ICTS Condensed Matter Programme 2009

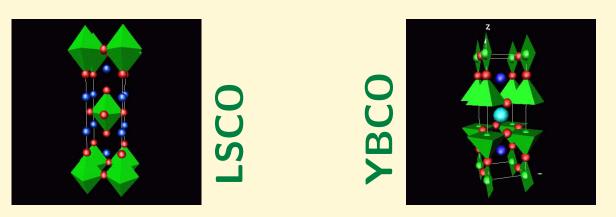
Superconductivity in bilayer t-J model: A few variational Monte Carlo results

Amal Medhi

Department of Basic Sciences and Social Sciences North-Eastern Hill University Shillong 793022, India

Introduction

Cuprates



- Theoretical studies on cuprates mainly the focus is on a single CuO₂ layer.
- Other important factors to consider crystal structure details, intrinsic disorder, interlayer couplings etc.
- Bilayer cuprates (e.g. YBa_2CuO_{6+x}) Interlayer couplings.

Interlayer hopping

Bilayer band splitting (ARPES & ab initio study)

$$t_{\perp}(\mathbf{k}) = \frac{t_{\perp}}{4} \left[\cos(k_x a) - \cos(k_y a) \right]^2$$

$$t_{\perp} \sim 0.1 - 0.15 \; {
m eV}$$
 ($t \sim 0.44 \; {
m eV}$)

Interlayer exchange

$$J_{\perp} \sim 0.01 \; {
m eV}$$
 ($J \sim 0.13 \; {
m eV}$)

How the interlayer couplings affect the properties of bilayers?

Plan of talk

Bilayer t-J model

- Variational Monte Carlo
- Pairing symmetry, magnetic and superconducting correlations, coexistence of AF & SC

Interlayer pair-tunneling (ILPT) in bilayer

- Grand canonical VMC
- Energy due to ILPT

Superconductivity in bilayer t-J model

The Model

$$\mathcal{H} = -t \sum_{\langle i,j \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + H.c. \right) - t_{\perp} \sum_{\langle i,k \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{k\sigma} + H.c. \right)$$
$$+J \sum_{\langle i,j \rangle} \left(\mathbf{S_{i}.S_{j}} - \frac{1}{4} n_{i} n_{j} \right) + J_{\perp} \sum_{\langle i,k \rangle} \left(\mathbf{S_{i}.S_{k}} - \frac{1}{4} n_{i} n_{k} \right)$$

The operators act in a subspace of no doubly occupied site.

- Represents bilayer cuprates like, YBa₂CuO_{6+x} (YBCO), Bi₂Sr₂CaCu₂O_{8+x} (Bi2212) etc.

Parameter values (from exp and theory)

$$t_{\perp}/t = 0.05 - 0.20$$
, $J/t = 0.35$, $J_{\perp}/t = 0.03 - 0.10$

Variational Monte Carlo

- Treats strong correlations exactly, applicable for wide range of parameter values, no sign problem.
- Biased by the choice of variational wavefunction

Formalism

- Choose the trial wavefunction,

$$|\Psi_{var}\rangle \equiv |\Psi_{var}(\alpha)\rangle$$
, α is the variational parameter

- Transform $|\Psi_{var}
angle$ into real space representation

$$|\Psi_{var}\rangle = \sum_{R} C(R)|R\rangle$$

 $|R\rangle=c_{i_1\uparrow}^\dagger\dots c_{i_P\uparrow}^\dagger c_{j_1\downarrow}^\dagger\dots c_{j_P\downarrow}^\dagger|0\rangle$ is an electronic configuration in real space.

