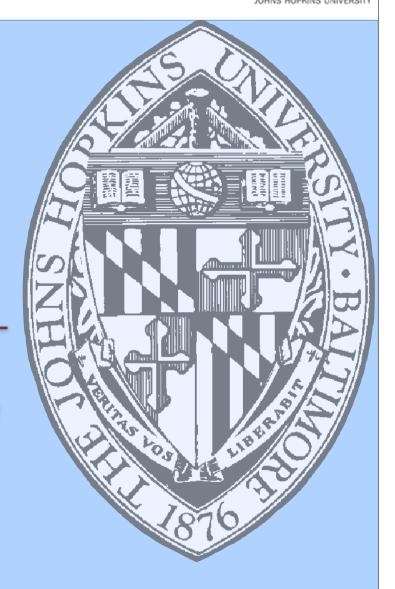


Simulating Plastic Localization in Metallic Glasses

Michael L. Falk

Materials Science and Engineering Whiting School of Engineering Johns Hopkins University

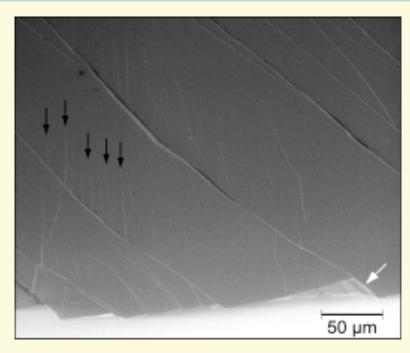


Outline

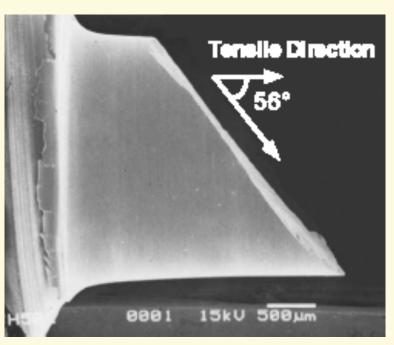
- Shear Bands In Amorphous Solids
 - Structural Analysis
 - STZ Analysis
- Fracture in Amorphous Solids

Shear Bands in Metallic Glass

strain localization (shear banding) is the primary failure mode

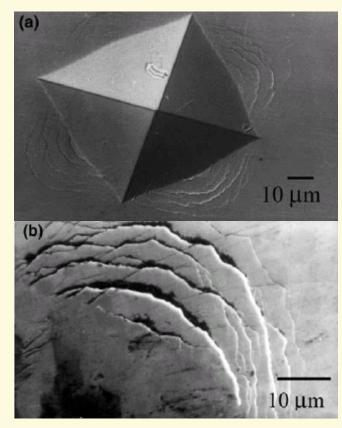


Electron Micrograph of Shear Bands Formed in Bending Metallic Glass Hufnagel, El-Deiry, Vinci (2000)

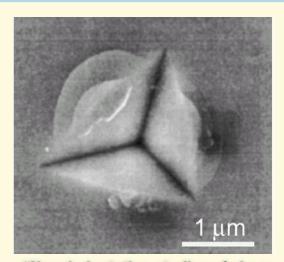


Quasistatic Fracture Specimen Mukai, Nieh, Kawamura, Inoue, Higashi (2002)

Indentation Testing of Metallic Glass

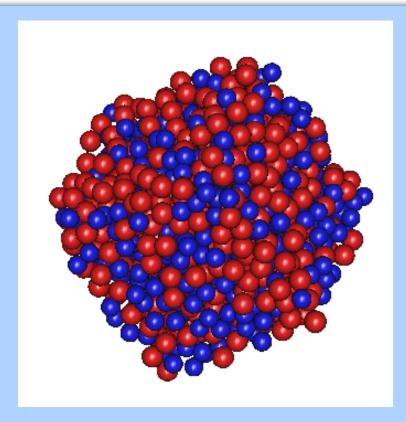


"Hardness and plastic deformation in a bulk metallic glass" Acta Materialia (2005) U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay



"Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys" Mat. Sci. Eng. A (2005) A.L. Greer., A. Castellero, S.V. Madge, I.T. Walker, J.R. Wilde

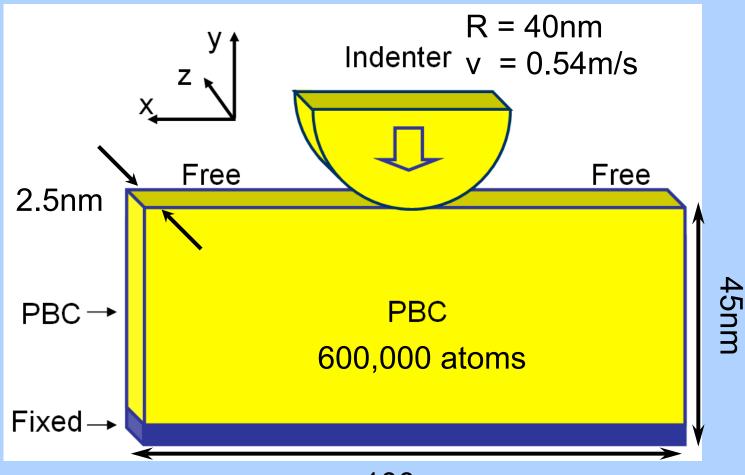
Simulated System: 3D Binary Alloy



- Wahnstrom Potential (PRA, 1991)
- Rough Approximation of Nb₅₀Ni₅₀
- Lennard-Jones Interactions
- Equal Interaction Energies
- Bond Length Ratios:
 - $a_{NiNi} \sim \frac{5}{6} a_{NbNb}$
 - $a_{NiNb} \sim {}^{11}/_{12} a_{NbNb}$
- $T_g \sim 1000K$
- Studied previously in the context of the glass transition (Lacevic, et. al. PRB 2002)
- Unlike crystalline systems, it is not possible to skip simulating the processing step
- Glasses were created by quenching at 3 different rates: 50K/ps, 1K/ps and 0.02 K/ps

