International School on Glass Formers and Glasses JNCASR, Bengaluru

Changes in the Structure due to Temperature and Relaxation

T. Egami

University of Tennessee
Oak Ridge National Laboratory

Structure Property Relationship

- Drastic changes in the properties, such as viscosity with temperature, do not seem to be reflected in the structure (Grand Challenge – C. A. Angell).
- High-order correlations cannot be readily measured (see poster by Claudio Maggi).
- Small changes in the pair correlation; they can be measured, if you do the experiment carefully and with patience.

Changes in the Pair-Density Function

- Highly accurate PDF measurement (10⁷⁻⁸ ct.)
 - EDXD, synchrotron radiation with 2D detector, insitu measurement
- Small changes in PDF
 - With temperature, structural relaxation.
- Interpretation
 - Atomic level stresses.
 - Universal critical strain
 - Glass transition.

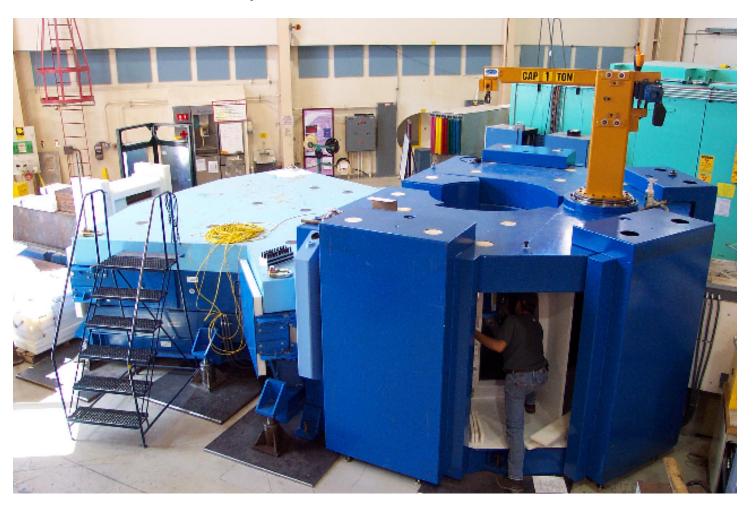
How to Measure PDF Accurately

- High statistical accuracy
- Wide Q range

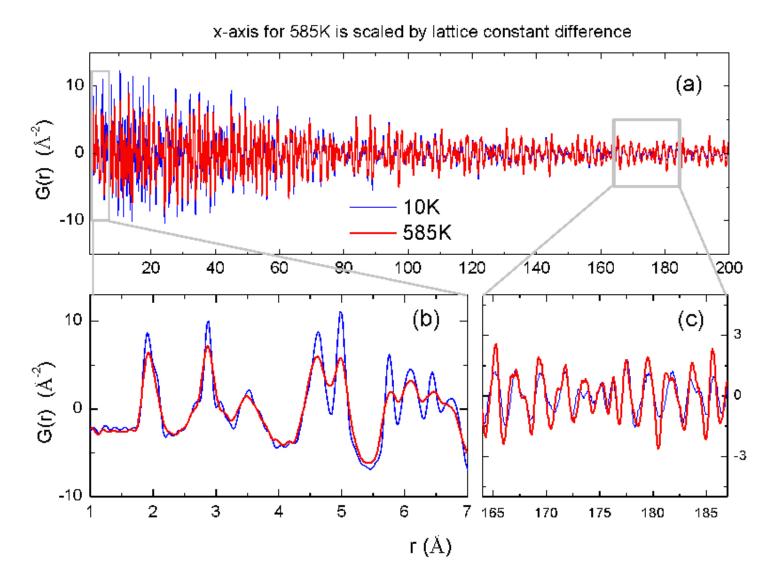
$$G(r) = \frac{2}{\pi} \int_{0}^{\infty} Q[S(Q) - 1] \sin(Qr) dQ \qquad Q = \frac{4\pi}{\lambda} \sin \theta < \frac{4\pi}{\lambda}$$

- With Mo radiation 16 Å⁻¹, but with synchrotron radiation and pulsed neutron up to 50 Å⁻¹ or more.
- Stable set-up, in-situ measurement.

High-resolution pulsed neutron scattering spectrometer, NPDF, LANSCE, Los Alamos National Lab.



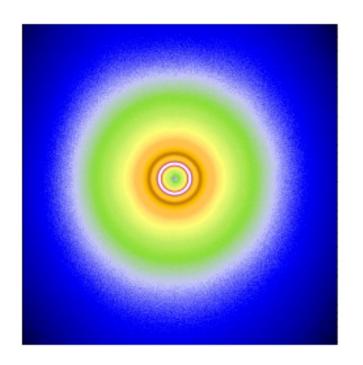
• High Q resolution $\Delta Q/Q = 0.0015$, high real space resolution for PDF.

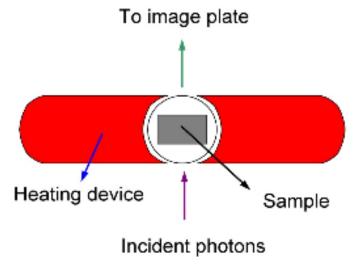


Local and intermediate structure of LiNiO₂ (PRB 71, 064410 (2005)).

Effect of Temperature

 High energy x-ray diffraction with a 2D detector.

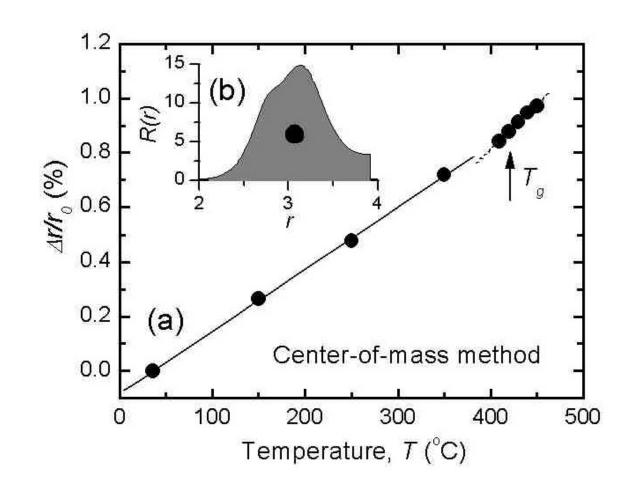




Thermal expansion coefficient;