Expectation value

$$\langle \hat{A} \rangle = \frac{\langle \Psi_{var} | \hat{A} | \Psi_{var} \rangle}{\langle \Psi_{var} | \Psi_{var} \rangle}$$

$$= \frac{\sum_{R} P(R) \frac{\langle \Psi_{var} | \hat{A} | R \rangle}{C^{*}(R)}}{C^{*}(R)} \qquad P(R) = \frac{|C(R)|^{2}}{\sum_{R'} |C(R')|^{2}}$$

- Exact summation is not possible. Use Monte Carlo.
- Generate a Markov chain of M ($\ll N$) configurations $|R_1\rangle, |R_2\rangle, \ldots, |R_M\rangle$ according to weights P(R). The sum is approaximated by,

$$\langle \hat{A} \rangle \approx \langle \hat{A} \rangle_M = \frac{1}{M} \sum_{i=1}^M \frac{\langle \Psi_{var} | \hat{A} | R \rangle}{C^*(R)}$$

Wavefunction optimization

- Calculate energy as a function of α

$$E_{var}(\alpha) = \frac{\langle \Psi_{var}(\alpha) | \hat{H} | \Psi_{var}(\alpha) \rangle}{\langle \Psi_{var}(\alpha) | \Psi_{var}(\alpha) \rangle}$$

- Minimize $E_{var}(\alpha)$. Obtain optimized $|\Psi_{var}\rangle$.

$$E_{min} = E_{var}(\tilde{\alpha}), \quad |\Psi_0\rangle = |\Psi_{var}(\tilde{\alpha})\rangle$$

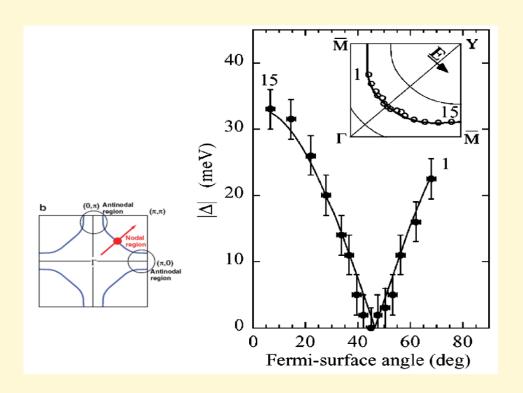
Calculate correlation functions in the optimized wavefunction,

$$\langle \hat{A}\hat{B}\rangle = \frac{\langle \Psi_0 | \hat{A}\hat{B} | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}$$

Superconductivity in t-J bilayer

Pairing symmetry

In cuprates, superconducting pairing symmetry is d-wave $(\Delta_{\mathbf{k}} = \Delta_d (\cos k_x - \cos k_y))$ (ARPES and other exp)

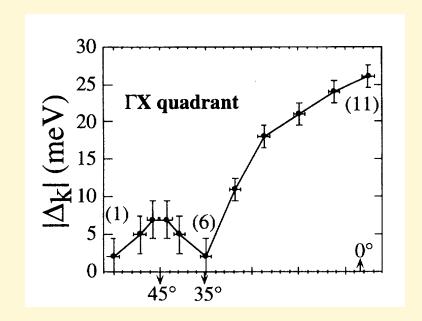


- Supported by numerical and analytical studies of two dimensional (2D) Hubbard and t-J model.

Pairing symmetry

Contradictory reports for bilayered cuprates

Could be an extended s-wave with eight line nodes.
 (Ding et al, PRL 74, 2784 (1995), Vobornik et al, Physica C 317, 589 (1999), Zhao, PRB 75, 140510(R) (2007))



- Supported by SBMFT study of a bilayer t-J model. (P. A. Lee et al, J. Phys. Chem. Solids 56, 1633 (1995)).