14 Jan 2010

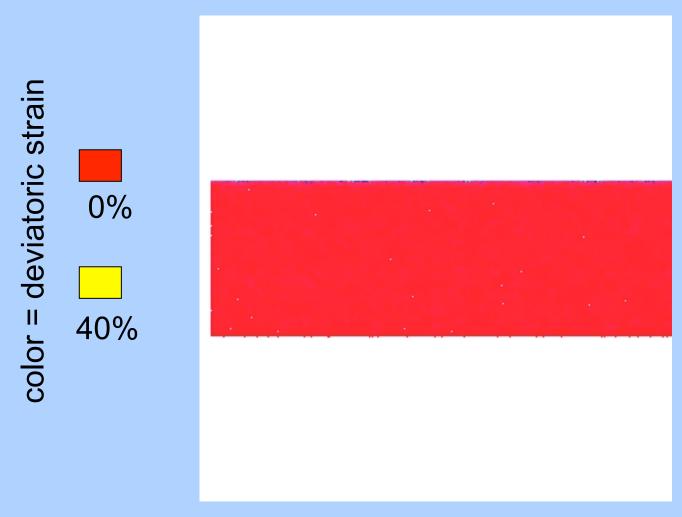
Simulations performed using molecular dynamics code across 64 nodes of a parallel cluster



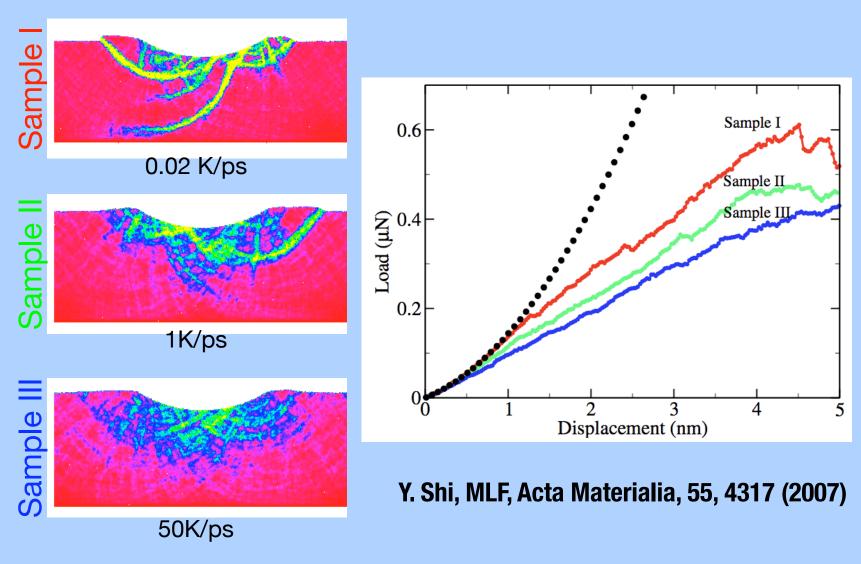
Y. Shi, MLF, Acta Materialia,

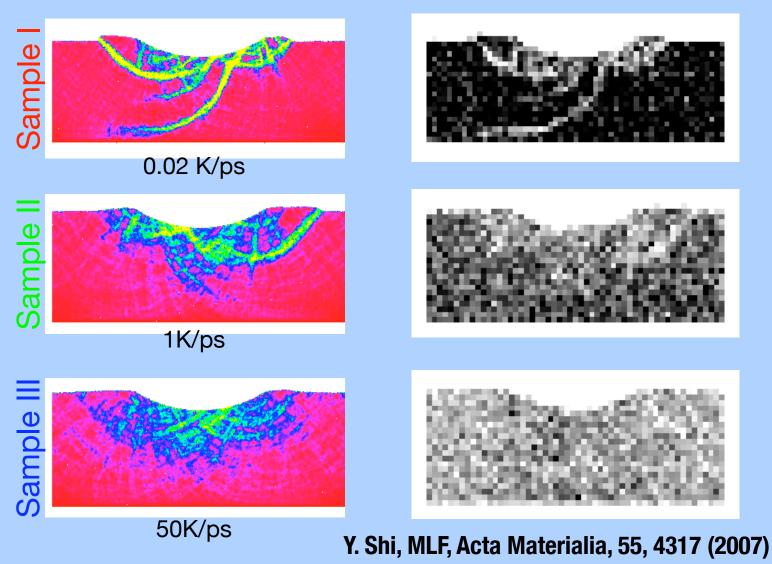
100nm

55, 4317 (2007) ternational Centre for Theoretical Sciences, JNCASR, Bangalore, India

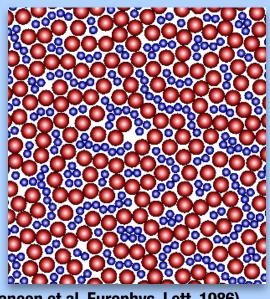


Y. Shi, MLF, Acta Materialia, 55, 4317 (2007)



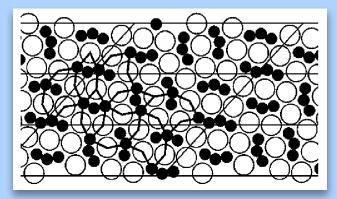


2D Simulation System



(Lancon et al, Europhys. Lett, 1986)

- 2D binary Lennard-Jones 12-6 potential
- **Binary system with quasi-crystalline packing** 45:55 composition, 20,000-80,000 atoms
- $T_{MCT} \approx 0.325$



Lee, Swendsen, Widom (2001)



Widom, Strandburg, Swendsen (1987)

Quantifying the Dependence of Localization on Quench Rate (2D)

