ICOSAHEDRAL ORDER: The Link between Quasicrystals and Metallic Glasses

S. RANGANATHAN

Department of Materials Engineering Indian Institute of Science Bangalore, India

School on Glass Formers and Glasses JNCASR, Bangalore January 19, 2010

OUTLINE

***THE SIZE FACTOR *PETTIFOR STRUCTURE MAPS *QUASICRYSTALS *THE SUPERTETRAHEDRON *EFFICIENT CLUSTER PACKING *BULK METALLIC GLASSES**

INTERMETALLICS

Zintl Phases
Hume-Rothery Phases
Frank-Kasper Phases

- Chemical Compounds
- Electron Compounds
- Size factor Compounds

>Where do Quasicrystals & Bulk Metallic Glasses fit in?

Atomic Parameters in Phase Stability

W Hume-Rothery, 1926

1 SIZE

2 ELECTRONEGATIVITY

3 VALENCE ELECTRON CONCENTRATION

D Pettifor, 1984

4 BOND ORBITALS (s, p, d, f- orbitals)

Distribution of Chemical Systems

Systems	Experimentally Known	Percent Known	Maximum Number
Unaries	100	100%	100
Binaries	4,000	81%	4,950
Ternaries	8,000	5%	161,700
Quaternaries	1,000	<1%	3,921,225

Frequency distribution of inorganic crystal structures having N different elements

Electron diffraction patterns from a rapidly solidified Al-Mn alloy revealing Icosahedral symmetry

THE SIZE FACTOR

"My own view is that simple geometry... .. atomic sizes... will prove to be the main criterion that in various subtle ways incorporates the others."

A. l. Greer & R.W. Cahn, 1991

- Close packing of spheres of the same size
- Kepler's Conjecture in 1609
- David Hilbert highlighted efficient packing in a list of problems to guide mathematics in the 20th century
- Hales solution in 1997

Spheres of Different Sizes A major challenge

Structure of Topologically close packed intermetallics Quasicrystalline intermetallics Metallic glasses Bulk metallic glasses Eutectic liquid compositions Clusters Colloidal Crystals Nanosuperlattices

Frank 1952, Bernal 1959, Kasper 1959, Mackay 1977, Gaskell 1978, Egami 1984, Miracle 2003, Ma 2006

PERIODIC TABLE OF METAL STRUCTURE

Issue :Combination of topological and chemical identities₁₀

THE CHEMICAL SCALE

From David Pettifor (1984) Note anomaly in places for Be & Mg

PETTIFOR MAP

Pettifor assignment of Mendeleev numbers to elements by using a string through the modified Periodic Table ¹²

Size versus Mendeleev Number

Pettifor map with Mendeleev number as the discriminator for AB type binary compounds

AB STRUCTURE MAP

Figure 2-2. The AB structure map (Pettifor, 1988a).

15

Pseudo-Binary Intermetallics

If Ax By is considered as the binary alloy, a quaternary alloy with constituent atoms as A, B, C and D may be treated as a pseudo-binary

$(A_x C_{1-x})(B_y D_{1-y}).$

The average Mendeleev numbers M_A^* and M_B^* are given by

 $M_{A}^{*} = x M_{A} + (1-x) M_{C}$

 $M_{B}^{*} = y M_{B} + (1-y) M_{D}$.

Successfully applied so far only to AB and AB₃ compounds. Our analysis extend to to A₂ B₃, A₅ B₂ AB₂ and AB₆ stoichiometry and related quasicrystals and Laves Phases

CLASSIFICATION OF QUASICRYSTALS :

