Continuum aspects of plastic deformation in amorphous alloys - pressure sensitivity

Upadratsa Ramamurty

Department of Materials Engineering Indian Institute of Science Bangalore-560012, India

Acknowledgements: K. Eswar Prasad

Available online at www.sciencedirect.com

Acta Materialia 55 (2007) 4067-4109

www.elsevier.com/locate/actamat

Overview No. 144

Mechanical behavior of amorphous alloys

Christopher A. Schuh a,*, Todd C. Hufnagel b, Upadrasta Ramamurty c

^a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, M.I.T., Cambridge, MA 02139, USA

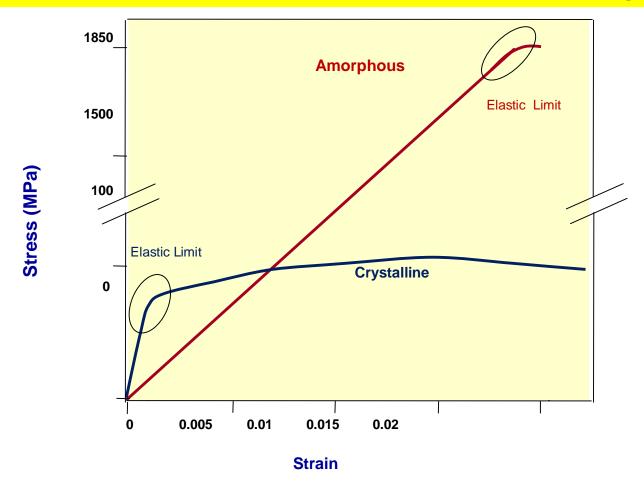
b Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
c Department of Materials Engineering, Indian Institute of Science, Bangalore-560 012, India

Received 14 August 2006; received in revised form 29 January 2007; accepted 31 January 2007 Available online 19 April 2007

Fundamental issues

- Which compositions show good GFA and why?
- Plasticity STZ to shear band connection?
- Fracture what really happens in fracture process zone? (physics of fracture)
- Fatigue what causes the kinematic irreversibility?

Why is the deformation behavior in amorphous alloys is interesting?



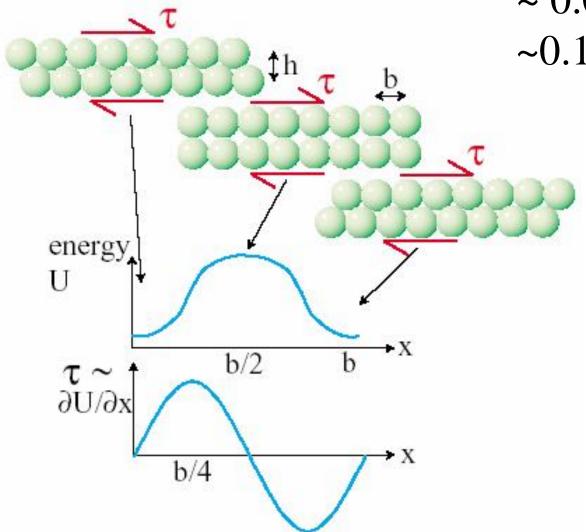
amorphous alloys exhibit High yield strengths, large yield strains and show little or no plasticity

Yield strains

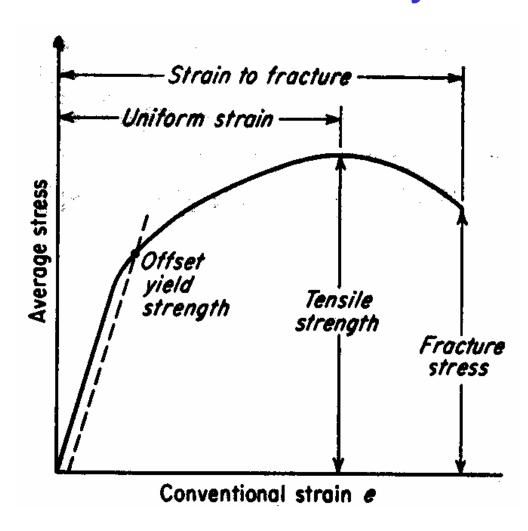
 $\sigma_y/E \sim 10^{-3}$ crystalline metals

~ 0.02 metallic glasses

~0.1 perfect crystals



Stress-strain response of crystalline metals and alloys



Yield criteria

In uniaxial loading, plastic flow begins when $\sigma = \sigma_0$, the tensile yield stress

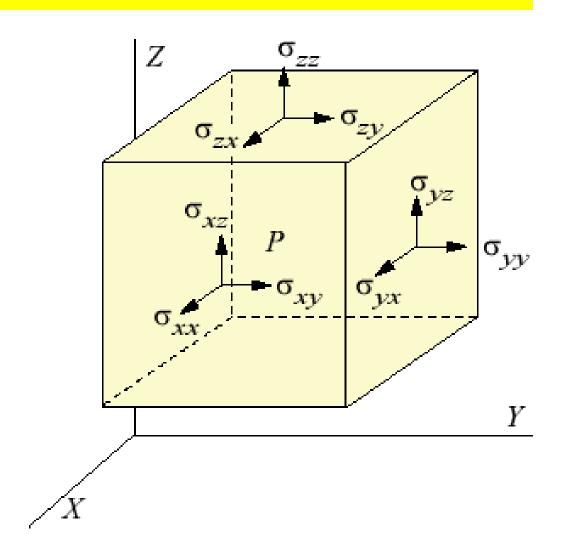
When does yielding begin when a material is subjected to an arbitrary state stress?

Some basics

Stress

$$egin{bmatrix} \sigma_{x} & au_{xy} & au_{zx} \ au_{xy} & \sigma_{y} & au_{yz} \ au_{zx} & au_{yz} & \sigma_{z} \end{bmatrix}$$

$$egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \end{bmatrix}$$



Convention, $\sigma 1 > \sigma 2 > \sigma 3$

Invariants

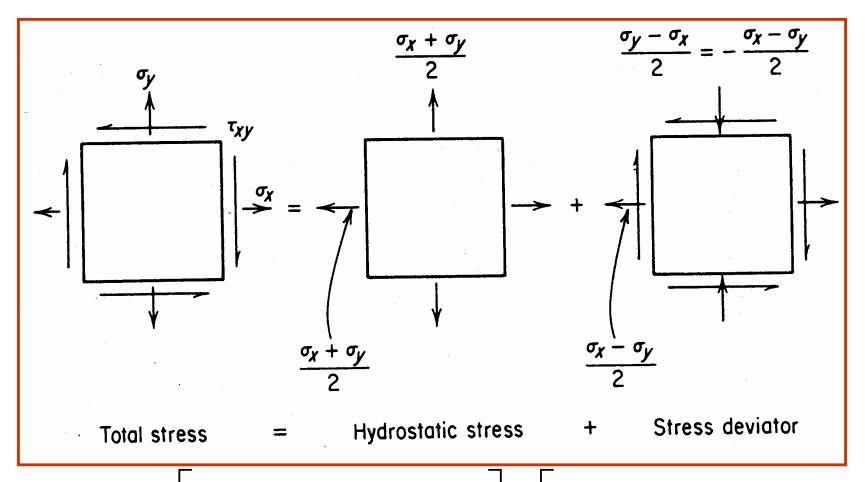
$$\mathbf{I}_1 = \sigma_x + \sigma_y + \sigma_z$$

$$\mathbf{I}_{1} = \sigma_{x} + \sigma_{y} + \sigma_{z}$$

$$\mathbf{I}_{2} = \sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{zx}^{2}$$

$$\mathbf{I}_{3} = \sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{zx}^{2} - \sigma_{z}\tau_{xy}^{2}$$

The sum of normal stresses for any orientation in the coordinate system is equal to the sum of the normal stresses for any other orientation



$$\begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{xy} & \sigma_{y} \end{bmatrix} = \begin{bmatrix} \frac{\sigma_{x} + \sigma_{y}}{2} & 0 \\ 0 & \frac{\sigma_{x} + \sigma_{y}}{2} \end{bmatrix} + \begin{bmatrix} \frac{\sigma_{x} - \sigma_{y}}{2} & \tau_{xy} \\ \tau_{xy} & -\frac{\sigma_{x} - \sigma_{y}}{2} \end{bmatrix}$$