- Performed 756 individual 2D uniaxial tensile test simulations at 0.1 $T_{\rm g}$
- 10 different quench schedules starting from equilibrium liquids
- 6-10 samples at each quench schedule
- Each of these 84 specimens was tested at 9 different strain rates spanning 2 orders of magnitude

Quantification of Shear Localization

WHITING SCHOOL OF ENGINEERING

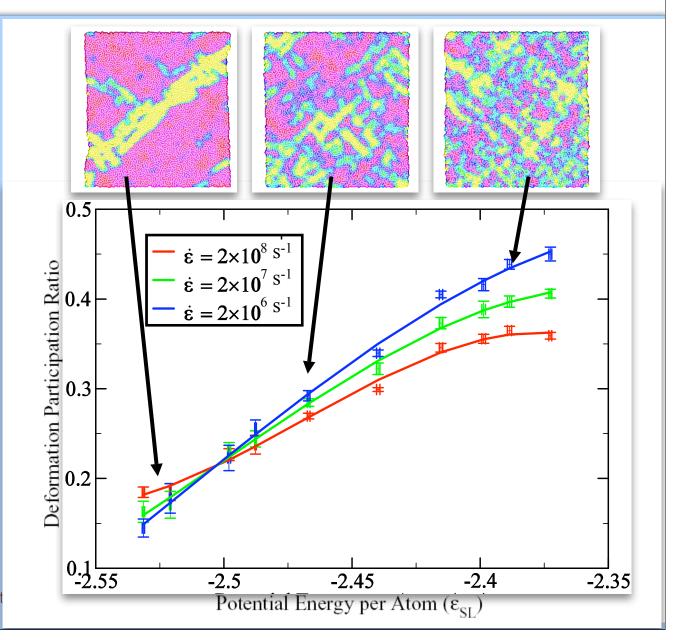
Deformation Participation Ratio

- Participation Ratio:
 Percentage of
 material with a local
 shear strain larger
 than the nominal
 strain
- Low strain rate favors homogenous deformation in instantaneously quenched samples
- Low strain rate favors inhomogeneous deformation in gradually quenched samples.

Shi and Falk, PRL (2005)

14 Jan 2010

Internat



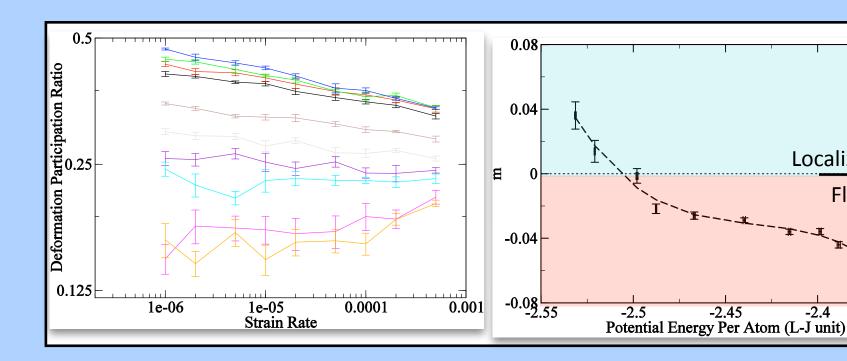
Strain-rate sensitivity of DPR

Localization

Flow

-2.35

-2.4



 $DPR \approx A\varepsilon^{m}$

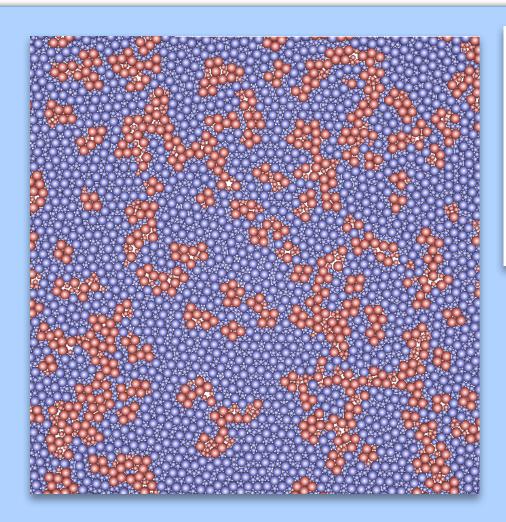
For $\mathcal{E} \rightarrow 0$ and system size $\rightarrow \infty$

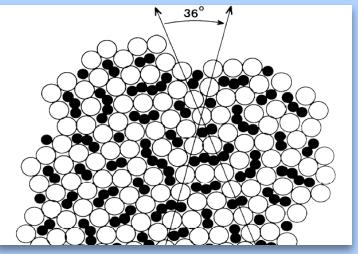
m < 0: homogenous deformation

m >= 0: localized deformation

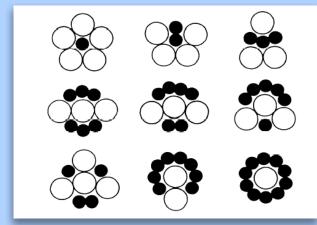
Shi and Falk, Scripta Mat (2005)

Local Structural Analysis





Widom, Strandburg, Swendsen (1987)



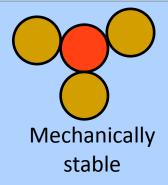
Complete set of low-energy local environments (Widom, 1987)

K-core Percolation of SRO

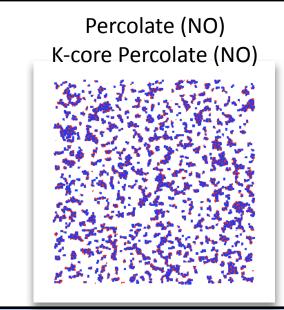
Serves as a simple approximation of rigidity percolation