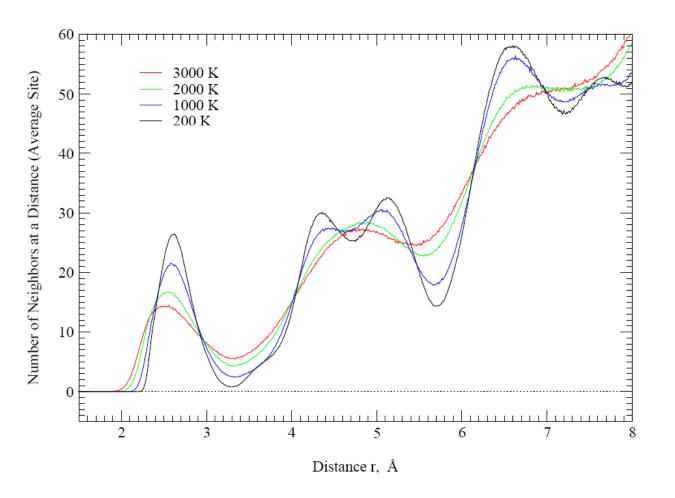
•
$$\alpha = 1.80 \times 10^{-5}$$

• $\alpha = 3.28 \times 10^{-5}$ (macroscopic).

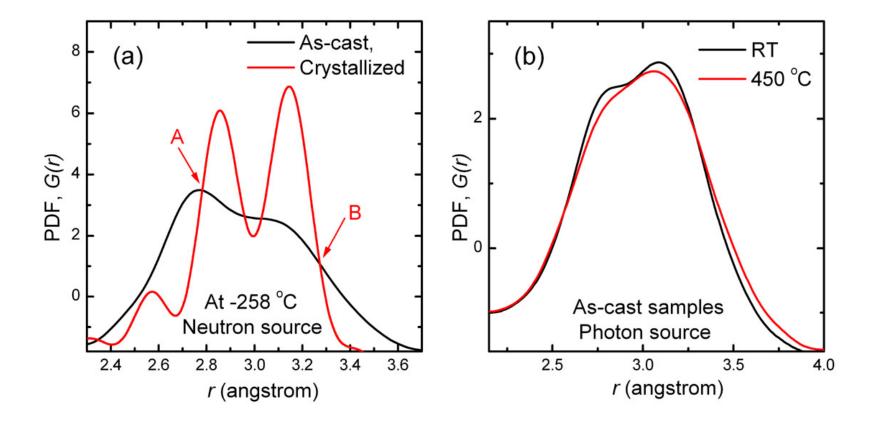


PDF and Temperature

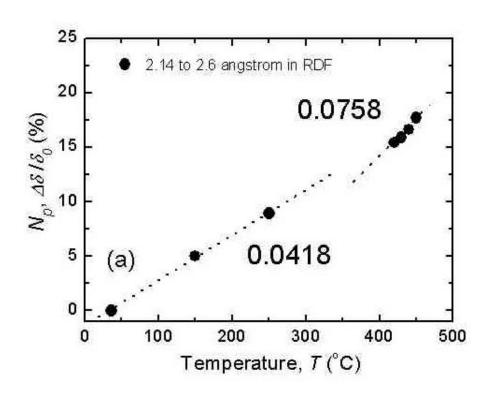
• The PDF peak width increases with temperature, reflecting increased atomic vibration.

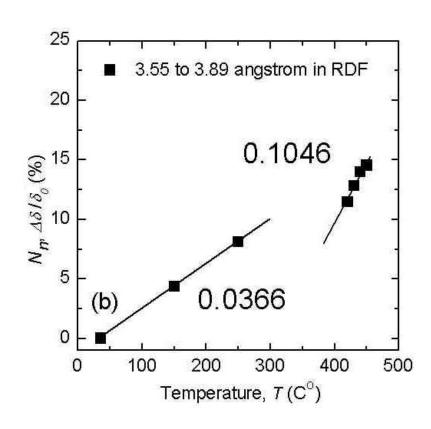


Simulated PDF of iron



Change in the area with temperature





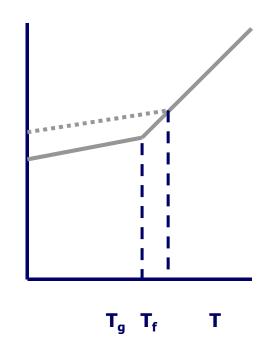
 The change in the first peak is symmetric, reflecting the harmonic potential, and not hard-sphere-like.

Changes in the Structure due to Structural Relaxation

• Small volume change (~0.5%).

• Significant changes in the properties. $\Delta H/\Delta V \sim 10$ eV.

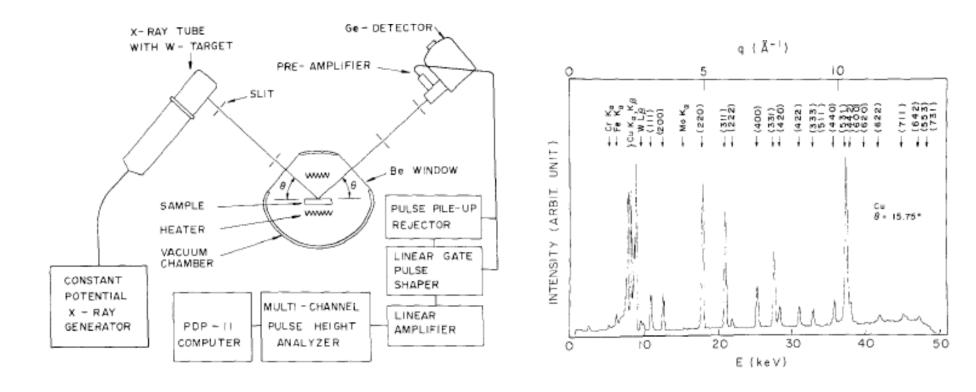
 Significant changes in the structure are happening.
 How do we observe and describe them?

