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Diversity of views,
Diversity of questions

on glasses, glassformers,
and the glass transition




What is meant by a
“glass”, a “‘glassy” system ¢




“Glass”

Wikipedia: “Strictly speaking, a glass is defined
as an inorganic product of fusion which has
been cooled through its glass transition to the
solid state without crystallizing.”

However, the term is commonly used with a
broader meaning.




“Glass”:

Jammed/frozen in a disordered
state, generally out of equilibrium.

1) jammed/frozen
2) disordered
3) out-of-equilibrium




1) Jammed/frozen state

— (some) motions appear arrested,
—p system appears as a solid that does
not flow and resists to shear.
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Different types of glasses

® “Hard"” glasses:

* Large elastic (e.g. shear) moduli (GPa and more)

* Standard glasses: silica and inorganic, ionic mixtures, organic
molecular (hydrogen-bonded and van der Waals) glasses;
polymers (plastics); metallic glasses; glassy plastic crystals...

® “Soft” glasses:

* Small elastic (e.g. shear) moduli (MPa down to a few Pa)

* colloidal suspensions, foams, emulsions, granular media...

® Others: spin glasses, orientational glasses, vortex glasses,
electron glasses, etc... + proteins ?




Different types of glasses

Granular material Electronic glass in underdoped cuprates
(Candelier et al. 2009) (Kohsaka et al., Science 2007)




2) Disordered state

— No obvious long-range order,
“amorphous” state.

—p Do not confuse “quenched” disorder and
“annealed” or “self-generated” disorder !!!

— Which degrees of freedom are disordered ?




No long-range order

Electronic glass in underdoped cuprates
(Kohsaka et al., Science 2007)

Colloidal crystal (left) versus glass (Weeks et al., 2007)




Quenched versus annealed/self-generated
disorder

® “Quenched” disorder: impurities or defects frozen for extremely long
times; the system of interest equilibrates (or not) in the presence of impurities.

e Examples of systems with quenched disorder: spin glasses in magnetic materials,

vortex and Bragg glasses in type-1l superconductors, Coulomb electronic glasses in
insulators.

e The glassiness of the system is due to the presence of the quenched disorder
which acts as an external constraint.

Different from

® “Annealed”, self-generated disorder in liquids, polymers, colloidal
suspensions and granular media: disorder is intrinsic to the system.




Disordered state, however...

® Some glasses are associated with a true thermodynamic

phase transition: systems in the presence of quenched disorder, such as

spin glasses and vortex glasses, for example have true long-range order of an
unusual type.

Amorphous long-range order ¢¢¢¢

¢ [n addition, some degrees of freedom may be ordered...




Disordered state, however...

Some degrees of freedom may be ordered:

e Glassy plastic crystals (cyanoadamantane, ethanol, etc...): the molecular
orientational degrees of freedom are disordered but the molecular
positions are ordered, forming a cubic crystal.
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Fig. 3. — Diffuse X-ray scattering. Q scan along [H21]* in the glassy and undercooled plastic crystals of
cyanoadamantane.

e Spin glasses, electron glasses: only the spin or the electronic degrees of
freedom are concerned by glassiness and disorder.




3) Out-of-equilibrium state

Equilibration time is much longer than the
observation time: on the time scale of the
experiments, the system is out of
equilibrium.

Tmicro << Texp << Tequil




Properties of the equilibrium state
and of relaxation near and to equilibrium

® Properties are independent of preparation.

Stationary property/time-translation invariance:
For an observable A(t),

<At)> = <A>

<AMAL+)> = <A0)AD>

etc...

e Fluctuation dissipation theorem and linear response.
*small perturbation applied to the system;

*close to equilibrium, the response to a small perturbation can be expressed in
terms of correlation functions of the unperturbed system.

Example: Response of observable A at time t'+t to a perturbation that couples to A
between t" and t'+t:

X', t'+t) = X(0,t), with
X(0,0) =T (<A0)A(D)> - <A(0)A(0)>)




Manifestations of out-of-equilibrium character

® Dependence of properties on preparation history, e. g. on
cooling rate.

® Hysteresis, memory effects.
® Aging (linear response regime).

e VViolation of equilibrium relations (fluctuation-dissipation,
time-translation invariance).




Dependence on cooling rate
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Aging

® The properties of a system depend on its “age”, i.e. the time spent in the glassy
state.