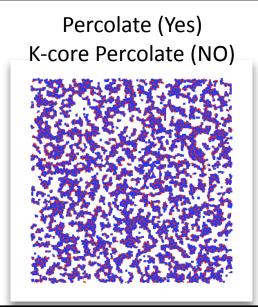


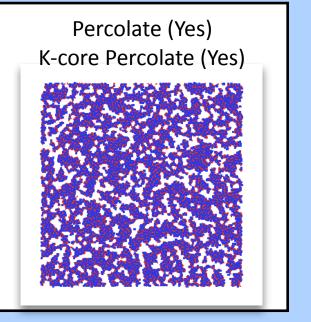
Mechanically unstable



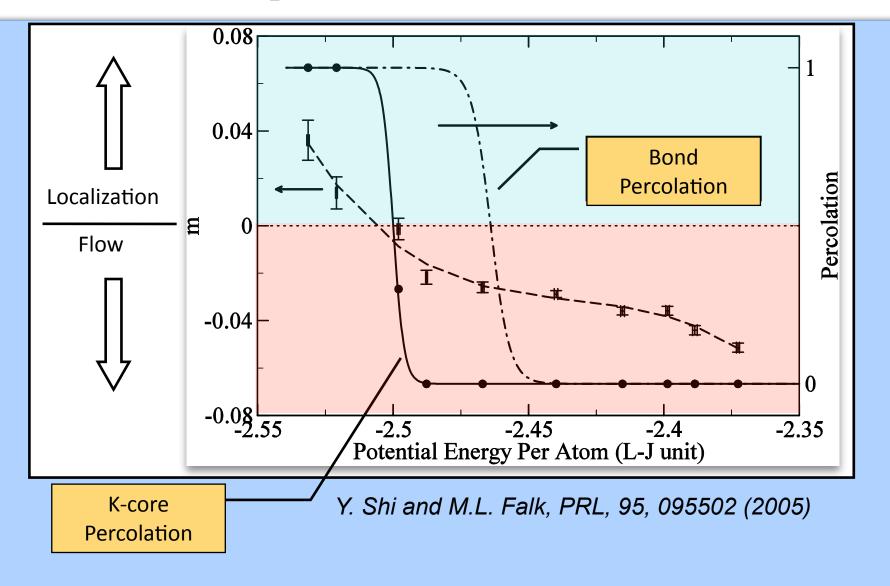
Schwarz, Liu and Chayes, arXiv:cond-mat/0410595, 2004





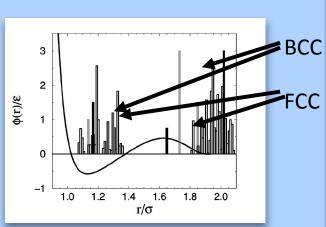


K-Core percolation and



3D Simulation Potentials

Dzugutov Potential

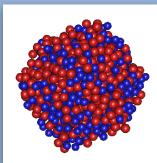


Roth and Denton, PRE (2000)

- 3D Monoatomic
- Energy penalties for crystalline phases
- Dodecagonal quasicrystal
- T_{MCT} @ 0.4

Zetterling et al., JNCS (2001)

Wahnstrom LJ Binary



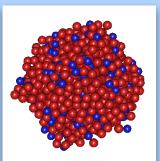
Bond length Bond strength

AA 1.000 AA 1.0
AB 0.917 AB 1.0
BB 0.833 BB 1.0

- 3D binary LJ 12-6 potential
- 50:50 composition, 144,000 atoms
- T_{MCT} @ 0.57

