

Summary

- Accelerated molecular dynamics concept:
 - Let the trajectory find an appropriate way out or state, but coax it into doing so sooner
- Significant speedup over standard MD when barriers are high relative to temperature
- All three methods can give very large boosts when events are very infrequent
- Often encounter unexpected behavior
- Recent advances
 - Self-learning bond boost hyperdynamics
 - Par-Rep on cell architecture
 - Spatial parallelization (TAD, but could do all three)
 - Solid-liquid interface (parallel-replica dynamics, hyperdynamics)
 - P-TAD and TAD-KMC (attaches TAD confidence to KMC)
- Ongoing challenges
 - Low barriers (but see Miron and Fichthorn bond bridging)
 - Detecting and exploiting Markovian state groupings on the fly
 - First-principles forces

Los Alamos LA-UR 10-01172