Variational Monte Carlo

 We consider as the variational wavefunction, the Gutzwiller projected BCS state,

$$|\Psi_{var}\rangle = \mathcal{P}_G \left(\sum_{\mathbf{k}} \varphi(\mathbf{k}) c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}\right)^{N/2} |0\rangle$$

with
$$\varphi(\mathbf{k}) = \frac{\Delta_{\mathbf{k}}}{(\varepsilon_{\mathbf{k}} - \mu) + \sqrt{(\varepsilon_{\mathbf{k}} - \mu)^2 + \Delta_{\mathbf{k}}^2}}$$

Pairing symmetries considered

(a)
$$\Delta_{\mathbf{k}} = \Delta_d \left(\cos k_x - \cos k_y\right)$$
 (d-wave)

(b)
$$\Delta_{\mathbf{k}} = \Delta_{\parallel} (\cos k_x - \cos k_y) + \Delta_{\perp} \cos k_z$$
 ($d + d_z$ -wave) (would give eight nodes)

(c)
$$\Delta_{\mathbf{k}} = \Delta_{\parallel} (\cos k_x - \cos k_y) + \Delta_{\perp} (1 - \cos k_z)$$

Wavefunction optimization

Some numerical details

Lattice size= $8 \times 8 \times 2$.

Parameter values: $(t_{\perp}/t, J_{\perp}/t) = (0.05, 0.10)$, (0.20, 0.10), (0.20, 0.03). J/t = 0.35.

Monte Carlo sweeps: $10^6 - 10^7$ for calculation of expectation values.

Variational energies

Paring symmetry (c): energy always higher - discarded.

Variational energies

Paring symmetry (c): energy always higher - discarded.

Paring symmetry (b): have lower energy only at x=0 and $(t_{\perp}, J_{\perp}) = (0.05t, 0.10t)$.

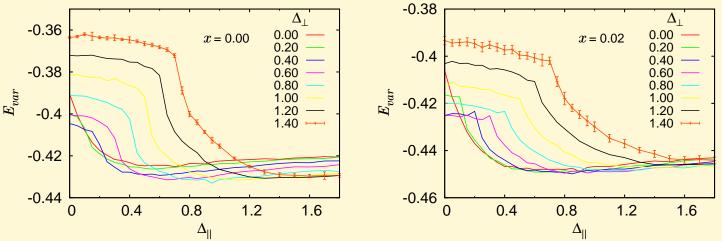


Fig: Energy of the $(d + d_z)$ -wave state

Variational energies

Paring symmetry (c): energy always higher - discarded.

Paring symmetry (b): have lower energy only at x=0 and $(t_{\perp}, J_{\perp}) = (0.05t, 0.10t)$.

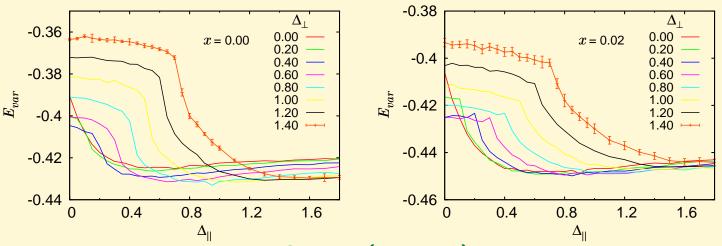


Fig: Energy of the $(d + d_z)$ -wave state

Paring symmetry (a): The *d*-wave state yields lowest energy in all other cases.

Energy of the d-wave state

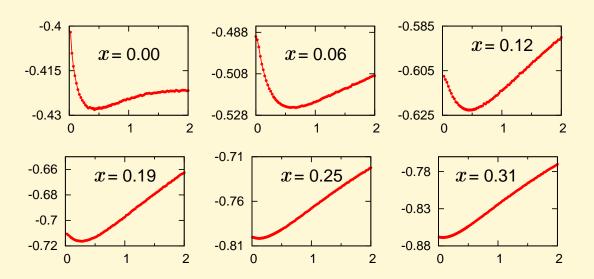


Fig: Variational energy of the d-wave state at various x.

