Introduction to the Theory of Spin Glasses

Chandan Dasgupta
Department of Physics
Indian Institute of Science
cdgupta@physics.iisc.ernet.in

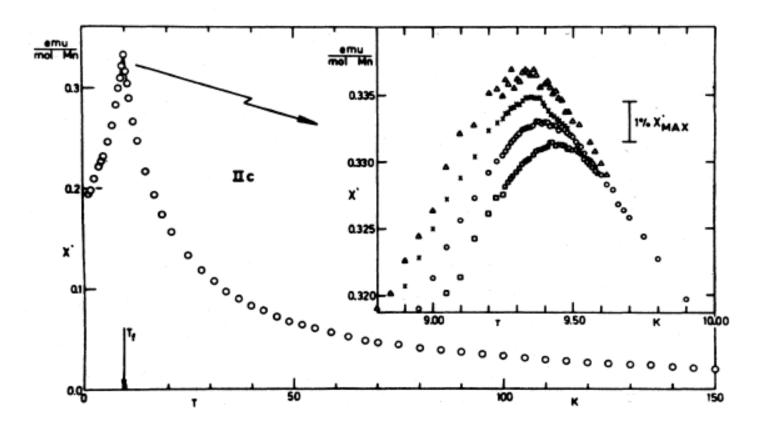
School on Glass Formers and Glasses JNCASR, Bangalore, January 2010

What are Spin Glasses?

Magnetic systems with quenched disorder.

Competition between ferromagnetic and antiferromagnetic Interactions.

Example: CuMn, AuFe, ...



Susceptibility of CuMn as a function of temperature

Figures from K. Binder and A. P. Young, Rev. Mod. Phys. **58**, 801 (1986).

Edwards-Anderson Model

S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

Ising spins,
$$\nabla_i = \pm 1$$
.

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} \nabla_i \nabla_j, \quad J_{ij} \text{ are random.}$$

$$P(\{J_{ij}\}) = \prod_{\langle ij \rangle} P(J_{ij})$$

$$P(J_{ij}) = \frac{1}{\sqrt{2\pi J^2}} e^{-\frac{1}{2\pi J^2}} \text{ No ferromagnetic or antiferromagnetic phase is possible}$$

or $P(J_{ij}) = \frac{1}{7} S(J_{ij} - J) + \frac{1}{7} S(J_{ij} + J)$

Spin Glass Phase

High temperature:
$$\langle \sigma_i \rangle = 0$$
Paramagnetic Phase.

Low temperature: $\langle \sigma_i \rangle \neq 0$
 $M = \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i \rangle = 0$
Spin glass phase

 $Q = \frac{1}{N} \sum_{i} \langle \sigma_i \rangle \neq 0$

Edwards - Anderson order parameter.

Spin glass transition: "Freezing" of the spins in random orientations

$$C(t) = \frac{1}{N} \sum_{i} \left\langle \sigma_{i}(t_{0}) \sigma_{i}(t_{0}+t) \right\rangle$$

$$\lim_{t \to \infty} C(t) = \frac{1}{N} \sum_{i} \left\langle \sigma_{i} \right\rangle^{2} = 9 \neq 0$$

$$\lim_{t \to \infty} \text{the spin glass phase}$$

The Replica Method

Configuration averaged free energy

$$F = Nf = -T \left[ln Z(Stij) \right]_{av}$$

$$= -T \left[Td J_{ij} P(J_{ij}) \right]_{av} P(J_{ij})$$

$$= -T \left[ln Z(Stij) \right]_{av} P(J_{ij})$$

$$= -$$

Edwards-Anderson (Spin Glass) Order Parameter

$$Q = [\langle \sigma_i \rangle^2]_{av} = \langle \sigma_i^{\alpha} \sigma_i^{\beta} \rangle_{Heff}, \alpha \neq \beta.$$

The spin glass transition is from the paramagnetic state with q=0 to a spin glass state with nonzero q as the temperature is decreased.

The Sherrington-Kirkpatrick Model

D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975).