Majority Component versus Large Atom

Alloy	Discovery	Year	Majority	Large Atom
			Component	
Al-Mn 14	Shechtman	1984 (1982)	Aluminium	Aluminium
Mg 36-Zn38-Al25	Ramachandra	1985	Zinc	Magnesium
	Rao			
Mg38-Zn15-Cu5-Al42	Ranganathan	1985	Aluminium	Magnesium
Ti-V-Ni	Kuo	1985	Titanium	Titanium
Ga-Mn	Tartas	1985	Gallium	Gallium
Al60-Li30-Cu10	Audier	1986	Aluminium	Lithium
Ti40-Zr40-Ni20	Molokanov	1990	Zirconium	Zirconium
Zn60-Mg30-RE10	Luo	1993	Zinc	Rare Earth
Zr-Ni-Cu-Al	Koester	1996	Zirconium	Zirconium
Hf-Ni-Cu-Al	Inoue	2000	Hafnium	Hafnium
Cd65-Mg20-RE15	Tsai	2000	Cadmium	Rare Earth
Cd-Yb	Tsai	2000	Cadmium	Ytterbium
Zn80-Mg5-Sc15	Ishimasa	2001	Zinc	Scandium
Cu48-Ga34-Mg3-Sc15	Ishimasa	2001	Copper	Scandium
Ag38-In38-Mg8-Ca16	Tsai	2001	Silver-Indium	Calcium

Rational Approximants to Quasicrystals

The Colouring Problem

1. Bergman Approximant - Li, Mg

2 Mackay Approximant - Al. Ga

3 Kuo Approximant- Ti, Zr, Hf

4 Tsai Approximant- RE, Ca, Sc,

Bergman cluster

The Bergman Cluster with seven shells (117 atoms):

- a central atom, surrounded by an icosahedron (12 atoms),
- a dodecahedron (20 atoms), a second icosahedron (12 atoms),

a truncated icosahedron (60 atoms),

a dodecahedron (20 atoms) and an icosahedron (12 atoms).

Kuo

Tsai

Mackay Acta Materialia, 2006

Bergman

QUASICRYSTALS AS PSEUDO-BINARY INTERMETALLICS

	Bergman	Mackay	Kuo	Tsai
	Class	Class	Class	Class
Binary		Al-Mn	Ti-Ni, Zr-Pd	Cd-Yb, Cd-Ca
Ternary	Mg-(Zn, Al)	Al-(Cu,Fe)	Ti-Zr-Ni	Cd-Mg-RE
	Mg(Cu, Al)	Al(Pd, Mn)	Ti-Hf-Ni	Zn-Mg-RE
	Mg(Zn, Ga)			Zn-Mg-Sc
	Li-(Cu,Al)			
Quaternary	Mg-(Cu,Zn,	(Al,Ga)-(Pd,	Ti-Zr-Ni-Cu	Cu-Ga-Mg-Sc
	Al)	Mn)		Ag-In-Mg-Cd
	Mg-(Zn, Al,	Al-(Pd,		(Zn, Mg)-
	Ga)	V,Co)		(RE1,RE2)
	(Li,Mg)-			
	(Zn,Al)			

1: 2 Stoichiometry & R ` 1.225

Laves Phase AB₂

Anti-Laves Phase A₂B (Giessen glasses)

Atomic environment Laves phase CN 16 and CN12 anti-Laves phase CN 15 and 10

Average coordination number of both is 13.33!

The supertetrahedron as a common building block Dong -2004

1928 Bradley & Thewlis Modified B2

1933 Bradley & Jones Nested polyhedra

Gamma brass

Supertetrahedron Four interpenetrating icosahedra

Supertetrahedra sharing atoms to form a 'diamond-type' network

Anti-Laves phase

 A_2B (Ti₂Ni, Zr₂Ni etc)

DENSE RANDOM PACKING A Statistical Model

- •A dense random packed structure of equal-sized spheres is characterized by:
 - a packing fraction of 0.6366
 - frequently observed specific local atomic clusters
 - tetrahedra, half-octahedra, trigonal prisms, Archimedian antiprisms, tetragonal dodecahedron
 - the absence of medium-and longrange order

Miracle 2004

The eight Bernal convex deltahedra

Bernal; *Nature*, **185**, (1959)

FRANK-KASPER PHASES

CN 16

CN

15

Radius ratios of hard sphere clusters with $3 \le N \le 20$ The solid line is an idealized relation from Miracle et al (2003) shown for comparison

CANDIDATE EFFICIENTLY PACKED ATOMIC CLUSTERS

Miracle, Lord and Ranganathan; "Candidate Atomic Cluster Configurations in Metallic Glass Structures"

STRUCTURAL MODELS

 $\Box\beta$ and γ solutes form efficiently packed clusters with Ω atoms only in the 1st coordination shell

- these clusters overlap with α clusters in the 1st coordination shell
- $-\beta$ and γ clusters form regular arrays within the DCP structure

Miracle, D. B. Nature Mater. 3, 697–702 (2004).