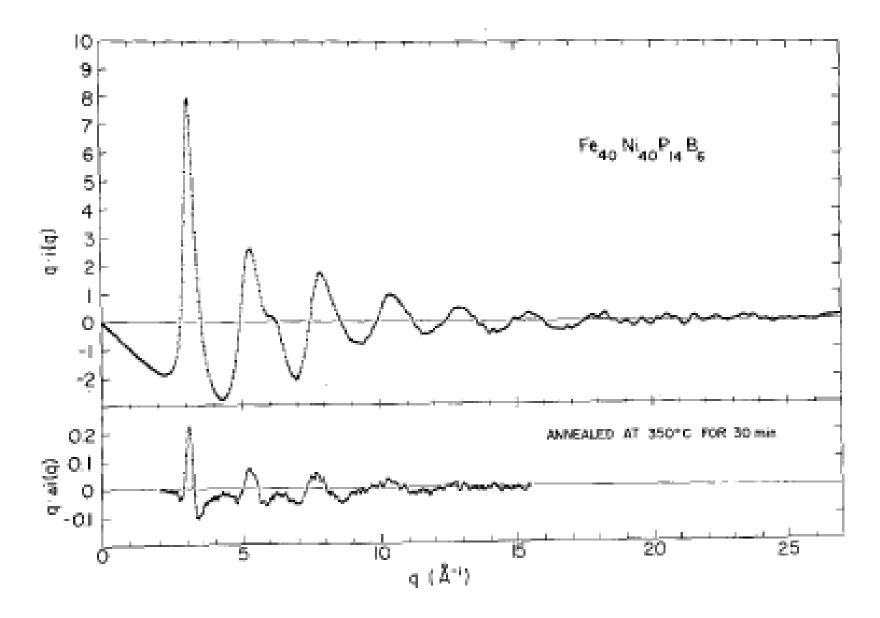


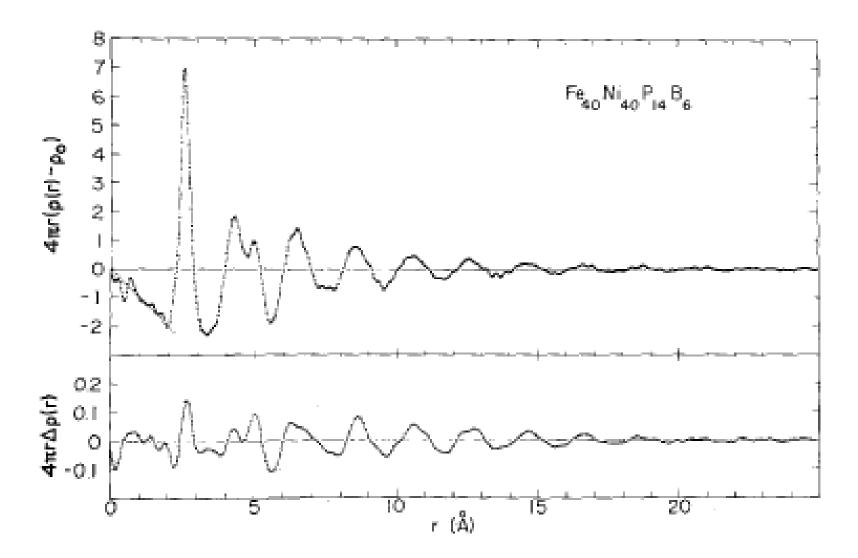
Energy-Dispersive X-ray Diffraction

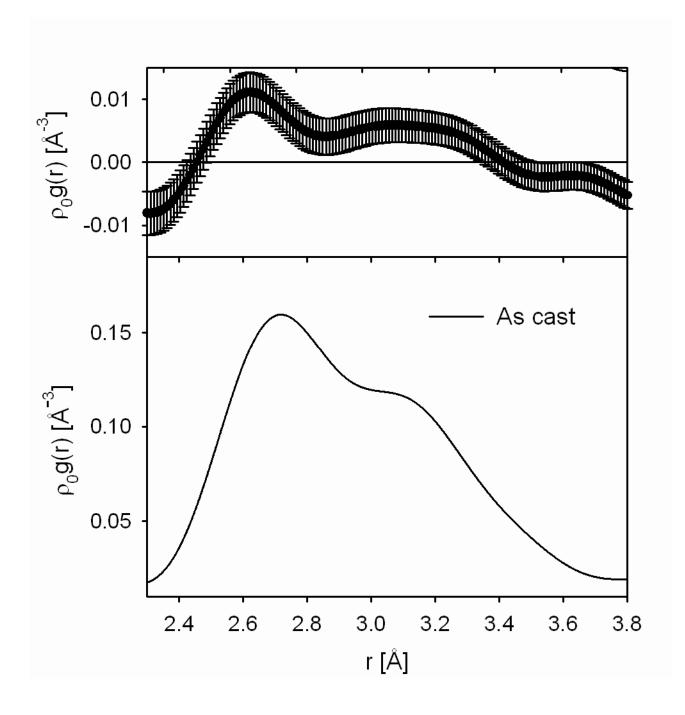
 Spectroscopic diffraction measurement with white x-rays.

T. Egami, J. Mater. Sci. 13, 2587 (1978)



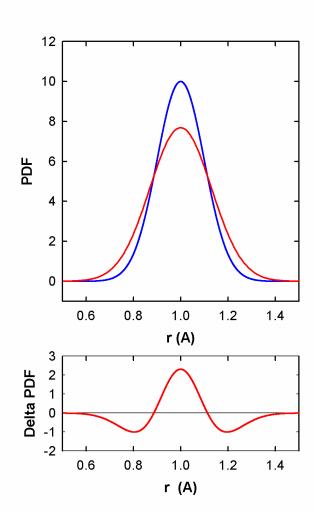






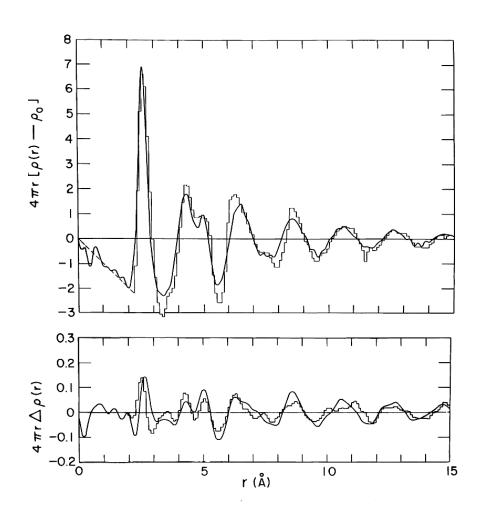
Change in the PDF due to Structural Relaxation

- Even though the change in $\Delta \ell / \ell$ is 0.2%, PDF changes 2 7 %.
- Little shift in the peak position; stays in the minimum of the interatomic potential.
- The coordination number remains largely unchanged.
- The N.N. peak becomes sharper; short and long bonds disappear.
- Less dense regions (free volume) as well as dense regions (anti-free volume) disappear as a result of relaxation.



Structural Relaxation

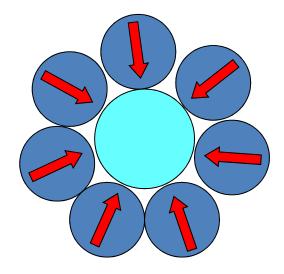
- Reduction in $<\Delta N_C^2>$, and $<p^2>$.
- Change in the PDF; 30% change in <p²>.
- 30% change in the fictive temperature.