® More easily observed in two-time quantities: e.g., the evolution with time t of the
(linear) response of a system prepared for a “waiting time” (age) tw.
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Aging in PVC glass: mechanical response (small-strain
tensile creep) versus t for different (long) waiting times t.,
(in days) at T=293K. (L.C.E. Struik, Physical Aging in
Amorphous Polymers and Other Materials, Elsevier, 1978)




However...

® Some glasses are associated with a true
thermodynamic phase transition: spin glasses and
vortex glasses for example. Transition is then
observable, but is the equilibrium glass phase
observable ¢ Problem of infinite relaxation time (spin
glass).




Glasses, glass formation




Different ways of forming an
amorphous (“glassy”) solid

in situ liquid chemical vapor
polymerization deposition
reaction
gapor. , solid-state diffusion-
eposition / controlled reaction
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Angell (Science, 1995)




Glass formation by cooling
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Metastability versus out-of-equilibrium

e Liquid above Trm and crystal below Ty, are the
stable phases.

e Supercooled liquid below Tr, is metastable.
® Glass below Tg is mechanically stable but

out-of-equilibrium.

What does this mean ?




Variety of questions depending
on temperature regime of interest

(1) In the glass:

* Low-T anomalies (below 1K; between a few K
and a few tens of K): thermal, dielectric and
acoustic properties.

* At higher T: aging behavior + nonlinear rheology
(e.g. under high enough shear stress).

* In the glass transformation region: nonlinear
relaxation.




Low-temperature thermal anomalies in a
glass

Anomalous behavior compared to the Debye behavior of perfect crystals:

Instead of T> dependence of heat capacity C and of thermal conductivity k:
Roughly linear T dependence of C below 1K and excess peak around 5-30K;
T? dependence of k below 1K and plateau around 5-30K.
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Heat capacity divided by T? (left) and thermal conductivity (right) of
amorphous As,Sei (Liu et al., 1993)




Boson peak

Anomalous behavior of heat capacity C around 5-30K possibly related to
an excess of vibrational modes compared to the

Debye model (*Boson peak” in g(w)/w?).
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“Universality” of physical aging in glasses

(1)
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“Universality” of physical aging in glasses

(2)
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How many parameters to characterize a
glassy state ?

PV T not enough...

Kovacs effect (1963):

Isothermal evolution with time (in
hours) of the relative volume
variation of polyvinyl acetate at
T,=30°C,

after a direct quench from Tp=40°C
and

after quenches at T1 lower than T,
(until the volume equals the
equilibrium volume at T») followed
by reheating to T>.

103 x 3
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e But, whole history untractable!

— Quest for effective/fictive temperatures




Nonlinear relaxation in the glass
transformation region (near Ty)

Out-of-equilibrium relaxation within a slowly
relaxing structure -> nonlinearity.
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Figure 14. Plot of dT;/d T against ambient temperature T for B,O; at a heating rate of 10 K min™" following
cooling through the transition region at rates shown on figure (in K min™!). Points are experimental heating
curves. Solid lines are calculated for best-fit parameter values 7,=1.5x107*s, A=3.9¢V, x =04, 8 =0.65
(from De Bolt er al 1976).

Phenomenological modeling: “fictive temperature”
(Tool-Narayanaswami-Moynihan, Hodge, ...)




Variety of questions depending
on temperature regime of interest

(2) In the liquid:

* How is cristallization avoided ?

* Properties of the slowing down of relaxation/
viscous slowdown. How does one get to the
glass “transition” ?

* Glass transition from above and from below.




Avoidance of crystallization,
glass-forming ability

Strong first-order transition -> nucleation and growth
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Rate of homogeneous crystal nucleation | versus T/Tn, for different liquid behavior.
Below the dashed line, crystallization cannot be detected (Turnbull, 1968)

Role of frustration (Frank, 60’s) ¢?




Different control parameters:
“Jamming diagram”

Temperature

[Liu-Nagel, 1998]

Loose grains,
bubbles, droplets

1/Density

Molecular liquids: temperature, pressure/density, driving force
Polymers: temperature, pressure/density, molecular weight, driving force
Grains, colloids: density/concentration, driving force, interaction strength




Different control parameters:
examples
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(Alba-Simionesco, 1994) dielectric measurements