Wahnstrom, PRA, 1991 Lacevic et al., PRB, 2002

Kob-Andersen LJ Binary



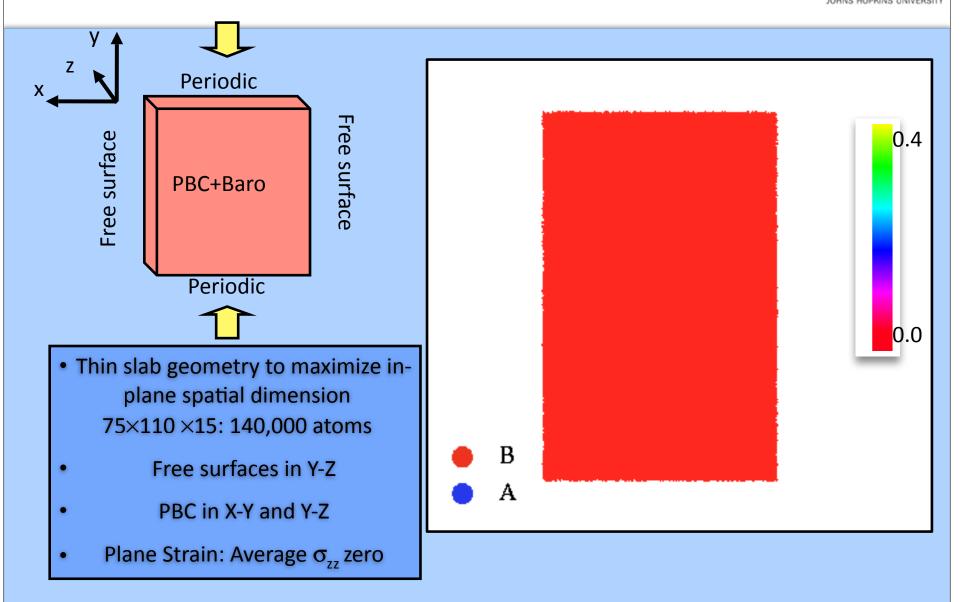
Bond length Bond strength

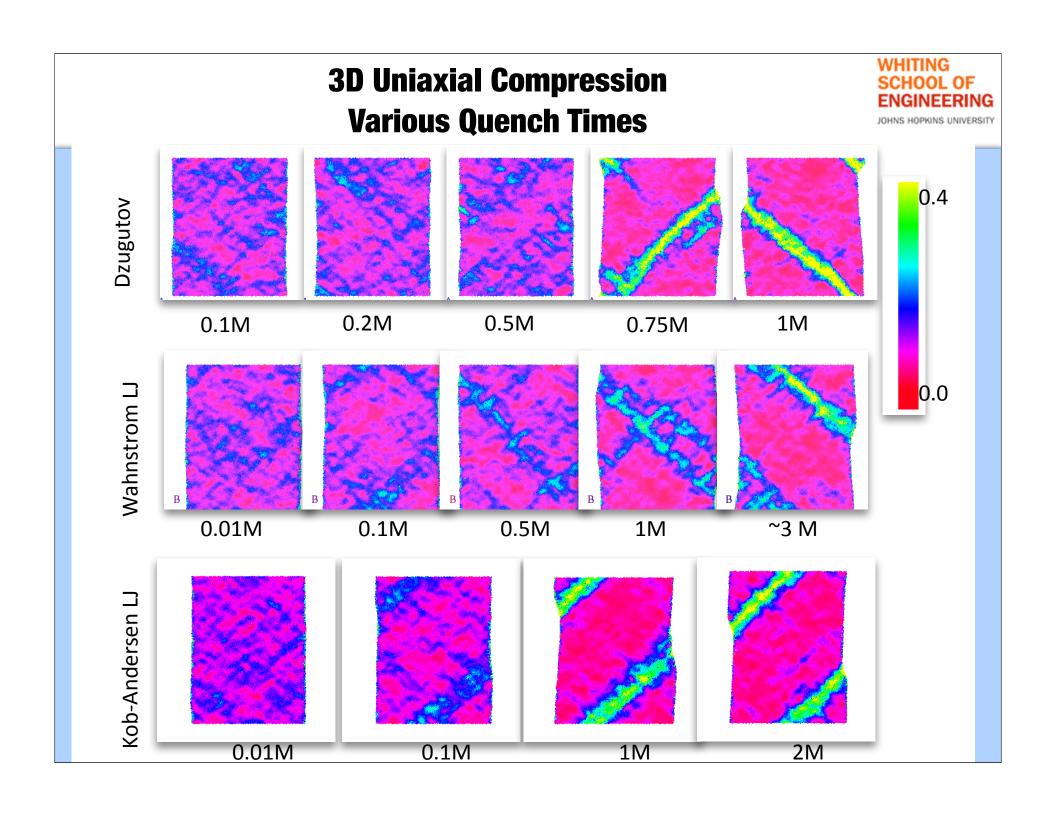
AA 1.00	AA 1.0
AB 0.80	AB 1.5
BB 0.88	BB 1.0

- 3D binary LJ 12-6 potential
- 80:20 composition, 144,000 atoms
 - T_{MCT} @ 0.435

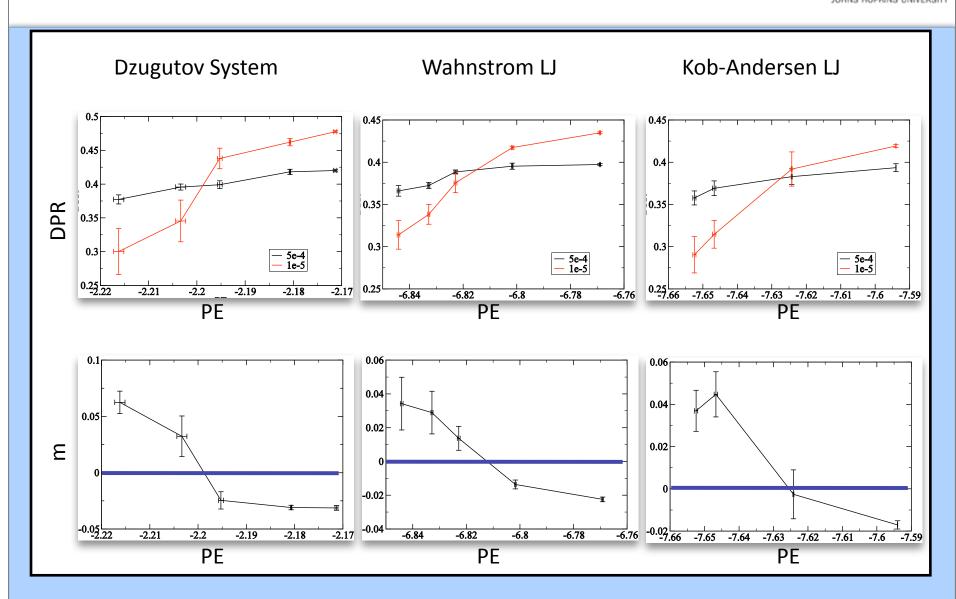
Kob and Andersen, PRE 1995

3D Uniaxial Compression Test





DPR and Strain Rate Sensitivity



Triangulated Coordination Shell Analysis of SRO

<u>Triangulated Coordination Shells</u>: Bonds by atoms within the coordination shell form only triangles. The center atom and the triangle has to form a space dividing tetrahedral.