$$(t_{\perp}, J_{\perp}) = (0.20, 0.10).$$

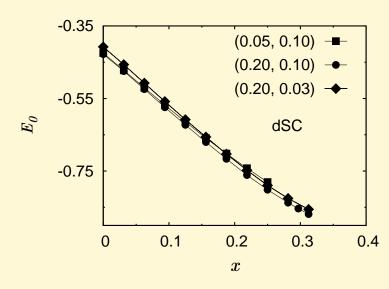
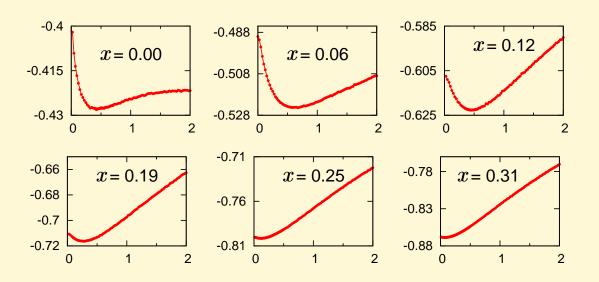


Fig: Optimal energy, E_0 vs x.

Energy of the *d***-wave state**



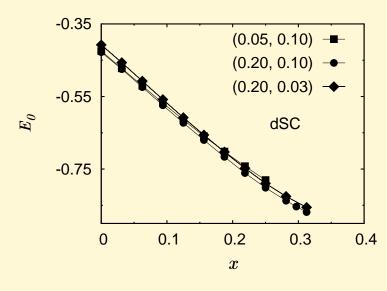


Fig: Variational energy of the d-wave state at various x.

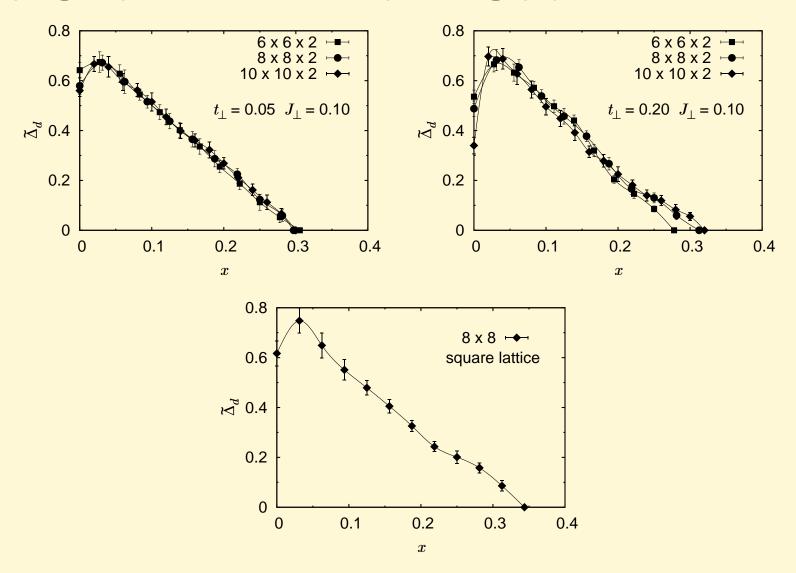
$$(t_{\perp}, J_{\perp}) = (0.20, 0.10).$$

Fig: Optimal energy, E_0 vs x.

Conclusion: Favourable pairing symmetry in bilayer for experimentally relevant parameter values is d-wave.