Hydrostatic stress is given by

$$\sigma_m = \frac{\sigma_{kk}}{3} = \frac{\sigma_x + \sigma_y + \sigma_z}{3} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$$

Decomposition of the stress tensor:

$$\sigma_{ij} = \sigma'_{ij} + \frac{1}{3}\delta_{ij}\sigma_{kk}$$

$$\sigma'_{ij} = \sigma_{ij} - \sigma_m \delta_{ij}$$

$$\sigma'_{ij} = \begin{vmatrix} \frac{2\sigma_x - \sigma_y - \sigma_z}{3} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \frac{2\sigma_y - \sigma_z - \sigma_x}{3} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \frac{2\sigma_z - \sigma_x - \sigma_y}{3} \end{vmatrix}$$

- J₁, J₂, and J₃ are the principal values of the deviatoric stress tensor.
- J₁ is the sum of the diagonal terms:

$$J_1 = (\sigma_x - \sigma_m) + (\sigma_y - \sigma_m) + (\sigma_z - \sigma_m) = 0$$

J₂ is the sum of the principal minors:

$$J_{2} = \frac{1}{6} \begin{bmatrix} (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + (\sigma_{x} - \sigma_{y})^{2} \\ + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{xz}^{2}) \end{bmatrix}$$

 J₃ is the determinant of the deviatoric stress matrix.

Yield Criteria for Metals

- Pure hydrostatic pressure or mean stress tensor, σ_m , doesn't affect yielding in metals.
- Only the deviatoric stress, σ'_{ij} , which represents the shear stresses causes plastic flow.
- For an isotropic solid, the yield criterion must be independent of the choice of the axes, i.e., it must be an invariant function.

∴ Yield criterion must be some function of the J's.

Von Mises' Yield Criterion

- "Yielding would occur when J_2 exceeds some critical value" $J_2 = k^2$
- Yielding in uniaxial tension: $\sigma_1 = \sigma_0$, $\sigma_2 = \sigma_3 = 0$

$$J_2 = \frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]$$
$$\sigma_0 / \sqrt{3} = k$$

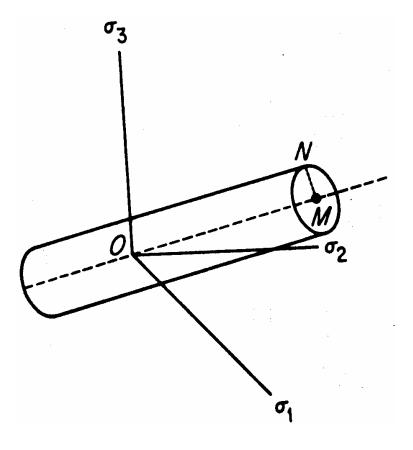
$$\sigma_0 = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

Tresca Criterion

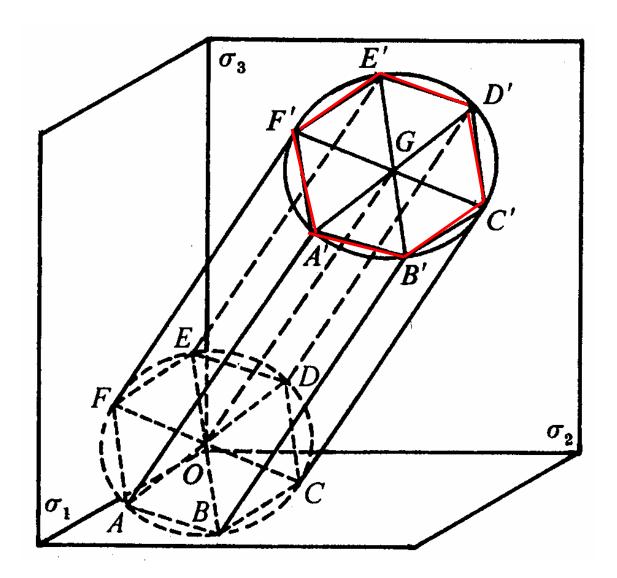
- "Yielding occurs when the max. shear stress reaches the value of shear yield stress in the uniaxial tension test."
- Max shear stress, $\tau_{\rm max} = (\sigma_1 \sigma_3)/2$
- In uniaxial tension, $\tau_0 = \sigma_0/2$
- Tresca criterion: $(\sigma_1 \sigma_3) = \sigma_0$
- Pure shear: $\sigma_1 = \overline{-\sigma_3} = k$; $\sigma_2 = 0$ $(\sigma_1 - \sigma_3) = 2k = \sigma_0 \implies k = \sigma_0/2$

Yield Surface

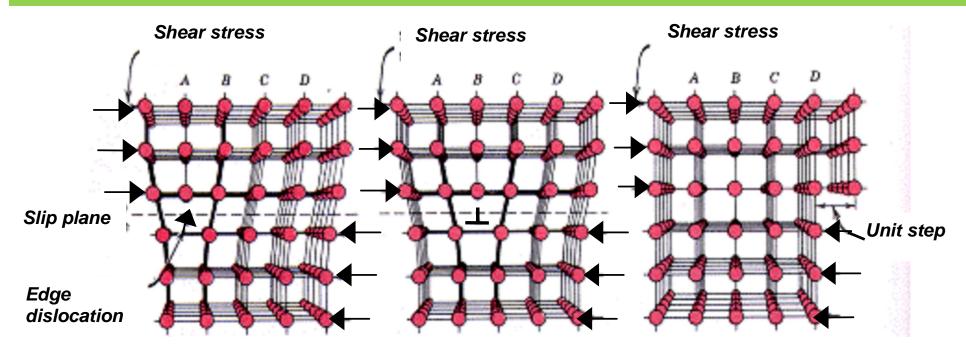
The yield criteria can be represented geometrically by a cylinder oriented at equal angles to the σ_1 , σ_2 , & σ_3 axes.



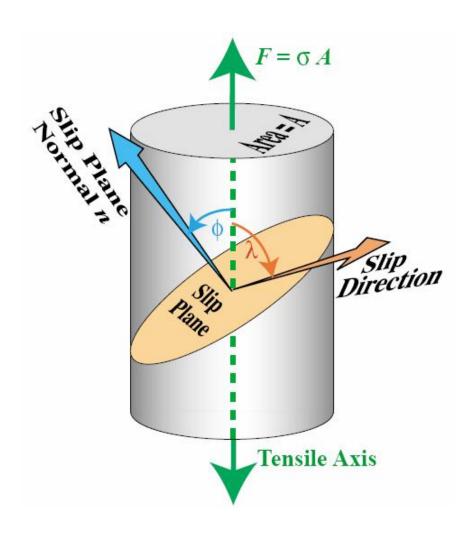
- •A state of stress which gives a point inside the cylinder represents elastic behavior.
- •Yielding begins when the state of stress reaches the surface of the cylinder.
- •MN, the cylinder radius is the deviatoric stress.