Criterion: (From Euler's formula)

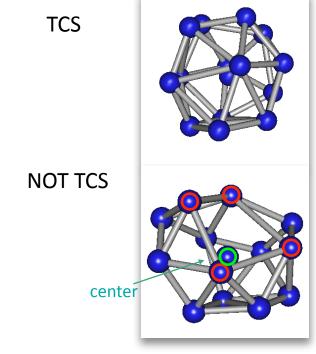
$$\sum_{q} (6-q)v_q = 12$$

q is the surface coordination number (from 3 to 8 for now)

 $\boldsymbol{v}_{\boldsymbol{q}}$ is the count of neighbors has surface coordination number \boldsymbol{q}

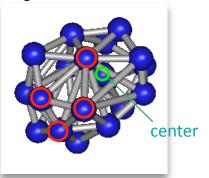
Glassy samples with lowest quenching rate

	TCS	Icosahedra
Dzugutov	25%	12%
Wahnstrom	13%	10%
K-A	3%	0.1%



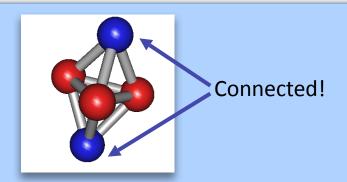
The four red atoms are forming a non-planar quadrilateral not a triangle

NOT TCS



The tetrahedra formed by 4 red atoms does not include the center atom (green)

3D Percolation Analysis



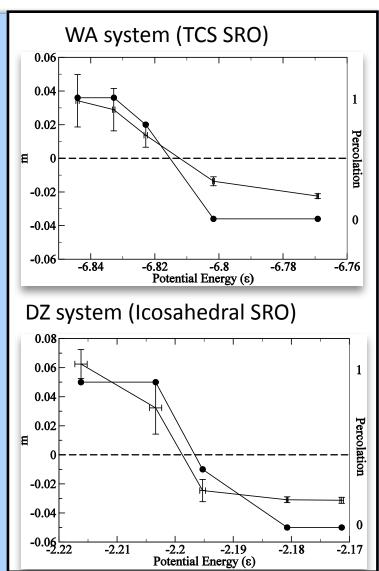
Two atoms sharing at least three atoms are "connected"

The cage of two atoms have to interpenetrate or sharing faces

Similar to Zettering, et al, JNCS, 2001

DZ: (all percolate)

KA: (none percolate)



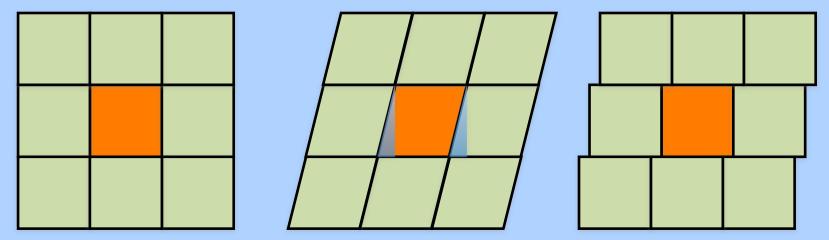
Short Range Order and Shear Bands

- Simulated glasses with higher degrees of topological SRO demonstrate a stronger tendency to localize strain.
- In more rapidly quenched samples localization decreases at lower strain rates.
- In more slowly quenched samples localization increases at lower strain rates.
- The transition from homogeneous to localized deformation in the quasi-static limit appears to correspond to the percolation of a backbone of SRO.
- How to unambiguously define the appropriate measure of SRO or MRO for a given system remains an open question.

Y. Shi and M.L. Falk, Physical Review Letters, 95, 095502 (2005) Physical Review B, 73, 214201 (2006) Acta Materialia, 55, 4317 (2007)

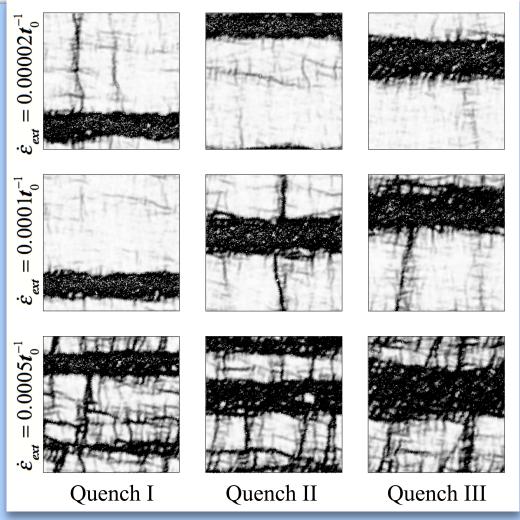
MD with Periodicity

Simple shear is imposed maintaining periodicity using Lees-Edwards boundary conditions



• Simultaneously couple to a heat bath throughout so T is always much less than T_g .

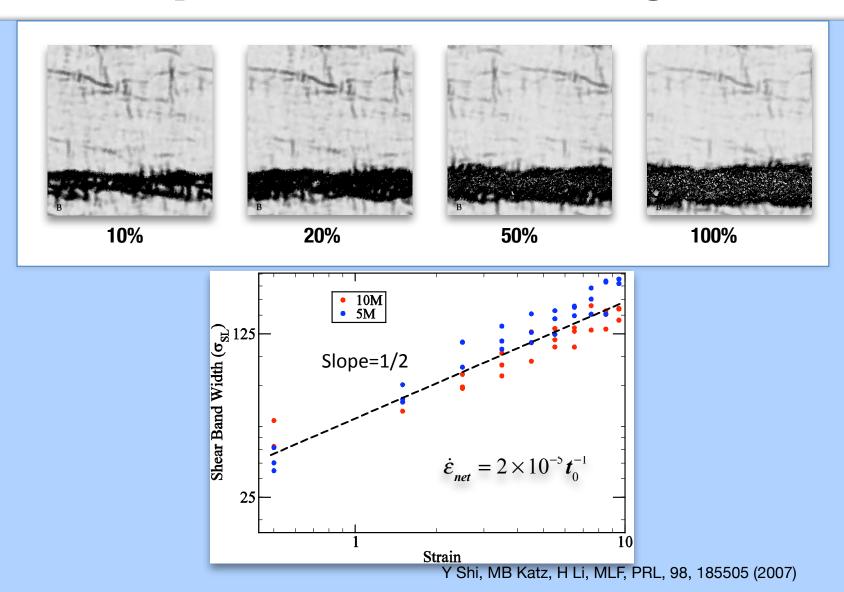
Simulations in Simple Shear (2D)