Optimal gap parameter

Doping dependence of the optimal gap parameter



The *d*-wave state

Week magnetic correlations

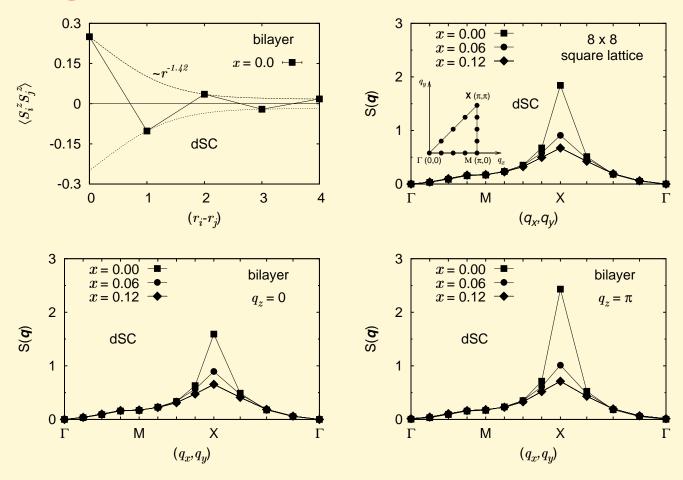


Fig: Spin correlations, $\langle S_i^z S_j^z \rangle$ and spin structure factor, $S(\mathbf{q}) = \sum_{ij} e^{-\mathbf{q}.(\mathbf{r}_i - \mathbf{r}_j)}/N_s$ in the d-wave state.

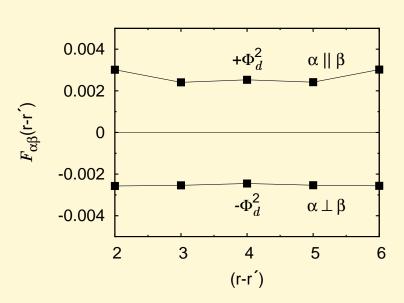
Superconducting correlations

- SC pair-pair correlation function,

$$F_{\alpha,\beta}(\mathbf{r} - \mathbf{r}') = \langle B_{\mathbf{r}\alpha}^{\dagger} B_{\mathbf{r}'\beta} \rangle$$

 $B_{\mathbf{r}\alpha}^{\dagger} = \frac{1}{2}(c_{\mathbf{r}\uparrow}^{\dagger}c_{\mathbf{r}+\alpha\downarrow}^{\dagger} - c_{\mathbf{r}\downarrow}^{\dagger}c_{\mathbf{r}+\alpha\uparrow}^{\dagger})$ creates an electron pair at bond $(\mathbf{r}, \mathbf{r} + \alpha)$. α and β are unit vectors \hat{x} , \hat{y} , or \hat{z} .

- SC order parameter, $F_{\alpha,\beta}(\mathbf{r}-\mathbf{r}') \to \pm \Phi_d^2$ for large $|\mathbf{r}-\mathbf{r}'|$, + (-) correspond to $\alpha \parallel (\perp)$ to β (for planar α , β).



Superconducting order parameter

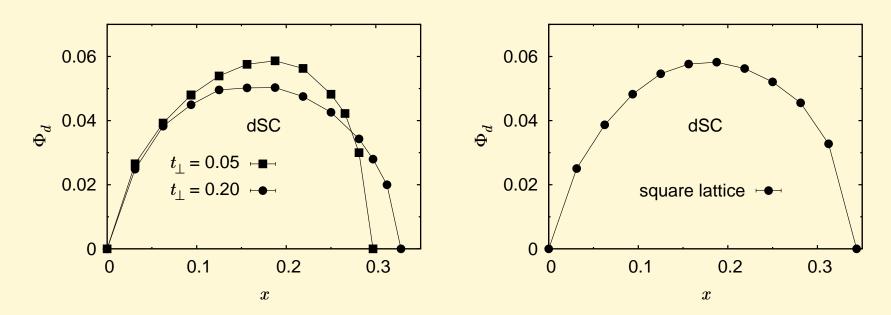


Fig: SC order parameter corresponding to planar correlations $(J_{\perp}=0.10t)$.

Interplanar correlations are negligibly small

Coexistence of AF & SC

- Interplay of SC and antiferromagnetism (AF) order has been an important issue in cuprates.

- In the t-J model in 2D, there is evidence for coexistence.

- What is the scenario in bilayer? How the coexisting AF order affect SC correlations?