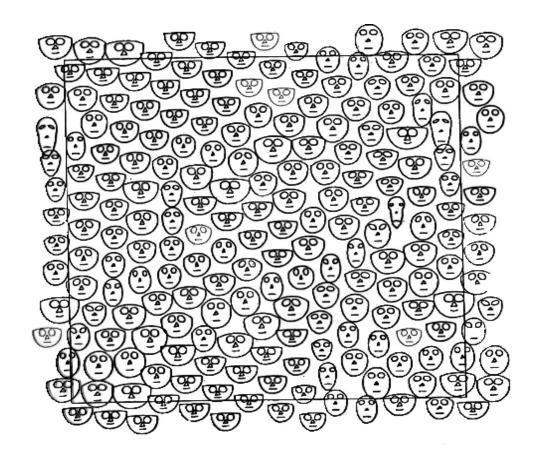
T. Egami, *J. Mater. Sci.* **13**, 2587 (1978), D. Srolovitz, T. Egami, and V. Vitek, *Phys. Rev. B* **24**, 6936 (1981)

Atomic Level Stresses and Strains

$$\sigma_i^{\alpha\beta} = \frac{1}{\Omega_i} \sum_j f_{ij}^{\alpha} \cdot r_{ij}^{\beta}$$



T. Egami, K. Maeda and V. Vitek, *Phil. Mag.* **A41**, 883 (1980).

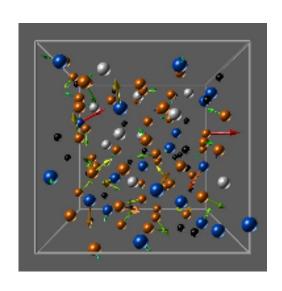


 Atomic level stresses relate the local topology to the local energy landscape.

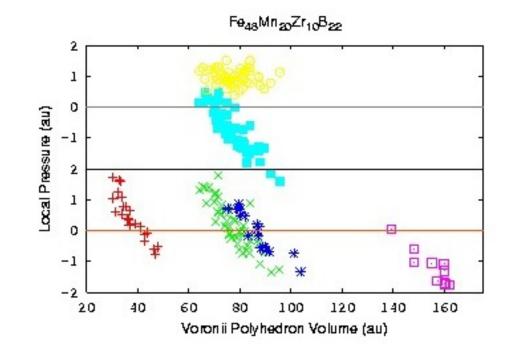
Atomic Level Stresses from the First Principles

Nielson (PRL 50, 697 (1983); Filippetti PRB 61, 8433 (2000)

$$\sigma_{\alpha\beta} = -\sum_{\varepsilon_{i} < \varepsilon_{F}} \frac{\partial}{\partial x_{\alpha}} \psi^{\dagger} \frac{\partial}{\partial x_{\beta}} \psi - \delta_{\alpha\beta} (\varepsilon_{xc} - V_{xc}) - \frac{1}{4\pi e^{2}} [E_{\alpha} E_{\beta} - \frac{1}{2} \delta_{\alpha\beta} E^{2}]$$



 $Fe_{48}Mn_{20}Zr_{10}B_{22}$



- D. Nicholson and G. M. Stocks
- Integrated stress for unit cell
- •Results will provide check for local stress

Atomic Level Stresses

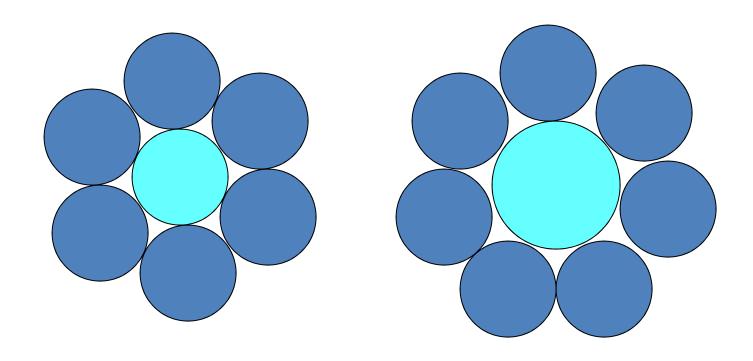
• If an atom is in an *ideal* environment, $f_{ij} = 0$, so $\sigma_i = 0$.

$$\sigma_i^{\alpha\beta} = \frac{1}{\Omega_i} \sum_j f_{ij}^{\alpha} \cdot r_{ij}^{\beta}$$

- Stress describes the deviation from the ideal state; <unhappiness>.
- Topological deviations.

Stress fluctuations = Topological fluctuations

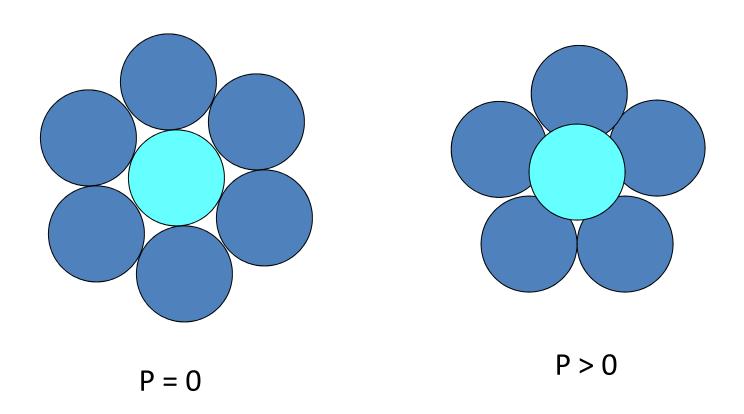
Atomic size and local coordination



• A large atom has more neighbors......

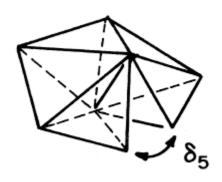
Origin of the Atomic-Level Stresses

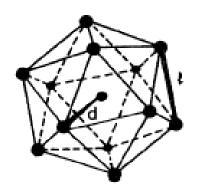
 The origin is the mismatch between the local topology and the atomic size.



Topology and Geometry

- Putting five tetrahedra together makes pentagonal bipyramid, with distortion $(\delta_5 = 7.4^\circ)$.
- Putting twenty tetrahedra makes icosahedron, but each tetrahedron is distorted.
- Thus the local packing and global packing are not compatible; the structure is frustrated.





ICOSAHERON IN FLAT SPACE (a)

Curvature in 4D

- Euclidian space is a flat surface in 4-dimensional space.
- If we make the 4D surface curved, icosahedron can be made without strain.
- Space can be filled by tetrahedra if the space is curved.
- The real structure can be described by locally curved space (M. Klemann, F. Sadoc, D. R. Nelson, G. Tarjus).
- Local curvature is equivalent to local atomic level strain.
- Strain cannot be uniquely defined, but stress can be.