Infinite-range (mean field) model of Ising spin glass

$$\mathcal{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} v_{i} v_{j} = -\sum_{i \neq j} J_{ij} v_{i} v_{j}$$

$$\mathcal{P}(J_{ij}) = \frac{1}{2} \left(\frac{N}{2\pi} \right)^{2} \exp \left[-N J_{ij}^{2} / 2 J^{2} \right]$$

$$\left[J_{ij} \right]_{av} = 0, \quad \left[J_{ij}^{2} \right]_{av} = J^{2} / N.$$

$$\left[\Xi_{\mu} \right]^{an} = \int_{\{\hat{a}_{i}, \hat{a}_{j}\}} e^{x \cdot \hat{b}_{i}} \left[\int_{N}^{N} \sum_{j} \frac{1}{2} \hat{b}_{j} J_{j} \sum_{\alpha', \beta} \hat{a}_{i} \hat{a}_{i} \hat{a}_{j} \hat{a}_{j} \hat{a}_{j} \right]$$

Hubbard - Stratanovitch identity:
$$e^{\lambda a^{2}/2} = \left(\frac{\lambda}{2\pi}\right)^{1/2} \int_{-\infty}^{\infty} dx e^{-\frac{\lambda x^{2}}{2} + \lambda ax}$$

S-K Model (contd.)

$$= > \left[Z^{n} \right]_{av} = e^{\frac{1}{4}\beta^{2}J^{2}nN} \int_{-\infty}^{\infty} \left[\frac{N}{2\pi} \sqrt{\frac{N}{2\pi}} \right]^{2} \beta J dq_{a\beta}$$

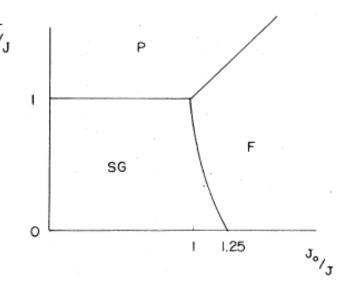
$$\times \exp \left[-\frac{N\beta^{2}J^{2}}{2} \sum_{\alpha \neq \beta} q_{\beta}^{\alpha} + N \ln T_{e} e^{L(\beta q_{\alpha})} \right]$$
where
$$L(\beta q_{\beta}) = \beta^{2}J^{2} \sum_{\alpha \neq \beta} q_{\alpha\beta} \sigma^{\alpha} \sigma^{\beta}$$

$$= > -\beta f = \lim_{n \to 0} \left[\frac{\beta^{2}J^{2}}{4} \left(1 - \frac{1}{n} \sum_{\alpha \mid \beta} q_{\alpha\beta}^{2} \right) + \frac{1}{n} \ln T_{e} e^{L(\beta q_{\beta})} \right]$$
where $q_{\alpha\beta}$ is to be determined by
$$\frac{\partial f}{\partial q_{\alpha\beta}} = 0.$$

S-K Model (contd.)

$$9 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dz e^{-\frac{2}{2}/2} \tanh^2(\sqrt{3}\sqrt{9}z)$$

Phase diagram



Replica Symmetry Breaking

The replica symmetric solution has unphysical properties for T < J.