<12-10-9> Glass

<17-12-10> Glass

Analysis of Composition Dependence of Formation of Ternary Bulk Metallic Glasses from Crystallographic Data on Ternary Compounds

<u>A. Takeuchi</u> ^a, S. Ranganathan ^b, B.S. Murty ^c and A. Inoue ^a
 ^a Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
 ^b Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
 ^c Dept. Metal. Mater. Eng., Indian Institute of Technology, Madras, Chennai 600 036, India

Audience Hall, Bulk Metallic Glasses (1), August 28, 2006, 10:15~10:30

Outline

1. Introduction

1-1. Early studies on <u>stabilization of glassy phase</u>, bulk metallic glasses (<u>BMGs</u>)

- 1-2. Purpose
- 2. Methods
 - 2-1. <u>Seven classes of BMGs</u> (C-1~C-7): chemical species
 - 2-2. <u>Three types of BMGs</u> (L-,M-,S-type): relative atomic size

of the main constituent (Large, interMediate, Small) in ternary alloys

2-3. L-M-S composition diagram

2-4. Data source

3. Results and Discussion

- 3-1. L-M-S composition diagram for ternary compounds
- 3-2. Representative compounds

3-3. L-M-S composition diagram for BMGs and representative compounds

4. Summary

(2) Stabilization of glassy phase **<** stoichiometory of compounds

• <u>W. Hume-Rothery and E. Anderson, Phil. Mag., 5 (1960), 383-405.</u>

A:B = 1:6, 1:3, 1:2, 2:3 ← eutectic compositions ← binary phase diagram by Hansen (1958))

A₁₂B ← Frank icosahedral unit

• R.St. Amand and B.C. Giessen, Scripta Metall., 12 (1978) 1021-1026.

<u>Absence of systematic researches on the formation of</u> <u>ternary **BMGs**</u> based on <u>crystallographic data</u>

Crystallographic data on ternary compounds

crystalline structure (local atomic arrangements of BMGs)
stoichiometry of compounds

Ternary phase diagram

Classification of BMGs: 2-1, 2-2

To identify **general trends** of <u>composition</u> <u>dependence of formation</u> of <u>ternary **BMGs**</u>

ALLOY COMPOSITIONS Ca, RE, Zr, Mg *Glasses*

Classification of Bulk Metallic Glasses

A Inoue Acta Mater 2001 Five chemical types, Five ternary groups A Takeuchi & A Inoue Mater Trans 2005 Five slightly different chemical types, Seven groups

2. Methods

2-1. Seven classes of BMGs (C-1~C-7)* : <u>combinations</u> of class of <u>constituents</u>

Class of BMGs	*A. Takeuchi and A. Inoue: Mater. Trans., 46 (2006), 2817-2829.
---------------	---

Class	Representative alloy system	Combinations of class of constituents
C-1	La-Al-Ni, Zr-Al-Ni	(ETM,Ln)-(Al,Ga)-(LTM,BM)
C-2	Fe-Zr-B	(LTM,BM)-(ETM,Ln)-(Metalloid)
C-3	Fe-(Al,Ga)-Metalloid	(LTM,BM)-(Al,Ga)-(Metalloid)
C-4	Mg-Cu-Y	(IIA)-(LTM,BM)-(ETM,Ln)
C-5	Pd-Ni-P	(LTM,BM)-(Metalloid)
C-6	Cu-Zr-Ti	(LTM,BM)-(ETM,Ln)
C-7	Ca-Mg-Cu	(IIA)-(LTM,BM)