Plastic deformation in crystalline materials



Geometry of Slip



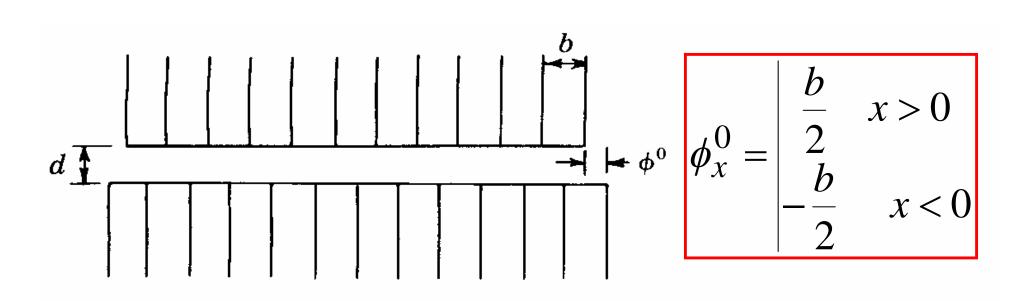
- •Single crystal subjected to stress.
- $\bullet A_{\text{slip-plane}} = A_0 / \cos \phi$
- $\bullet P_{resolved} = Pcos\lambda$
- •Resolved shear stress,

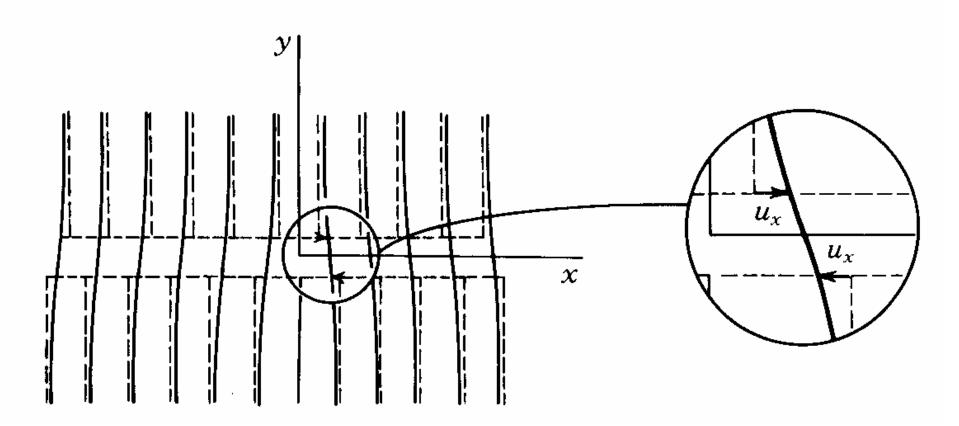
$$\tau_{\rm rss} = (P/A_0) \cos \phi \cos \lambda$$

•Plastic deformation starts when slip gets activated, i.e.,

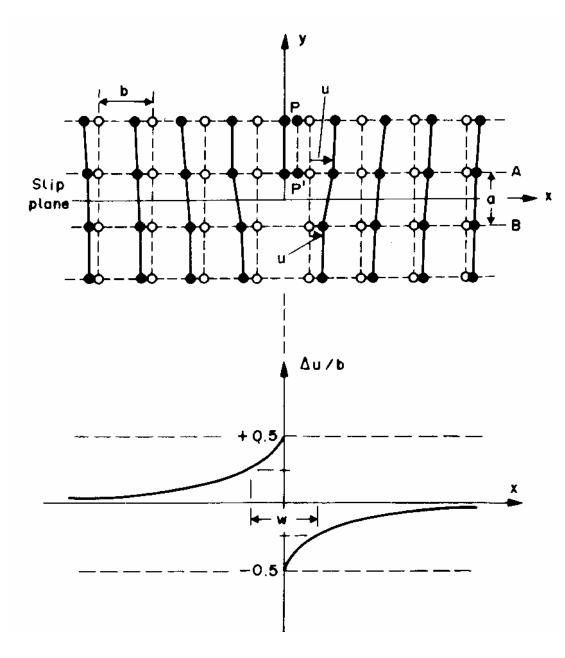
$$\tau_{rss} = \tau_{crss}$$
 Critical RSS

•The product "cosφcosλ" is known as **Schmid factor**





Disregistry of atoms

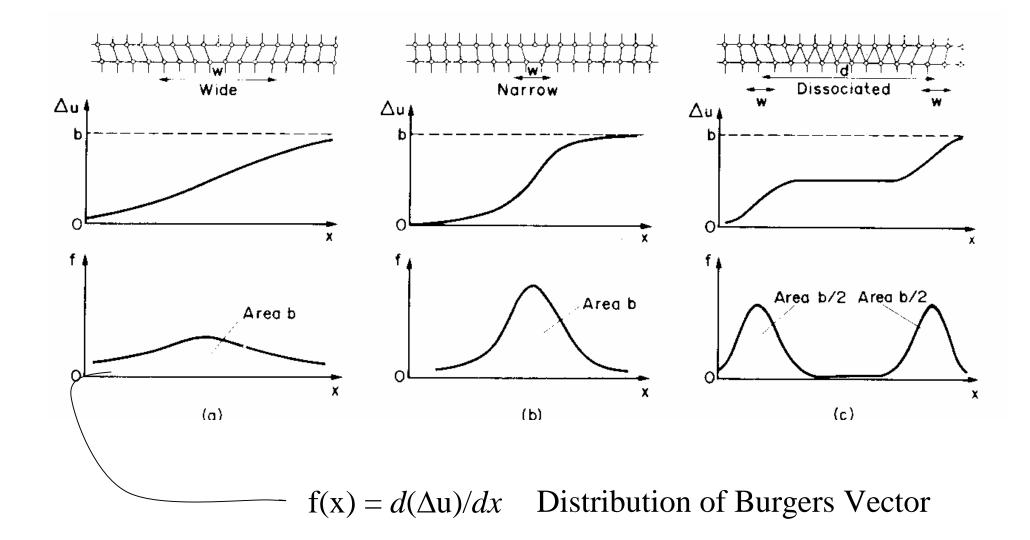


Defined as displacement difference Δu between two atoms on adjacent sites above and below the slip plane

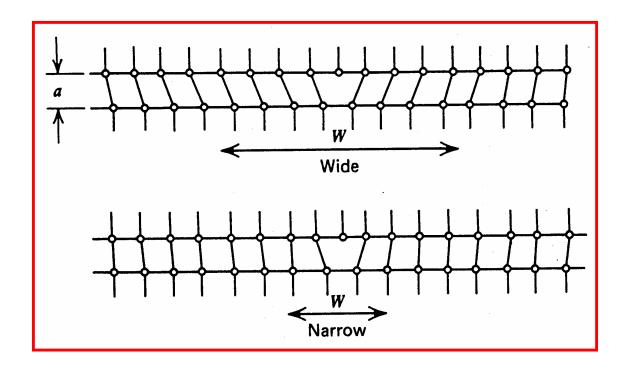
$$\Delta u = u(B) - u(A)$$

Width, w, of a dislocation is defined as the distance over which Δu is one half of its max value, i.e. $-b/4 \le \Delta u \le b/4$

A measure of the size of the dislocation core wherein the elasticity theory fails



Core width, b-5b, depends on interatomic potential and crystal structure



$$\tau_{P-N} \propto \mu \exp(-2\pi W/b)$$

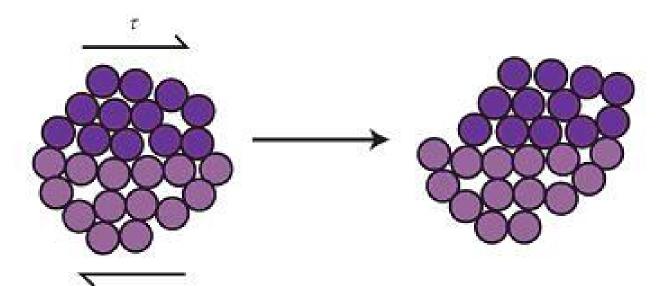
$$W = a/(1-v)$$

 τ_{P-N} decreases with increasing a.

 \Rightarrow Close packed planes preferred.