Instability of the replica symmetric solution

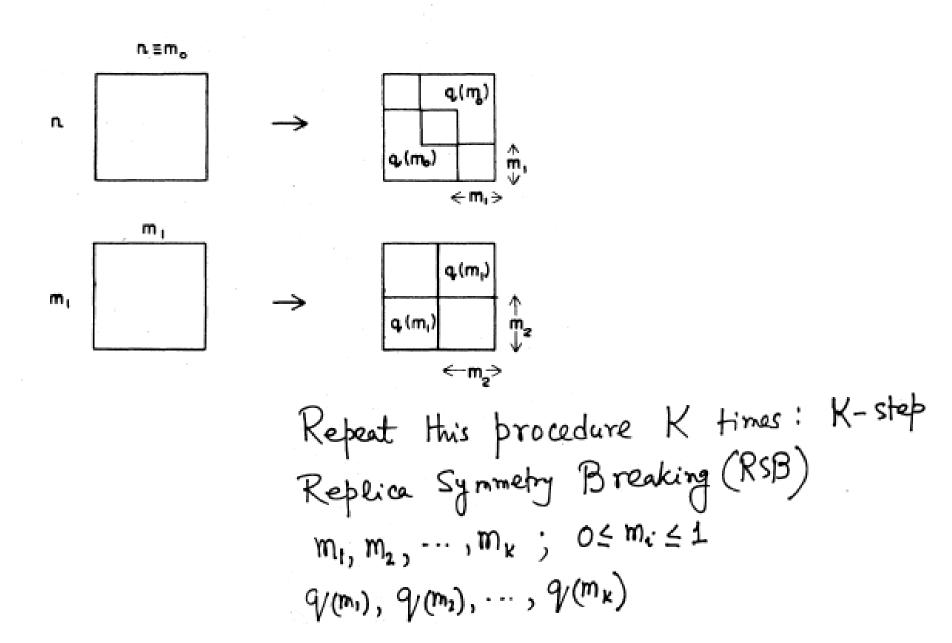
-Bf =
$$\lim_{n\to 0} \left[\frac{\beta^{2}J^{2}}{4}\left(1-\frac{1}{n}\sum_{\alpha\beta}q^{2}_{\alpha\beta}\right)+\frac{1}{n}\ln Tre^{L}\right]$$
 $V_{\alpha\beta} = 9_{0}+89_{0}$
 $\beta f = \beta f(9_{0})+\lim_{n\to 0}\frac{1}{2n}\sum_{\alpha' \in \beta}R^{\alpha\beta}, \forall \delta q_{\alpha\beta} \delta 9_{\gamma\gamma} +\cdots$

All eigenvalues of R must be ≥ 0 for Stability and physically meaningful behavior.

This Condition is not satisfied for $T < J$.

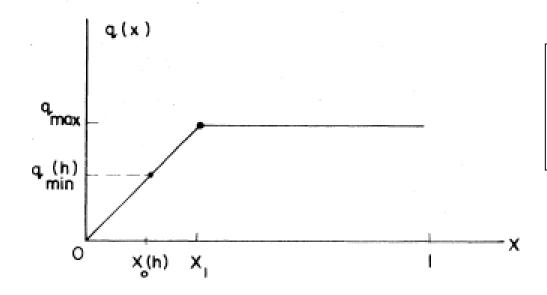
The Parisi Solution

G. Parisi, Phys. Rev. Lett. 43, 1754 (1979)



The Parisi Solution

$$K \rightarrow \infty$$
: $m_i \rightarrow x$, $0 \le x \le 1$.
 $q(m_i) \rightarrow q(x)$: Order parameter function of Parisi
Spin glass order parameter !
 $q = [\langle 0i \rangle]_{av} = \int_{0}^{q(x)} q(x) dx$



q(x) at a temperature slightly below the critical temperature

The Thouless-Anderson-Palmer Equations

Philosoph. Mag. 35, 593 (1977)

Free energy of the S-K model for a given Set of
$$\{J_{ij}\}$$
.

$$F = -\frac{1}{2} \sum_{i \neq j} J_{ij} m_{i} m_{j} + \frac{1}{2} \sum_{i} \left[(1+m_{i}) l_{n} \left(\frac{1+m_{i}}{2} \right) + \left(1-m_{i} \right) l_{n} \left(\frac{1-m_{i}}{2} \right) \right] - \frac{1}{4T} \sum_{i \neq j} \left(1-m_{i}^{2} \right) \left(1-m_{j}^{2} \right) J_{ij}^{2}$$

$$m_{i} = \langle J_{i} \rangle$$

Onseque reaction term

$$\frac{\partial F}{\partial m_{i}} = 0 \implies m_{i} = \tanh \left[\beta \sum_{j} J_{ij} m_{j} - \beta \sum_{i} J_{ij}^{2} \left(1-m_{j}^{2} \right) m_{i} \right]$$

TAP Equations

Figuralus of
$$\frac{\partial^2 F}{\partial m_i \partial m_j}$$
. must be ≥ 0 . Only one solution, $m_i = 0$ for all i , for $T > J$. Exponentially large number of solutions for $T < J$.