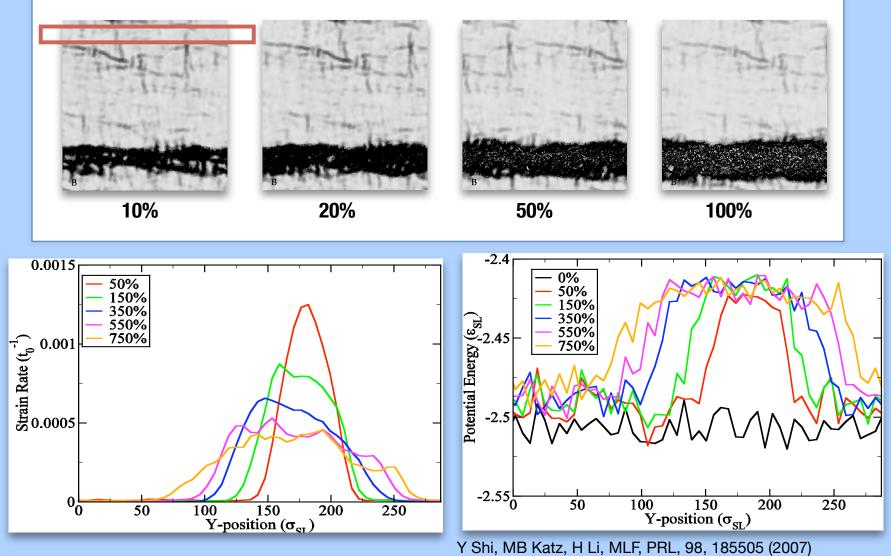
Cumulative strain up to 50% macroscopic shear

Y Shi, MB Katz, H Li, MLF, PRL, 98, 185505 (2007)

2D Simple Shear: Broadening



Development of a Shear Band



Recall the STZ Equations

$$\dot{\epsilon}^{pl} = \epsilon_0 e^{-1/\chi} \mathcal{C}(s) \left[\mathcal{T}(s) - m \right]$$

$$\dot{m} = 2\mathcal{C}(s) \left[\mathcal{T}(s) - m \right] - m\Gamma$$

We had derived an expression for Γ

$$\Gamma = \frac{\mathcal{C}(s) \left[s - \xi(m)\right] \left[\mathcal{T}(s) - m\right] + \Gamma^{T}}{1 - m\xi(m)}$$

Where
$$\psi'(m) = \xi(m) = \mathcal{T}^{-1}(m)$$

Let's now recall where χ comes from.

Plastic Strain Rate Proportional to Flips

$$\dot{\epsilon}^{pl} = \epsilon_0 \Lambda \mathcal{C}(s) \left[\mathcal{T}(s) - m \right]$$

Master Equation for Densities

$$\dot{n}_{+} = +R_{-}n_{-} - R_{+}n_{+} + \Gamma \left[\frac{1}{2}n_{\infty} - n_{+} \right]$$

$$\dot{n}_{-} = -R_{-}n_{-} + R_{+}n_{+} + \Gamma \left[\frac{1}{2}n_{\infty} - n_{-} \right]$$

$$\dot{\Lambda} = \dot{n}_{+} + \dot{n}_{-} = \Gamma[n_{\infty} - \Lambda]$$

Plastic Strain Rate Proportional to Flips

$$\dot{\epsilon}^{pl} = \epsilon_0 \Lambda \mathcal{C}(s) \left[\mathcal{T}(s) - m \right]$$

Master Equation for Densities

$$\dot{\Lambda} = \Gamma [n_{\infty} - \Lambda]$$
 $\dot{m} = \frac{2\dot{\epsilon}^{pl}}{\Lambda \epsilon_0} - m\Gamma$

The n_{∞} parameter is the ratio of annihilation to creation and sets the equilibrium defect density. This is identified with the "Effective Temperature" χ .

Langer (2004)

Plastic Strain Rate Proportional to Flips

$$\dot{\epsilon}^{pl} = \epsilon_0 \Lambda \mathcal{C}(s) \left[\mathcal{T}(s) - m \right]$$

Master Equation for Densities

$$\dot{\Lambda} = \Gamma \left[e^{-1/\chi} - \Lambda \right] \qquad \dot{m} = \frac{2\dot{\epsilon}^{pl}}{\Lambda \epsilon_0} - m\Gamma$$

The n_{∞} parameter is the ratio of annihilation to creation and sets the equilibrium defect density. This is identified with the "Effective Temperature" χ .

Langer (2004)

Effective Temperature In STZ

- While Λ and m relax relatively quickly to equilibrium values that depend on the applied stress, we know that there exist longer time scales at work in glasses.
- Langer proposed that this ratio between annihilation and creation, $e^{-1/\chi}$, is controlled by the present structure of the glass.
- χ represents an "effective temperature", which evolves with the structure of the glass.

Effective Temperature In STZ

- In equilibrium, the number of STZs would have to be set by the bath temperature and $\chi = k_B T/E_Z$.
- When the glass is quenched slow relaxation may result in a value of χ above the thermal equilibrium value.
- Dissipation, due to shearing, may raise χ to some upper, strain rate dependent value.
- Here we used a simplified χ dynamics, but an improved form has been proposed by Haxton and Liu (PRL 99, 195701 (2007)) and further developed by Manning and Langer (Phys. Rev. E 76, 056107 (2007)).

