi}{\hbar} |\langle \varepsilon | H_{\rm int} | g \rangle|^2 \rho(\omega) \,, \label{eq:Gamma}$$

$$\Gamma_0 = \frac{\omega_0^3 |\vec{\mu}|^2}{3 \pi \epsilon_0 \hbar c^3} = \frac{1}{\tau_0}$$

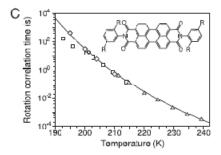
$$\epsilon = h\epsilon_{\text{vac}} + (1 - h)\epsilon_{\text{pol}},$$

h is the fraction of holes and ϵ is dielectric constant.

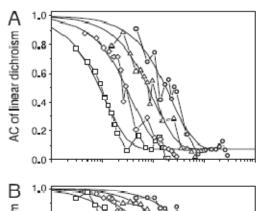
 $g(h) = f(\tau) \left| \frac{d\tau}{dh} \right|$

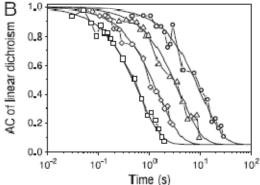

SMD using Fluorescence Intensity Anisotropy

$$r = \frac{F_{\parallel} - F_{\perp}}{F_{\parallel} + 2F_{\perp}} \,.$$


$$C_r'(t) = \frac{\langle r(t'+t)r(t')\rangle}{\langle r(t')\rangle^2} - 1 \approx \frac{\langle c_{SM}\rangle}{N} \exp\left(-\frac{t}{\langle \tau_R\rangle}\right)$$

$$A = \frac{F_{\parallel} - F_{\perp}}{F_{\parallel} + F_{\perp}}.$$


$$C_{\mathrm{A}'}(t) = \frac{\langle (A(t'+t)+1)(A(t')+1)\rangle}{\langle A(t')+1\rangle^2} - 1 \approx \frac{1}{2} \exp\left(-\frac{t}{\tau_{\mathrm{R}}}\right)$$



B very 0.15 very 0.09 very

Zondervan et al PNAS 104, 12628 (2007)

5-Jan-10