Number of minima with the lowest free energy per spin is not exponential in N.

Free energy barriers between different minima diverge in the thermodynamic limit.

Complex Free Energy Landscape

Physical interpretation of RSB

Large number of "valleys" ["pure states", "ergodic components"] at temperatures lower than the critical temperature.

Probability of the system being in vally
$$\alpha$$
.

 $\langle \sigma_i \rangle = \sum_{\alpha} P^{(\alpha)} m_i^{(\alpha)}$
 $\frac{1}{N} \sum_{i} \langle \sigma_i \rangle^2 = \frac{1}{N} \sum_{i} \sum_{\alpha,\beta} m_i^{(\alpha)} m_i^{(\beta)} P^{(\beta)} P^{(\beta)}$

Define overlap $q^{\alpha\beta} = \frac{1}{N} \sum_{i} m_i^{(\alpha)} m_i^{(\beta)}$

and $P(\alpha) = \sum_{\alpha\beta} P^{(\alpha)} p^{(\beta)} \delta(q - q^{\alpha\beta})$
 $\Rightarrow \frac{1}{N} \sum_{i} \langle \sigma_i \rangle^2 = \int_{\alpha\beta} P^{(\alpha)} dq$

Compare with replice themy result,

$$\frac{1}{N} \sum_{i} \langle \nabla_{i} \rangle^{2} = \int Q(x) dx = \int Q \frac{dx}{dq} dq$$

$$\frac{1}{N} \sum_{i} \langle \nabla_{i} \rangle^{2} = \frac{1}{N} \frac{dx}{dq}$$

Parisi function q(x) describes the distribution of overlaps between different free-energy minima.

$$V_{EA} = \frac{1}{N} \sum_{\alpha} P^{(\alpha)} [m_i^{(\alpha)}]^2 = q_i(x=1)$$

Spin Glass Models Relevant to Structural Glasses

Eash Ji Can take S values

2. Ising spin glass with p-spin interactions

RANDOM FIRST ORDER TRANSITION

Spin-glass-like Theories

[Kirkpatrick, Thirumalai, Wolynes, Parisi, Mézard, Monasson, Franz,...]

Infinite-range Potts glasses and Ising spin glasses with multi-spin interactions

Dynamical Transition to non-ergodic behaviour at $T=T_d$

Dynamics for $T \to T_d^+ \approx \text{Ideal MCT}$

Thermodynamics for $T < T_d$ governed by an exponentially large number of local minima of the free energy.

For $T < T_d$:

$$F(T) = -T \ln \sum_{k} \exp(-F_k/T) = \langle F_k \rangle - TS_c(T)$$

 $S_c(T)$ is the extensive "configurational entropy" or "complexity" of the free-energy minima

 $S_c(T)/N \to 0 \text{ as } T \to T_s^+ \ (T_s < T_d)$

Thermodynamic transition at T_s , described by onestep replica symmetry breaking

Connection with the glass transition:

Dynamical transition at $T_d \approx \text{Crossover}$ at T_c Static transition at $T_s \approx \text{Thermodynamic transition}$ at $T_0 = T_K$

Questions:

- No quenched disorder in supercooled liquids
 Self-generation of "quenched" disorder in models with frustration
- Need to carry out calculations for models of interacting particles
 Liquid-state methods and density functional theory
 CD, M. Mezard
- Need to go beyond mean-field theory by including effects of fluctuations neglected in mean-field treatments??

• Dynamics of supercooled liquids for temperatures $T_c > T > T_0$??

Kirkpatrick, Thirumalai and Wolynes (1989): VFT behaviour from "mosaic structure" formed via "entropic" nucleation

Random First Order Transition (RFOT) Theory of the Dynamics of Supercooled Liquids