₹ ≃ 1.05d



SPACE
(a)

Connection with MCT and DFT

- MCT and DFT consider only the density, $n(\mathbf{r})$, as a variable, but we consider the stress, (strain) tensor, $\bar{\sigma}_i$, (B. Chakraborty).
- Atomicity enters as local frustration that causes local incompatibility (E. Kröner), and deviates from continuum mechanics).
- Slowdown occurs because of the atomicity.
- The local incompatibility is characterized by the minimum universal strain.

Viscosity

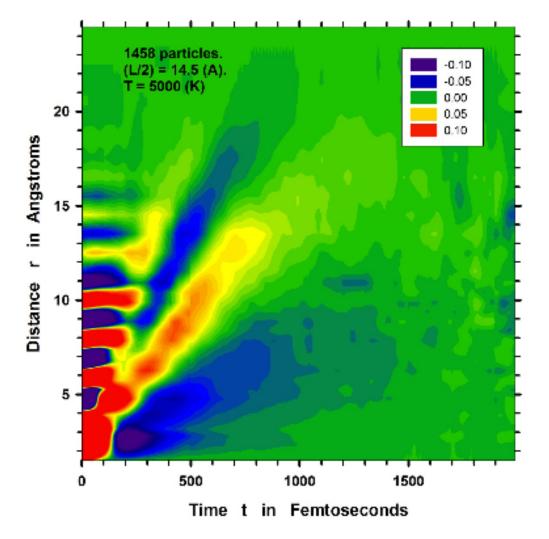
Green-Kubo equation (fluctuation-dissipation theorem);

$$\eta = \frac{kT}{V} \int \langle \sigma^{xy} (0) \sigma^{xy} (t) \rangle dt$$

In terms of the atomic level stresses,

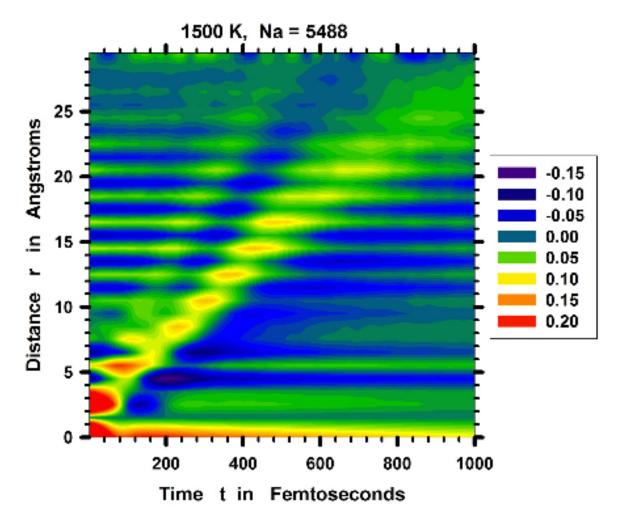
$$\eta = \frac{kT}{V} \int \sum_{i,j} \Omega_i \Omega_j \left\langle \sigma_i^{xy} \left(0 \right) \sigma_j^{xy} \left(t \right) \right\rangle dt$$

$$\Sigma(r,t) = \iint \langle \sigma^{xy}(r',0)\sigma^{xy}(r'',t)\rangle \delta(r-|r'-r''|)dr'dr''$$



- Liquid iron.
- T = 5000 K
- $T_g = 800 \text{ K}$, $T_{CO} = 2300 \text{ K}$
- L and T waves are seen.

$$\Sigma(r,t) = \iint \langle \sigma^{xy}(r',0)\sigma^{xy}(r'',t)\rangle \delta(r-|r'-r''|)dr'dr''$$



Correlation
 developing over
 both time and
 space: That is
 why viscosity
 changes so
 much.

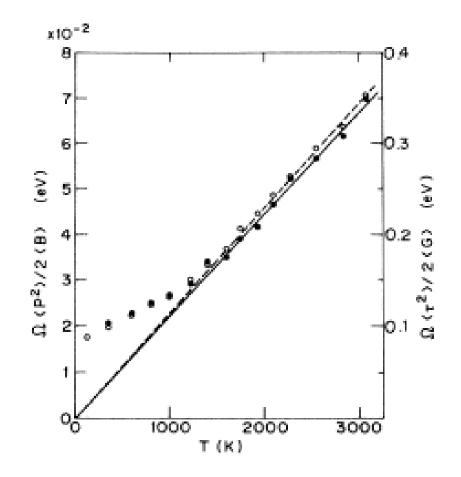
 Currently developing the theory.

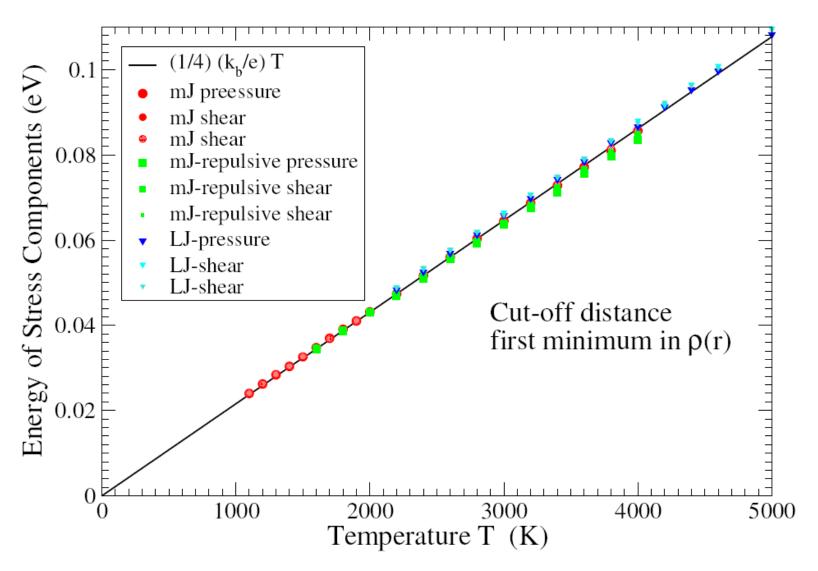
Local structural fluctuation in liquid

- Temperature dependence of the local stress fluctuation (T. Egami and D. Srolovitz, *J. Phys. F*, **12**, 2141 (1982))
- S.-P. Chen, T. Egami and V.
 Vitek, *Phys. Rev. B* 37, 2440
 (1988). At high temperatures;

$$\frac{V}{2B} \langle p^2 \rangle = \frac{VB}{2} \langle \varepsilon_v^2 \rangle = \frac{kT}{4}$$

$$\frac{V}{10G} \langle \tau^2 \rangle = \frac{VG}{10} \langle \varepsilon_s^2 \rangle = \frac{kT}{4}$$



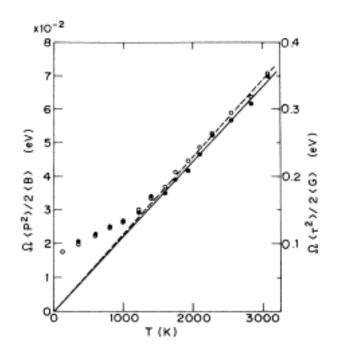


- $E_{el} = 3kT/2$ for various inter-atomic potentials.
- Atomic-level stress is an excellent bridge between thermodynamics and structure.