Class of	constituents	
IIA:	Alkaline Earth Metal	(Be,Mg,Ca)
ETM:	Early Transition Metal_(IIIA-VIIA)) (Zr,Ti,Nb,)
Ln:	Rare Earth Metal	(La,Nd,Gd,)
LTM:	Late Transition Metal_(VIII-VIIB)	(Fe,Co,Ni,)
BM:	B-group Metal(IIIB-IVB)	(In,Sn,Pb,)
Metallo	pid:	(P,C,B,Si,Ge)
Al,Ga:		36

3. Results and discussion

3-1. L-M-S composition diagram for ternary compounds

Cu₂Mg: <u>Laves /Anti-Laves</u> relationship

3-3. L-M-S composition diagram for BMGs and representative compounds

4. Summary

1. Introduction: Stabilization of glassy phase \leftarrow eutectic reaction

← local atomic arrangements, stoichiometory of compounds

2. Methods:

Seven classes of BMGs (C-1~C-7) and three types of BMGs (L-,M-,S-type),

L-M-S composition diagram, Crystallographic data from ternary phase diagrams

- 3. Resulsts and Discussion
 - 3-1. L-M-S composition diagram for ternary compounds
 - → ternary compounds tend to form in S-rich corner (Region S) ←
 - 3-2. Representative compounds \rightarrow (1)Cu₂Mg, (2)Fe₂P and (3)C₆Cr₂₃
 - 3-3. L-M-S composition diagram for BMGs and representative compounds

Chemical identity on the basis of Mendeleev Numbers

6 types based on orbitals and MN

New types	Metal (MN)	Takeuchi &Inoue
f electrons	Ca (16), Sc(19)	
	Lu (20) Dy(24), Y (25)	Ln
	Gd(27), Ce(32), La (33)	
	_ /	+
d electrons (ETM)	Zr(49), Hf(50), Ti(51), Ta(52), Nb(53) ETM
d electrons (LTM) Fe(61),	Co(64), Ni(67), Pt(68), Pd(69 Au(70), Ag(71), Cu(72)	9) LTM + Sn
Mg (73), Zn(76), Be (77)		Be, Mg, Ca
sp electrons metallic	Al (80), Ga (81), Sn (83)	Al,Ga
sp electrons metalloid	Ge (84), Si (85), B (86), P ((90), C (95) Metalloid
Takeuchi & Ino	ue ANMM Sept 2005	
		· 2006 · 41
Kanganathan, N	iurty, inoue & Takeuch	11, 2006 in progress

Mg₆₅Cu₂₅RE₁₀

GFA parameters of the Mg₆₅Cu₂₅RE₁₀ alloys: super cooled liquid region ($\Delta T = T_x - T_g$), reduced glass transition temprature ($T_{rg} = T_g/T_l$) and $\gamma (T_x/(T_g + T_l))$

(Xi et al, 2005, Intermetallics)

Coloured points: exp. data

42

$Mg_{65}Cu_{25}RE_{10}$

GFA parameters of the $Mg_{65}Cu_{25}RE_{10}$ alloys: super cooled liquid region ($\Delta T = T_x - T_g$), reduced glass transition temperature ($T_{rg} = T_g/T_l$) and $\gamma (T_x/(T_g + T_l))$ 43

Coloured points: exp. data

D. Stockdale, *Proc. Roy. Soc. A* 152, 81 (1935).
W. Hume-Rothery & E. Anderson, E. *Phil. Mag.* 5, 383–405 (1960).
A.R. Yavari, *Nature Materials*, 4, 2,3 (2005)

1.Binary eutectics by telescoping multinary eutectics-Pseudobinary & ternary eutectics-2. Hume-Rothery explanation of eutectic composition in terms of icosahedral clustersS Ranganathan

J. Phys. D: Appl. Phys. 40 (2007) R273–R291 TOPICAL REVIEW

From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses

C Dong1, QWang, J B Qiang, Y M Wang, N Jiang, G Han, Y H Li, J Wu and J H Xia State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Dalian

EARLY TRANSITION METAL-LATE TRANSITION METAL ALLOYS Glass & Quasicrystal forming ability