Amorphous alloys

Shear Transformation Zones



Fundamental carriers of plasticity in metallic glasses:

Shear Transformation Zones (STZs)

STZs are clusters of atoms which undergo small, cooperative rearrangements between two metastable states

(Argon, Acta Mater. 1981)

Large dilatational component

Yield criteria for amorphous materials

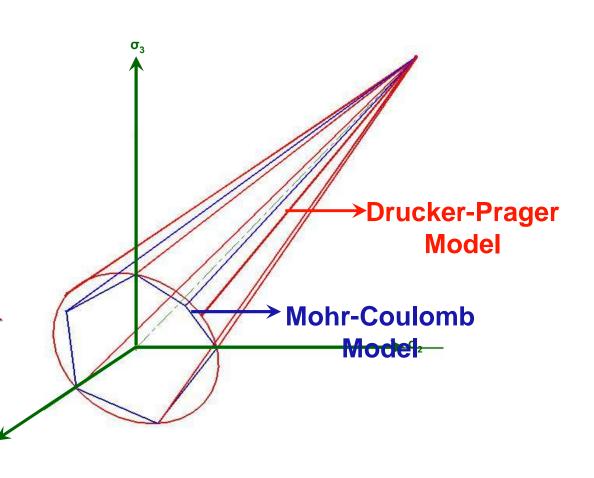
Mohr - Coulomb criterion:

$$\tau_{c} = k + \alpha \sigma_{n}$$

Drucker - Prager criterion:

$$\sigma_o^c = \frac{\sigma_e - \sigma_m \tan \alpha}{(1 - \frac{1}{3} \tan \alpha)_{\sigma_1}}$$

$$\sigma_e = \sqrt{3J_2}; \ \sigma_m = \frac{1}{3}\sigma_{kk}$$

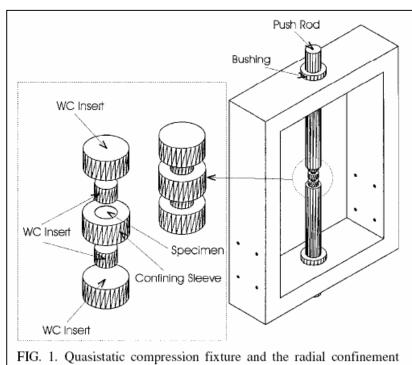


Consequences of pressure sensitivity

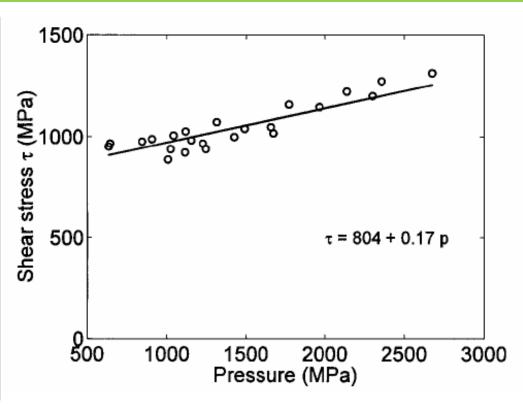
- Tension-Compression asymmetry
- Deviation in fracture angles from 45°

	Zr _{41.25} Ti _{13.75} Cu _{12.5} Ni ₁₀ Be _{22.5}	$Pd_{40}Ni_{40}P_{20}$
Tension (σ_T)	1.89 GPa	1.45 GPa
Compression (σ_C)	1.93 GPa	1.78 GPa
Fracture angle in tension (Φ_T)	56 ⁰	50 ⁰
Fracture angle in compression (Φ_C)	45 ⁰	41 ⁰

Direct evidence for pressure sensitivity



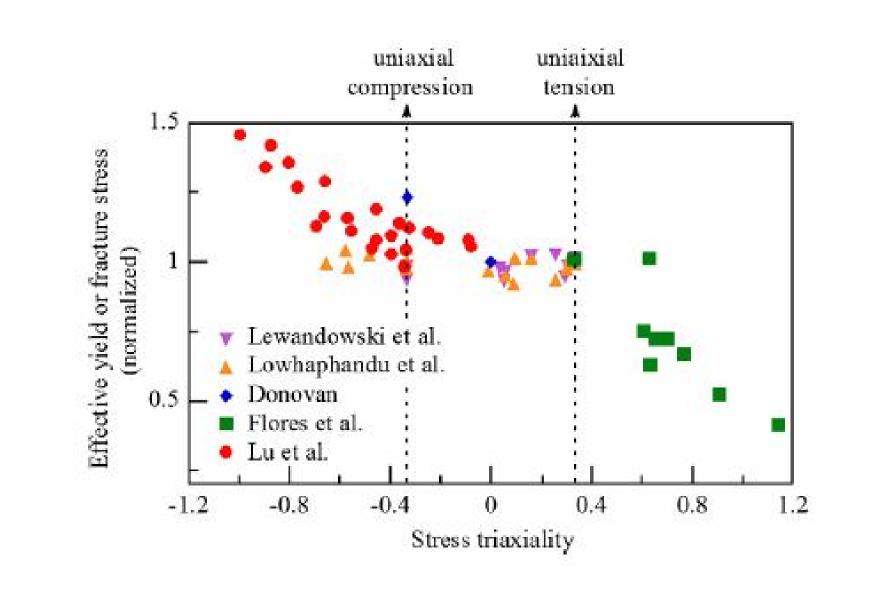
apparatus.



Mohr-Coulomb criterion:

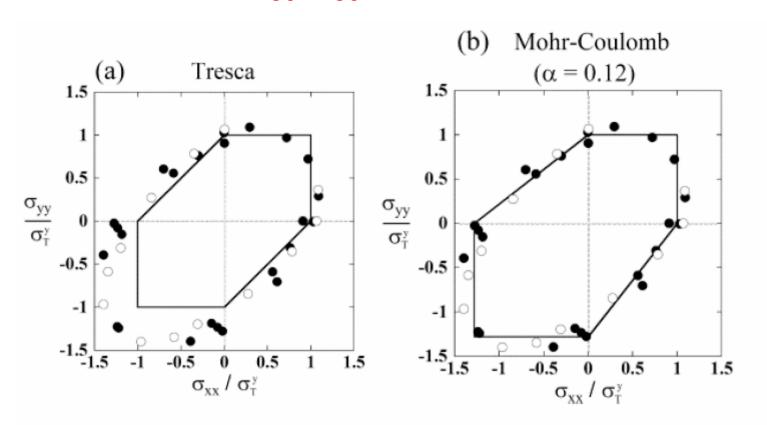
$$\tau_c = \tau_o + \alpha \sigma_n$$

Confining sleeve experiments with pressures up to 2 GPa on Vit-1



MD Simulations

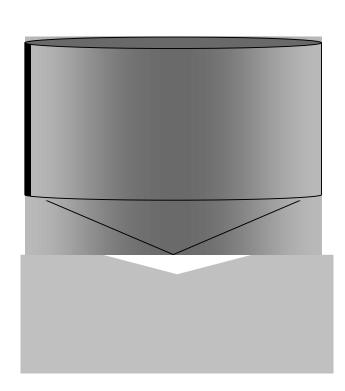
Cu₅₀Zr₅₀ binary glass

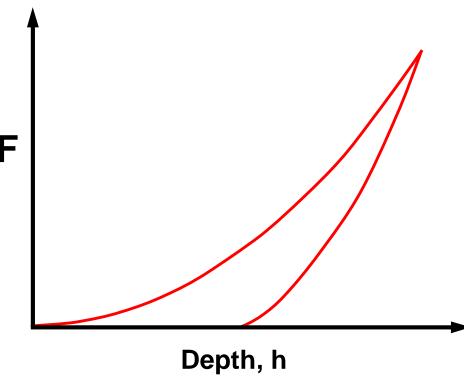


MD simulations show that Mohr-Coulomb criterion is suitable with a pressure sensitive index, α , of 0.12 to describe the yield behavior in these glasses

Indentation experiments

The multiaxial stress state that exists under the indenter can be used to model the pressure sensitive behavior.