Glass Transition

High-temperature equation,

$$\frac{V}{2B} \langle p^2 \rangle = \frac{VB}{2} \langle \varepsilon_v^2 \rangle = \frac{kT}{4}$$



extrapolates to ε_v = 0 at T = 0; all neighbors at the bottom of the potential.

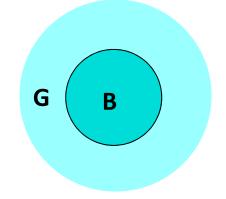
- But that is physically impossible because of jamming.
- There must be a minimum strain.

Self-Energy in the Glassy State

 Energy of local fluctuation in volume is given by Eshelby theory (T. Egami and D. Srolovitz, *J. Phys. F*, **12**, 2141 (1982)),

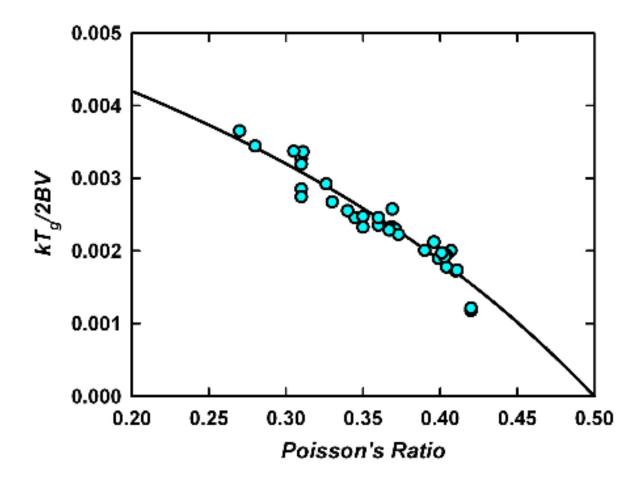
$$E_{v} = \frac{BV}{2K_{\alpha}} (\varepsilon_{v,T})^{2},$$

$$K_{\alpha} = \frac{3(1-v)}{2(1-2v)}$$



• This energy was compared to the glass transition temperature of many alloys.

$$E_{v} = \frac{BV}{2K_{c}} \left(\varepsilon_{v}^{T,crit}\right)^{2} = \frac{kT_{g}}{4}$$



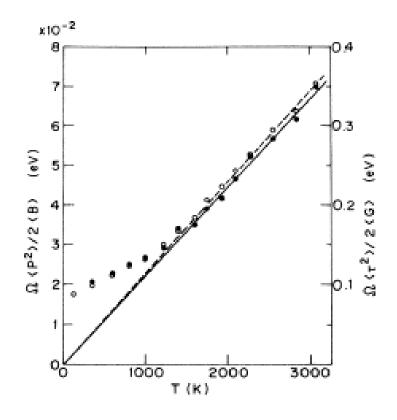
• Glass transition temperature is equal to the energy of local density fluctuation with the long-range stress field at a critical strain level. $\varepsilon_{v,T} = 0.095 \pm 0.004$ (4%).

T. Egami, S. J. Poon, Z. Zhang and V. Keppens, Phys. Rev. B 76, 024203 (2007).

Universal Minimum Strain

• The value of $\varepsilon_v^{T,crit} = 0.095$, is universal regardless of composition.

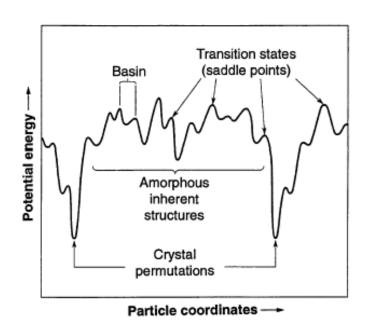
$$kT_g = \frac{2BV}{K_\alpha} \left(\varepsilon_v^{T,crit}\right)^2$$

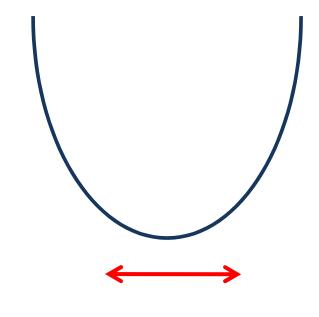


Universal Minimum Local Strain

• Depth of the valley in the energy landscape.

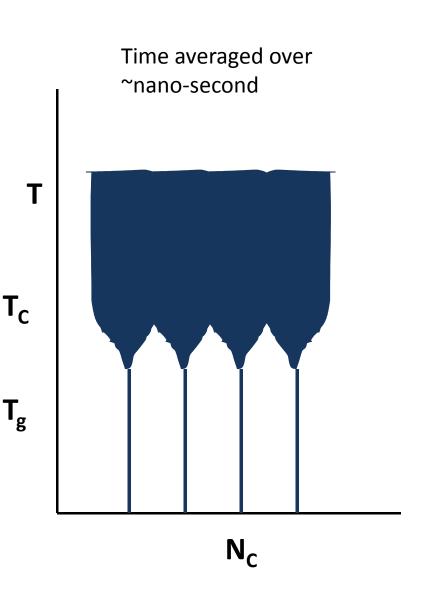
 If the strain is too large the local topology becomes unstable, and change.





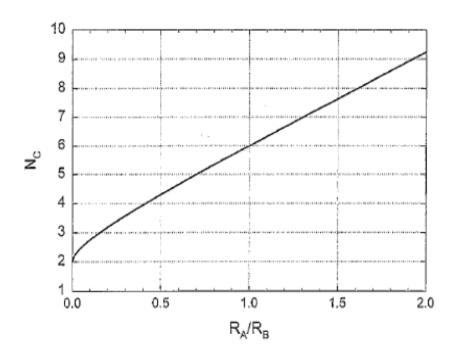
"Quantization" Effect

- N_C continuously fluctuates at high T, and a short time average is a non-integer.
- As the system freezes local N_C becomes an integer.
- This process of "quantization" is the heart of the glass transition.