Testing Theories of Plastic Deformation

(Falk and Langer (1998), Falk, Langer and Pechenik (2004), Heggen, Spaepen, Feuerbacher (2005), Langer (2004), Lemaitre and Carlson (2004))

- Is there an intensive thermodynamic property (called χ here) that controls the number density of deformable regions (STZs)? $n_{STZ} \propto e^{-1/\chi}$
- This would be an "disorder temperature" that characterizes structural degrees of freedom quenched into the glass.

$$\dot{\epsilon}_{ij}^{pl} = e^{-1/\chi} f_{ij} \left(s_{kl} \right)$$

$$c_0 \dot{\chi} = 2s_{ij} \dot{\epsilon}_{ij}^{pl} (\chi_{\bar{\infty}} \chi) - \kappa(T) e^{-\beta/\chi}$$

mechanical disordering

thermal annealing

Disorder Temperature T_d

$$\chi \equiv \frac{kT_d}{E_Z}$$

Free Volume v_f

$$\chi \equiv \frac{v_f}{V^*}$$

Relating χ to the microstructure

• Consider a linear relation between the χ parameter and the local internal energy

$$C_{1}\chi = PE - PE_{0}$$

$$\dot{\varepsilon}_{pl} = e^{-1/\chi} f(s)$$

$$c_{0}\dot{\chi} = 2s\dot{\varepsilon}_{pl} (\chi_{\infty} - \chi) - \kappa e^{-\beta/\chi}$$

Is there an underlying scaling?

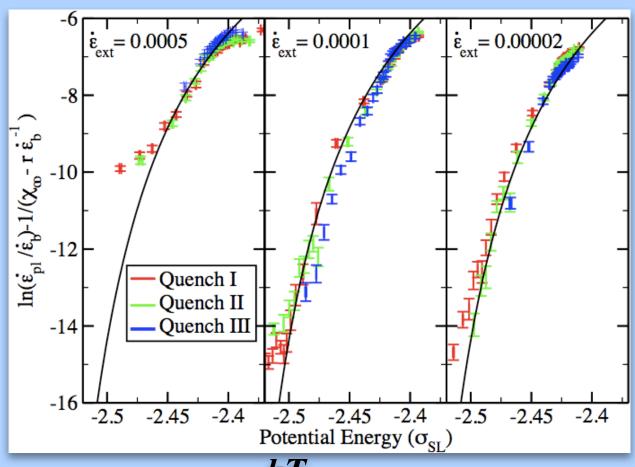
$$\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_b} = e^{1/\chi_b - 1/\chi(y)}$$

$$2s\dot{\varepsilon}_b(\chi_{\infty}-\chi_b)=\kappa e^{-\beta/\chi_b}$$

$$ln\left[\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}}\right] = \frac{1}{\chi_{b}} - \frac{C_{1}}{PE - PE_{0}}$$

$$ln\left[\frac{\dot{\varepsilon}_{pl}(y)}{\dot{\varepsilon}_{b}}\right] - \frac{1}{\chi_{\infty} - r\dot{\varepsilon}_{b}^{-1}} = -\frac{C_{1}}{PE - PE_{0}}$$

Scaling verifies the hypothesis



• Assuming,
$$\chi_{\infty} = \frac{kI_g}{E_Z}$$
, E_Z=1.9 ϵ

Implications for Constitutive Models

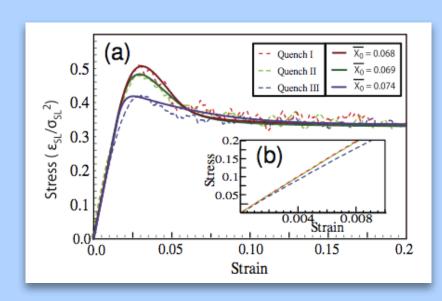
To model the band a length scale must enter the constitutive relations

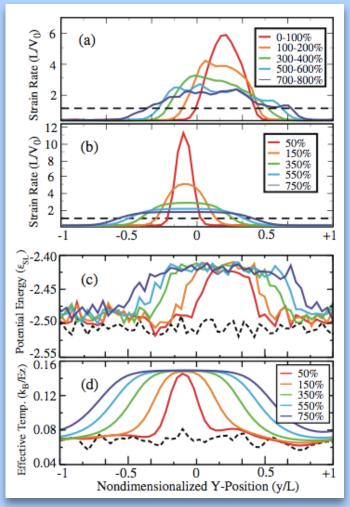
$$\partial_t \chi = \frac{2s\dot{\varepsilon}_{pl}}{c_0} (\chi_{\infty} - \chi) \qquad \qquad \qquad \qquad \qquad \qquad \partial_t \chi - D\partial_x^2 \chi = \frac{2s\dot{\varepsilon}_{pl}}{c_0} (\chi_{\infty} - \chi)$$

Numerical Results

(M Lisa Manning and JS Langer, PRE, 76, 056106(2007)

 These equations closely reproduce the details of the strain rate and structural profiles during band formation

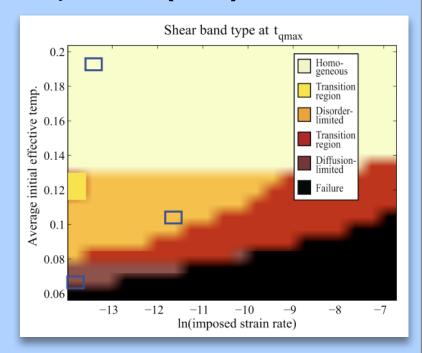




More Analysis by Manning, et al.

Manning, Daub, Langer, Carlson, Phys. Rev. E 79, 016110 (2009)

- Incorporates the Haxton-Liu effective temperature dynamics and shear rate dependent diffusivity.
- Identifies 3 failure modes:
 - Diffusion limited bands
 - Disorder limited bands
 - Failure/Fracture/Melting



Summary

- Shear bands in metallic glasses arise due to mechanical softening caused by disordering.
- A percolating backbone of short range order appears to be necessary for localization to dominate at low shear rates.
- No unique means exists for characterizing the geometric character of this short range order for a known alloy description.
- Analysis of the transition from flow to jammed material in a shear band reveals that potential energy per atom may be a good measure of "effective temperature".
- The proportionality of strain rate to $\exp(-1/\chi)$ has been tested and appears to hold.
- The data also indicates that the energy to create an STZ is about 2 bonds per STZ.

14 Jan 2010