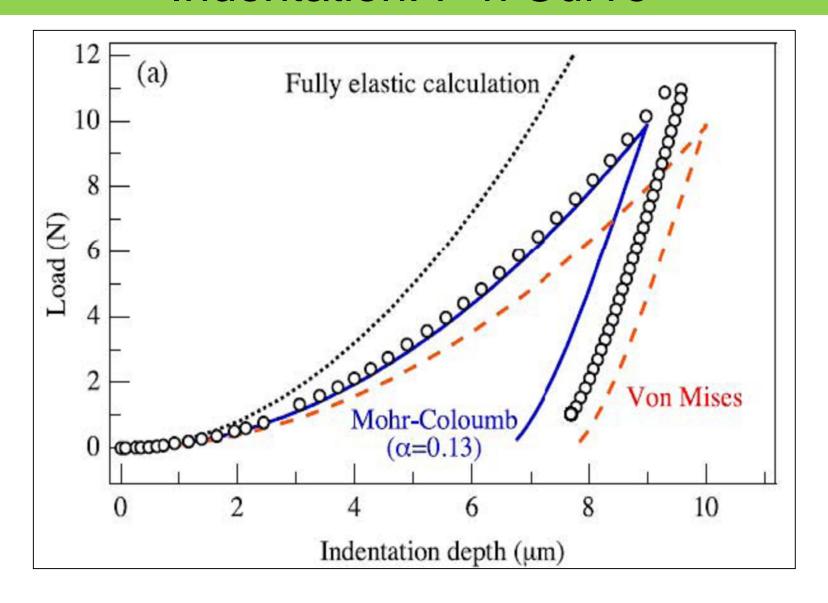




Pressure sensitive behavior effects the following during indentation

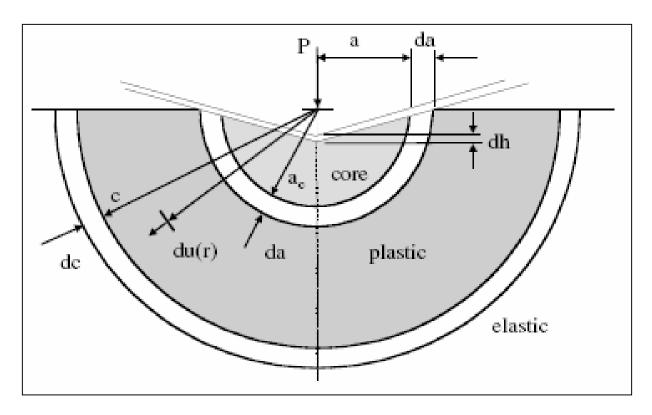
- P-h curve
- Plastic zone size
- Constraint factor

Indentation: P-h Curve



Hardness and constraint factor

Constraint factor, C, is defined as the ratio of hardness, H, to the yield strength, σ_{v}

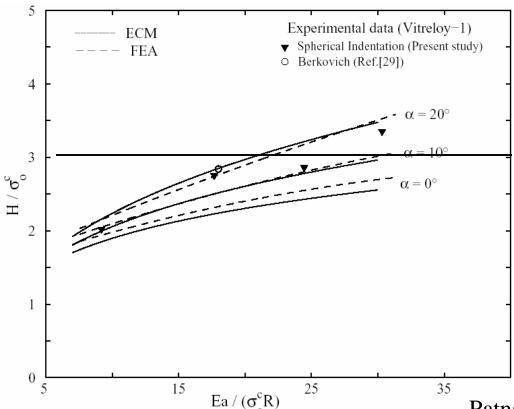


$$C = \frac{H}{\sigma_{y}}$$

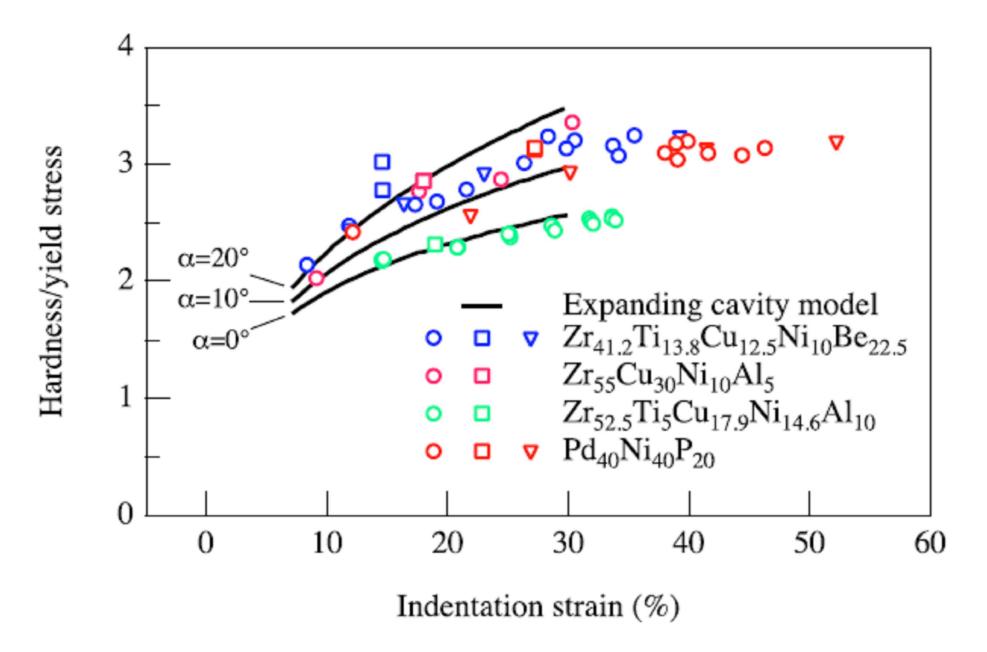
The elastic region surrounding the plastic zone offers high constraints for deformation resulting in high "H" values vis a vis large "C" values

Pressure Sensitivity & Hardness

- High hardness values (i.e., $H/\sigma_Y > 3$)
- Numerical simulation of spherical indentation response using the Drucker-Prager constitutive theory with different levels of pressure sensitivity



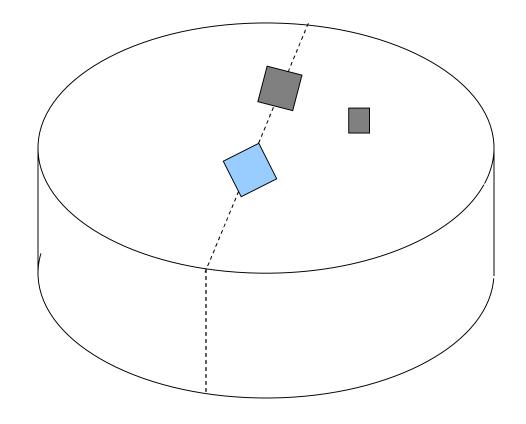
Patnaik, Narasimhan, Ramamurty, Acta Mat. 2004