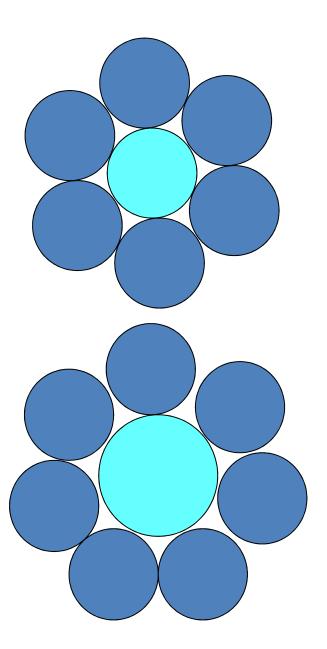


Local Topology and Geometry

Close packing around the atom.



$$N_{\rm C} = \frac{2\pi}{\theta_{\rm A-B}} = \frac{\pi}{\sin^{-1}(R_{\rm B}/(R_{\rm A} + R_{\rm B}))}$$



Critical Strain

$$\sin^{-1}\left(\frac{1}{1+x}\right) = \frac{\pi}{N_C}$$

$$x_n = \frac{1}{\sin\left(\frac{\pi}{n}\right)} - 1$$

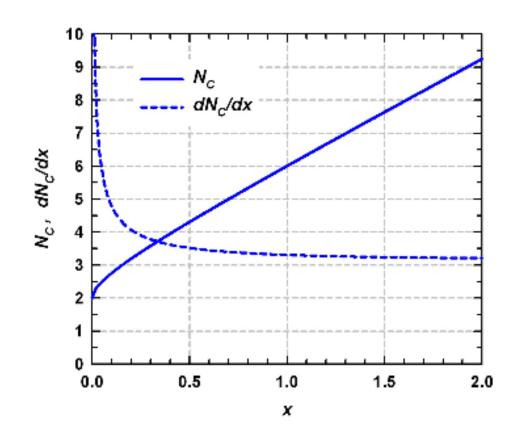
$$\frac{dN_C}{dx} = \frac{N_C^2 \sin^2\left(\frac{\pi}{N_C}\right)}{\pi \cos\left(\frac{\pi}{N_C}\right)}$$

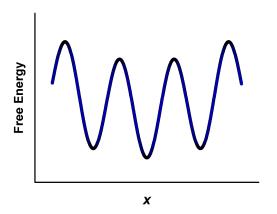
• Critical value of x corresponding to $dN_c = 0.5$;

$$\Delta x_{crit} = \frac{1}{2} \frac{dx}{dN_C} = 0.151$$

Critical shear strain:

$$\varepsilon_s^{crit} = \frac{1}{\sqrt{2}} \varepsilon_{crit}^{\gamma 1} = 0.131$$

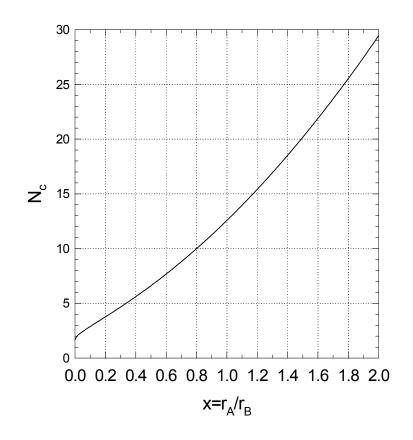




Local topology of metallic glass

- Place an A atom with the radius r_A in the liquid of B.
- There is an equilibrium coordination number as a function of $x = r_A/r_B$.

$$N_C^A(x) = 4\pi \left[1 - \frac{\sqrt{3}}{2} \right] / \left[1 - \frac{\sqrt{x(x+2)}}{x+1} \right]$$



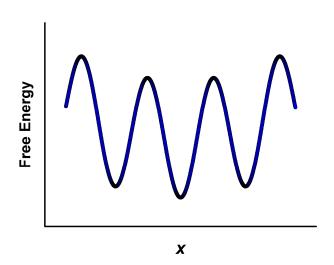
Local topological instability

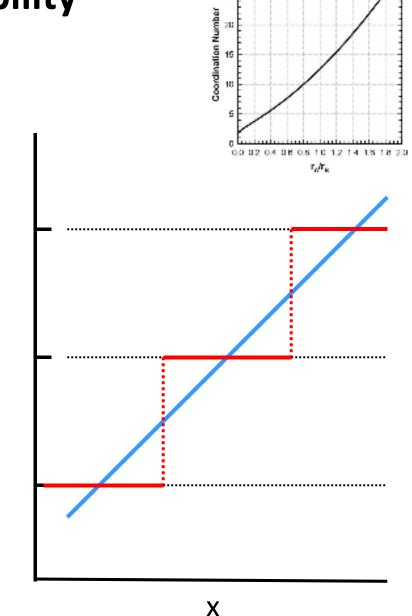
13

12

11

 Since the coordination number is an integer, there is a range of values of x over which a particular coordination number is stable.





Local energy landscape

Topological instability condition

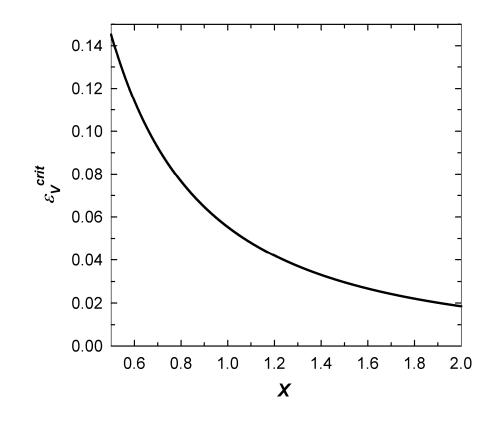
- If the radius of the A atom is changed, when the corresponding N_c changes by ~ 0.5, the atomic cage around the A atom becomes unstable.
- The instability condition:

$$\Delta x_C = \frac{1}{2} / \frac{\partial N_C^A(x)}{\partial x}$$

• For a monoatomic system (x = 1),

$$\varepsilon_V^{crit} = \frac{3}{2} \Delta x_C = \frac{6\sqrt{3} - 9}{8\pi} = 0.0554$$

$$\varepsilon_V^{crit} = 3\Delta x_C = \frac{6\sqrt{3} - 9}{4\pi} = 0.111$$

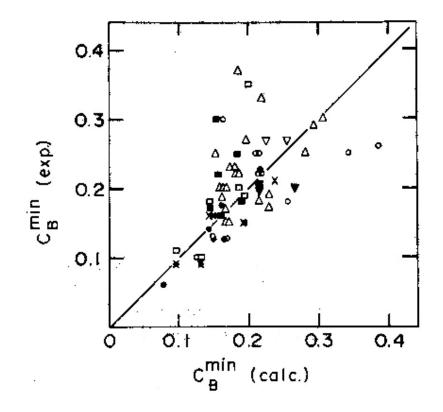


Composition limit for binary glass

 This leads to the composition limit (T. Egami and Y. Waseda, J. Non-Cryst. Solids, 64, 113 (1984)),