Hf70-Cu30 Hf70-Cu20-Ag10 Hf70- Cu20-(Pt/Pd)10 a--qc Hf73-Pd27 a-qc

Li, Ranganathan & Inoue, Acta mater 2001

Zr41.5-Ti41.5-Ni17 a-- qc Zr41.5-Hf41.5-Ni17 Basu, Louzguine, Inoue ,JNCS 2004

Ti40-Zr20- Hf20-(LTM= Ni/Pd/Pt)20 Nano qc Chen, Louzguine,Kubota, Ranganathan & Inoue Scripta mater. 2005

Multicomponent alloys viewed as pseudo lower order alloys

Zr-80Pt20 Zr70-(Cu/Ag/Au)10-Pt20 Zr70-Pd 30 Zr70-(Ag/Au)10-Pd20 Saida, Ranganathan & Inoue

Bright field electron micrograph of a nanoquasicrystallised Zr-Ti-Ni alloy with nano beam electron diffraction pattern showing a) 5-fold b) 3-fold c) 2-fold symmetry

Phases in Melt-spun Alloys

XRD patterns (a) Ti40-Zr20-Hf20- Ni20 (b) Ti40-Zr20-Hf20-Pd 20 © Ti40 -Zr20-Hf20- Pt20 alloys (d) Ti40- Zr20- Hf20- Pt 20 ingot

TEM of the melt-spun $Ti_{40}Zr_{20}Hf_{20}Ni_{20}$ alloy. (a) Dark-field (b) bright field image (c-e) nano beam diffraction patterns of five-, three- and twofold symmetry respectively and (f) selected-area electron diffraction pattern

Bright field TEM image (a), selected area diffraction pattern (b) and nanobeam electron diffraction patterns (c)-(e) of the rapidly solidified $Zr_{70}Au_{10}Pt_{20}$ alloy. The beam diameter for electron diffraction is 1µm in (b) and is 2.4 nm in (c)-(e) (J. Saida, A. Inoue S. Ranganathan)⁵²

QUASICRYSTALS AND METALLIC GLASSES: A COMPARISON

Bond Orbital	Large Atom	Quasicrystal	Bulk Metallic Glass
s-electrons	Li, Mg	Li-Cu-Al Mg-Zn-Al	(Mg-Cu-Y)
p-electrons	Al, Ga	Al-Pd-Mn	Al-La-Ni (Al-rich marginal)
		Ga-Cu-Co	(m-men marginar)
d- electrons (ETM)	Zr, Hf, Ti	Zr-Ti-Ni Zr-Ti-Ni-Cu Zr-Pd-Cu	Zr-Ni-Al Zr-Ni-Cu-Al Zr-Ti-Ni-Cu-Be
d- electrons (LTM)	Fe, Co, Ni Pd, Pt	-	Fe-Ni-P-B Fe-Zr-B Pd-Ni-P-B
f-electrons	Ln	Ln-Zn-Mg Ln-Cd-Mg	La-Ni-Al (Mg-Cu-Y) (Al-Ni-La)

CONCLUSIONS-I

- The close packing of spheres of different sizes favours intrinsically polytetrahedral packings involving icosahedral order. This extends from atomic to micrometre dimensions .-e.g colloids
- Icosahedral order applies to crystalline and quasicrystalline intermetallics as well as bulk metallic glasses.
- The size ratio close to 1.225 is favoured for both large atom minority and majority compositions.
- The topological complexity in BMG s extends up to four components only (Miracle 2004).

CONCLUSIONS-II

- The chemical complexity for topologically close packed crystalline and quasicrystaline intermetallics extends to two
- The Pettifor structure mapping approach allows to consider both topology and chemistry together.
- For bulk metallic glasses the chemical complexity can be three or four. Binary BMGs are an exception .
- The composition of eutectics with strict stoichiometry mirrors that of resultant BMGs. There is a strong connection in the stoichiometry of higher order eutectics so that many appear to be psuedo binary or ternary.

ACKNOWLEDGEMENTS

Collaboration with

Prof A Inoue, Prof A Takeuchi, Prof H Kimura, Prof J Saida and Prof D Louzguine

Discussions with Dr Eric Lord and Dr Daniel Miracle, Prof B S Murty

Comments from Prof David Pettifor and Prof Alan Mackay

> Sponsors DRDO, India; AOARD, Tokyo