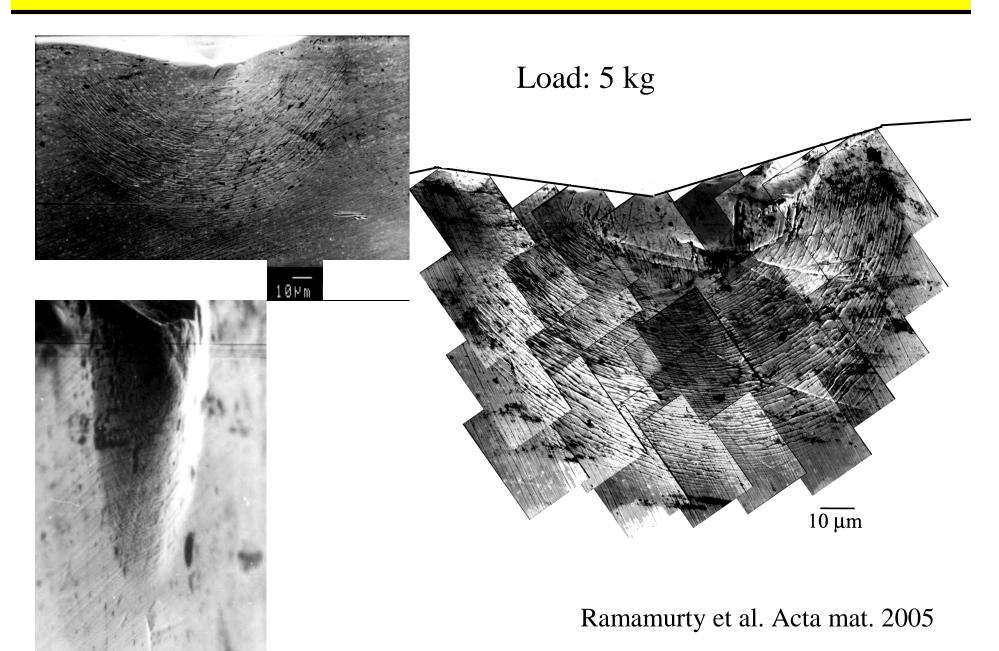
Keryvin, Acta Mat 2007

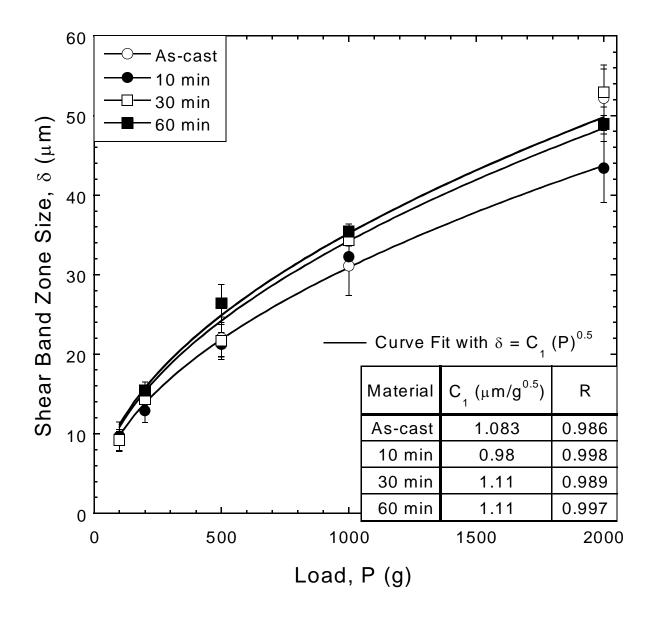
Imaging the Plastic Deformation thru the Bonded Interface Technique

- 1. Cut into two pieces
- 2. Polish cut surfaces to mirror polished
- 3. Join the polished faces using adhesive
- 4. Indent along cut line
- 5. Dissolve the adhesive
- 6. Examine using SEM



Plastic Flow Beneath the Indenter





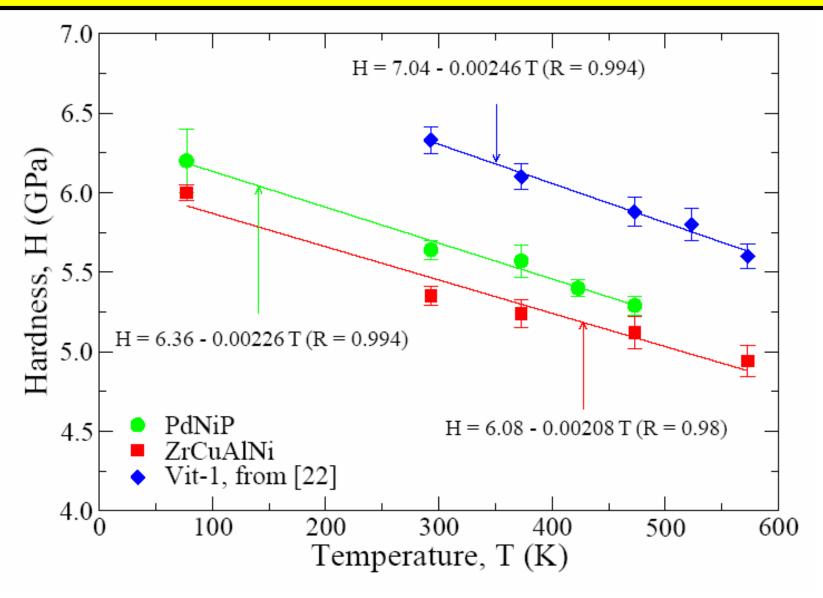
$$\delta = \left[\frac{3P}{2\pi\sigma_{y}}\right]^{0.5}$$