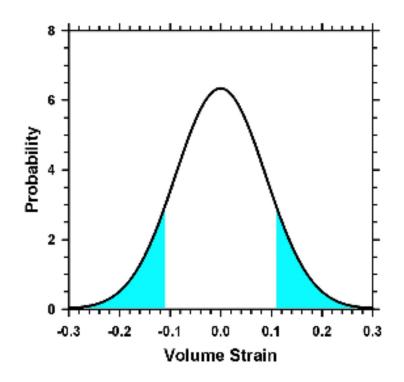
$$c_B^{\min} = 0.1 \frac{V}{|\Delta V|}; \quad \Delta V = V_A - V_B$$

 Tested for a large number of alloy systems.



Liquid-Like Sites (Free-Volume)

- Local environment unstable at certain sites with the volume strain larger than 11%.
- Free-volume (n) (ε_{v} > 0.11) and anti-free-volume (p) (ε_{v} < -0.11) defects [Cohen and Turnbull, 1959]
- They define the liquid-like sites.



Free volume element

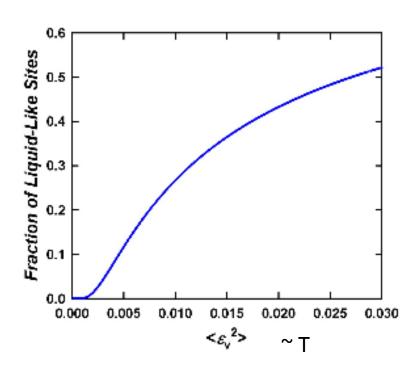
Percolation of the Liquid-like Sites

• Total fraction of the liquid-like sites:

$$p(liq) = CE(y_C) = \frac{2}{\sqrt{\pi}} \int_{y_C}^{\infty} e^{-y^2} dy$$
$$y_C = \frac{\varepsilon_v^{crit}(L)}{\sqrt{2} \langle \varepsilon_v^2 \rangle^{1/2}}$$

• For $\varepsilon_{v,T} = 0.095 \pm 0.003$

$$p(liq) = 0.243$$



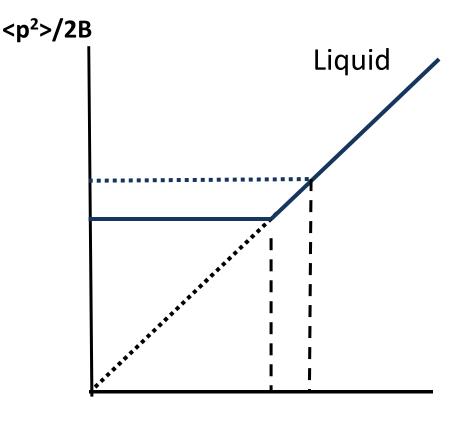
• Percolation concentration for DRP is 0.2: Glass transition occurs by percolation of the liquid-like sites [M. H. Cohen and G. Grest, Liquid-glass transition, a free-volume approach, *Phys. Rev. B* **20**, 1077-1098 (1979)

Structural Relaxation

 Rapid cooling traps the system to a high level of stresses.

• Structural relaxation = relaxation of the atomic level stresses.

 Distribution of P becomes narrower.

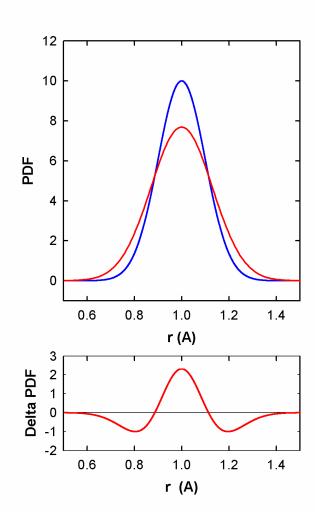


Tg

 T_f

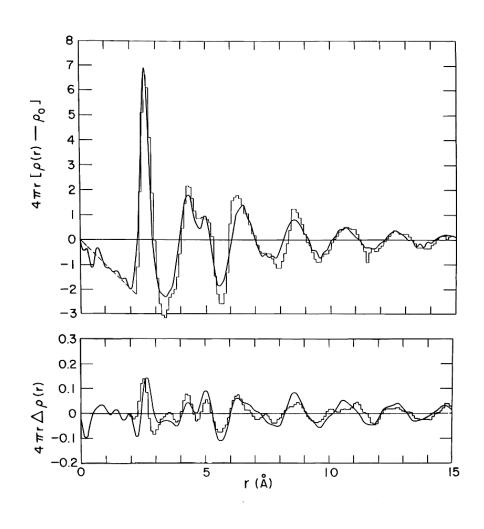
Change in the PDF due to Structural Relaxation

- The coordination number remains unchanged.
- Little shift in the peak position; stays in the minimum of the interatomic potential.
- The N.N. peak becomes sharper; short and long bonds disappear.
- Less dense regions (free volume) as well as dense regions (anti-free volume) disappear as a result of relaxation.



Structural Relaxation

- Reduction in $<\Delta N_c^2>$, and $<p^2>$.
- Change in the PDF; 30% change in <p²>.
- 30% change in the fictive temperature.



T. Egami, *J. Mater. Sci.* **13**, 2587 (1978), D. Srolovitz, T. Egami, and V. Vitek, *Phys. Rev. B* **24**, 6936 (1981)

Conclusions

- **Changes in the PDF** due to structural relaxation can be observed by careful x-ray diffraction.
- Relaxation reduces the PDF peak width without shifting the peak.
- Relaxation can be explained in terms of reduction in the distribution of atomic-level stresses.
- Atomic level stresses describe local topology and connect them with local energy landscape.
- The self-energy of the atomic level stresses follows the equipartition theorem for various potentials.
- Freezing of the atomic-level stress fluctuation defines the glass transition. The equation thus deduced agrees with experiment with high accuracy.