$$\sigma_y$$
= 2.8 GPa
Expt. 1.8 GPa

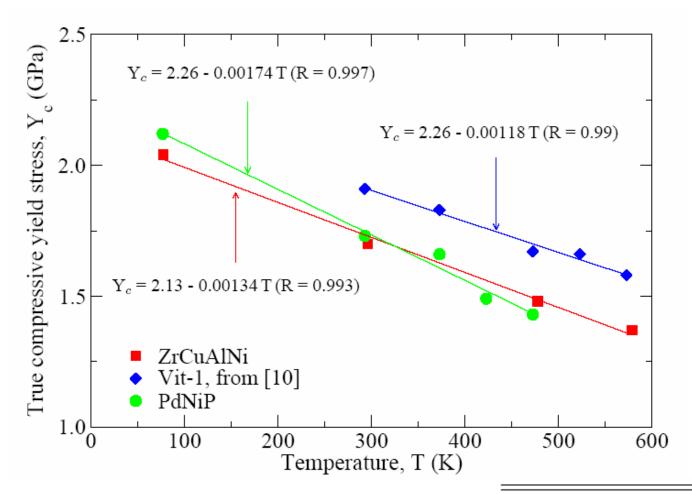
$$C_1 = [0.3/\sigma_y]^{0.5}$$

$$\sigma_y = 2.5 \text{ GPa}$$

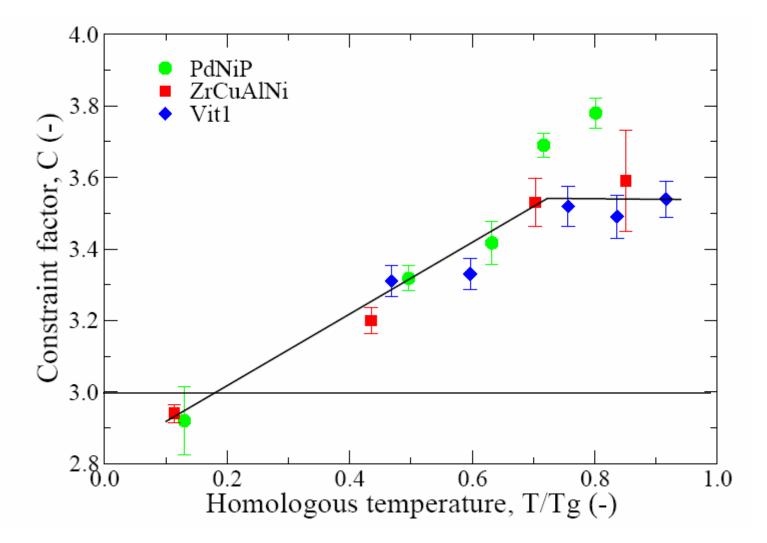
Pressure Sensitivity with T

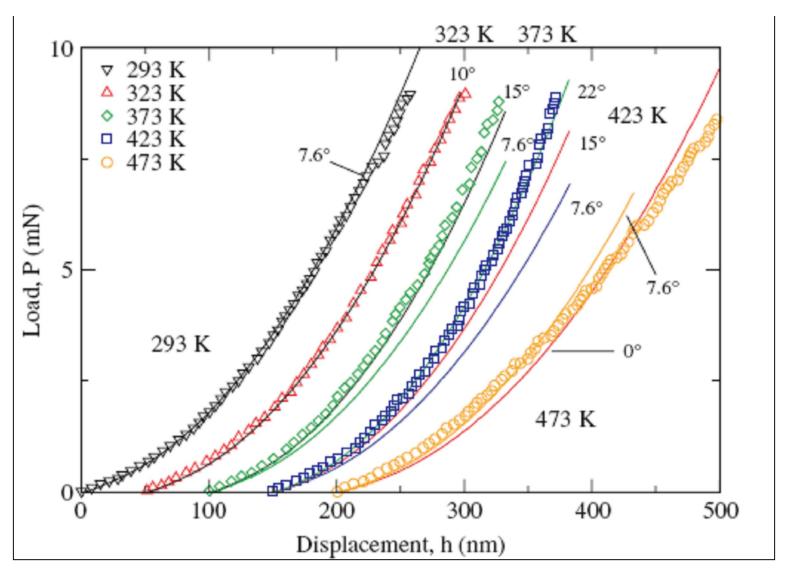


Eswar Prasad et al. Scripta Mat 2007, Keryvin et al. Phil Mag. 2008

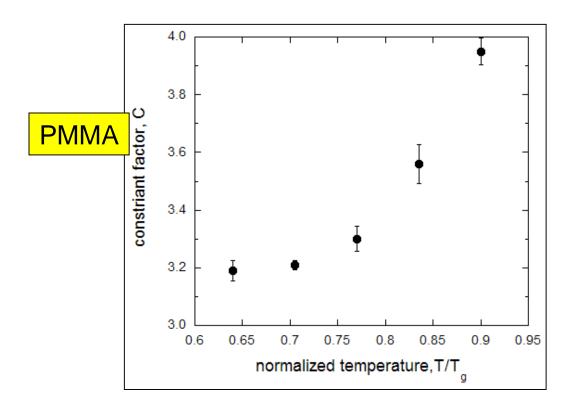


Glass composition (at.%)	$T_g\left(K\right)$	Ref.
$\mathrm{Pd}_{40}\mathrm{Ni}_{40}\mathrm{P}_{20}$	590	[4]
$Zr_{41.2}Ti_{13.75}Cu_{12.5}Ni_{10}Be_{22.5}$	625	[49]
$Zr_{55}Cu_{30}Al_{10}Ni_5$	680	[50]





- P-h curves are simulated using FEM using Drucker-Prager model for different levels of pressure sensitivity.
- FEM simulations show that the pressure sensitivity increases with increasing temperature.



- \triangleright For polymers the β-relaxation mechanisms that are active in this temperature regime.
- For MGs also the relaxation of the matrix surrounding an STZ could be a reason for increasing pressure sensitivity.

Micropillar compression & in-situ indentation experiments – effect of structural state

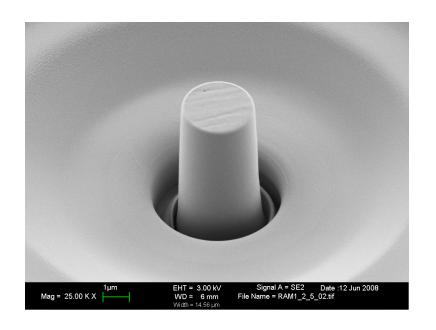
$Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}(LM1)$

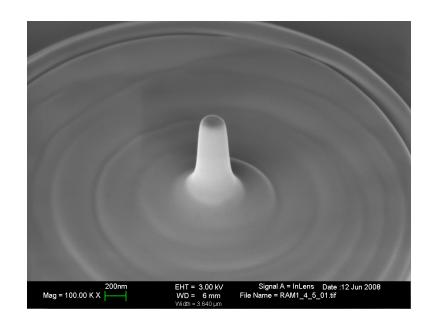
- As-cast ($T_g \approx 625 \text{ K}$) $\Gamma = 1.1 \text{ J}$
- Structurally relaxed (563 K for 12 h)

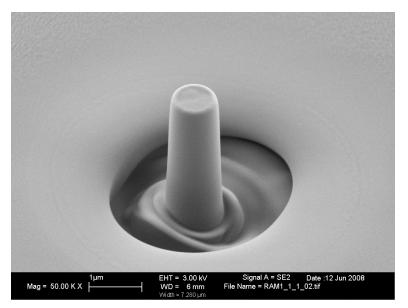
$$\Gamma$$
 = 0.1-0.2 J

Shot peened (layer thickness ≈ 40 μm)

(see Raghavan et al. Scr. Mat 2008)

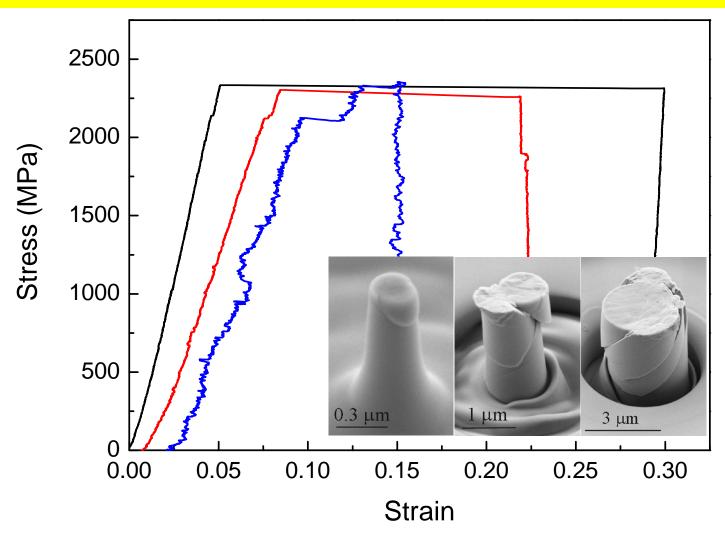






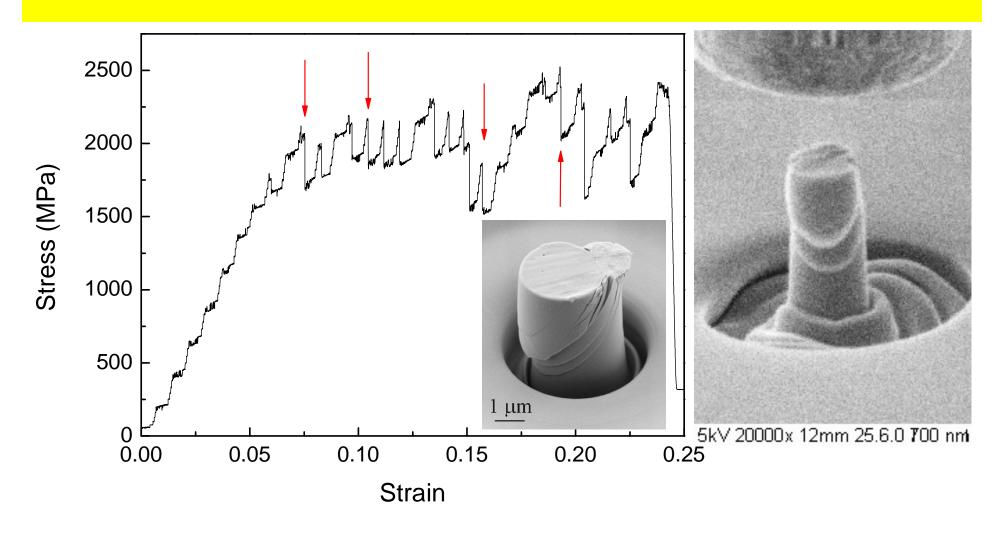
FIB 0.3, 1, and 3 μm pillars with 2 to 2.5 aspect ratio

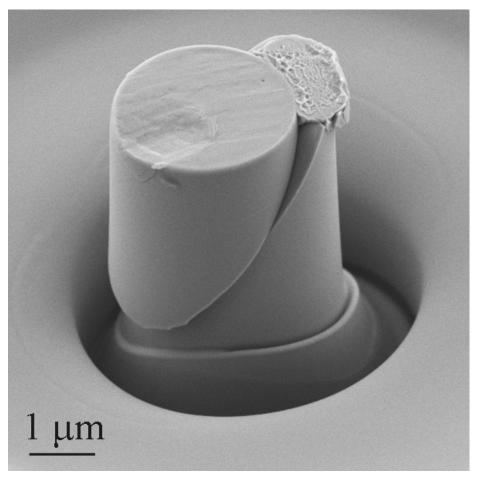
Ex-situ, load controlled test

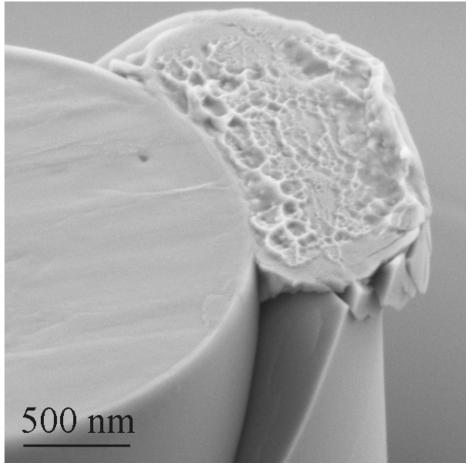


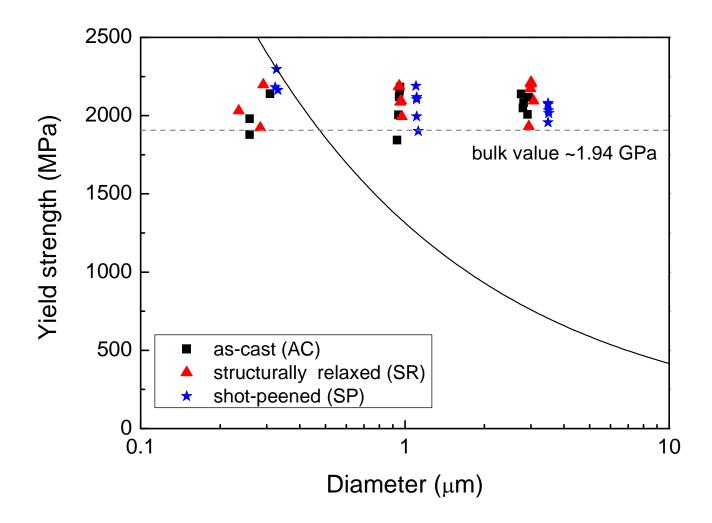
As-cast alloy

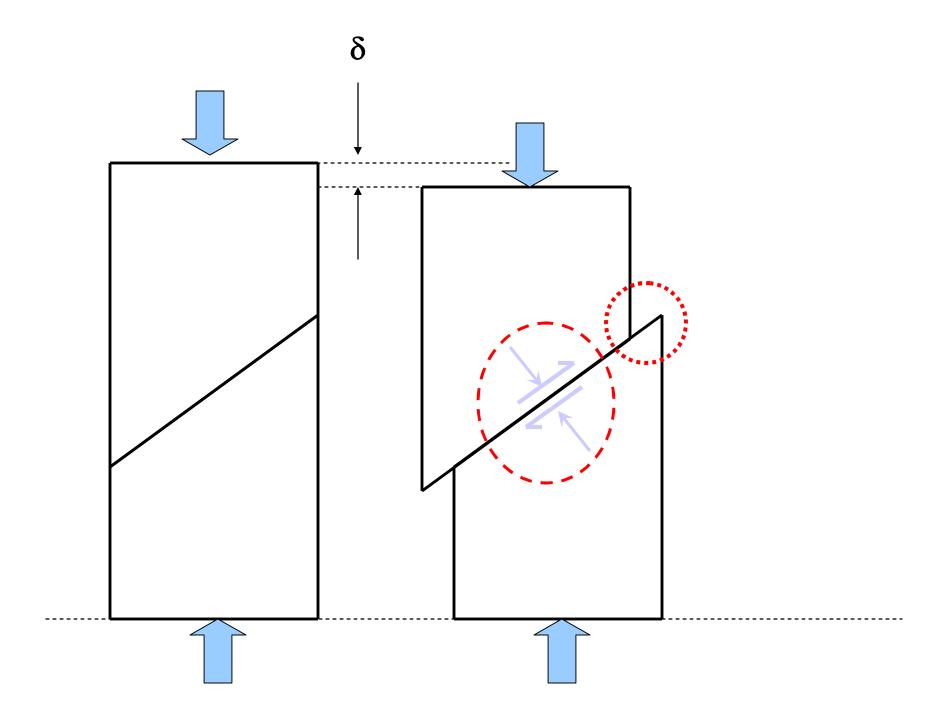
In situ, displacement control test





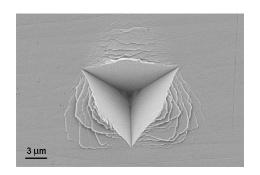


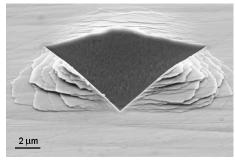


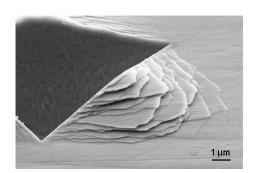


SEM images

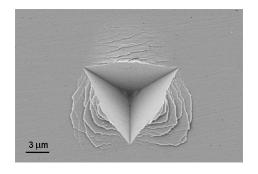
as-cast

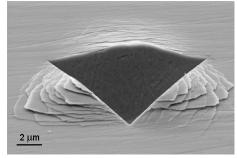


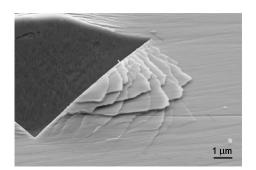




structurallyrelaxed

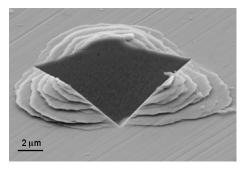


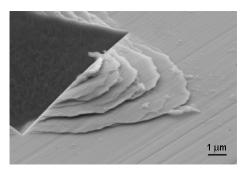




shotpeened

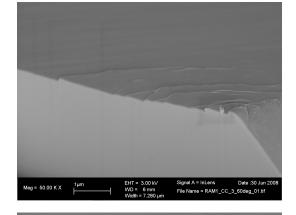


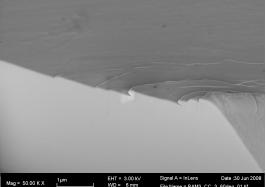




FIB-cut indent profiles

as-cast

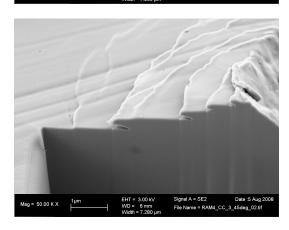


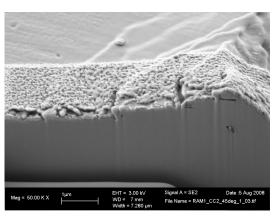


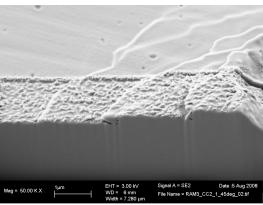
shotpeened

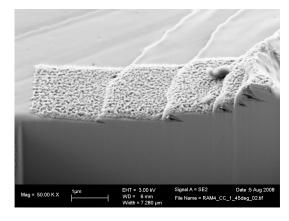
structurally-

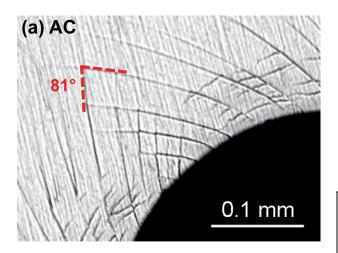
relaxed

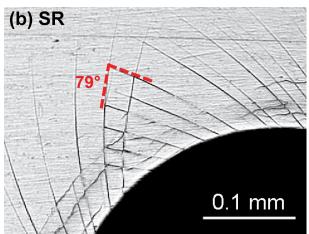


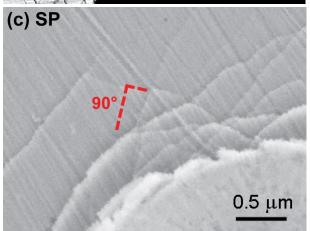












Material condition	$\sigma_{\!_{y}}$ (MPa)	H (GPa)	С	Intersection angle, α (degrees)
as-cast	2079 ± <i>52</i>	6.07 ± 0.04	2.92	80.9±1.1
structurally-relaxed	2137 ± 110 (+2.8%)	6.45 ± 0.05 (+6.3%)	3.02 (+3.4%)	79.8±1.2
shot-peened	2030 ± 49 (-2.4%)	5.22 ± 0.21 (-14%)	2.57 (-12%)	91.2± <i>3.2</i>