Coexistence of AF & SC

We consider a wavefunction with both SC and AF orders,

$$|\Psi_{var} (\Delta_{SC}, \Delta_{AF})\rangle = \mathcal{P}_G \mathcal{P}_N \prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}} d_{\mathbf{k}\uparrow}^{\dagger} d_{-\mathbf{k}\downarrow}^{\dagger} \right) |0\rangle$$

$$\frac{v_{\mathbf{k}}}{u_{\mathbf{k}}} = \frac{\Delta_{\mathbf{k}}}{(\mp E_{\mathbf{k}} - \mu) + \sqrt{(\mp E_{\mathbf{k}} - \mu)^2 + \Delta_{\mathbf{k}}^2}}, \quad E_{\mathbf{k}} = \sqrt{\varepsilon_{\mathbf{k}}^2 + \Delta_{AF}^2}$$

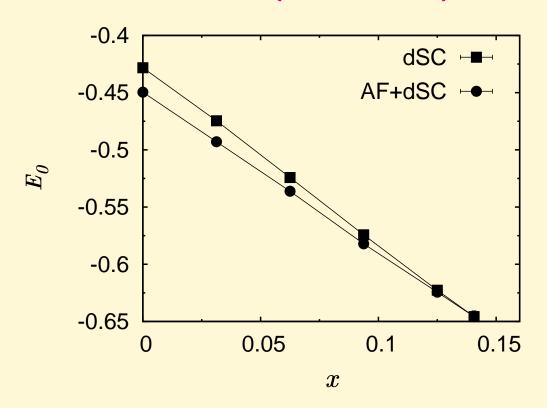
 $d_{{f k}\sigma}^{\dagger}
ightarrow {f diagonalizes}$ the AF Hartree-Fock Hamiltonian.

Variational parameters - Δ_{SC} and Δ_{AF}

Phases described by the wavefunction

- AF phase for $\Delta_{AF} \neq 0$ and $\Delta_{SC} \rightarrow 0$.
- SC phase for $\Delta_{AF}=0$ and $\Delta_{SC}\neq 0$
- Coexisting AF SC phase for Δ_{AF} , $\Delta_{SC} \neq 0$
- Normal state for Δ_{AF} , $\Delta_{SC}=0$

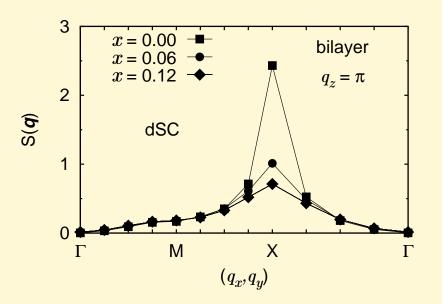
Optimized energy for the pure *d*-wave state (dSC) and the coexisting state (AF+dSC)

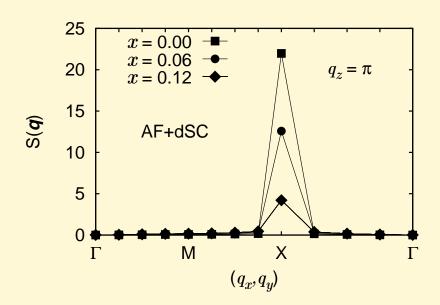


AF coexists with SC in the underdoped region upto hole doping $x\sim 0.14$.

Coexisting state

Enhanced magnetic correlations - expected

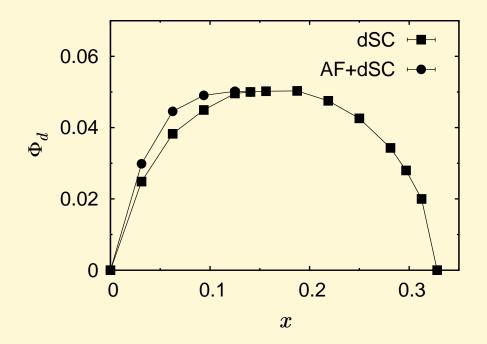




Spin structure factor in the pure *d*-wave (dSC) and the coexisting (AF+dSC) states.

Coexisting state

Enhanced SC correlations too - interesting



SC order parameter, Φ_d for the pure d-wave (dSC) and the coexisting (AF+dSC) states.

Interlayer pair-tunneling (ILPT)

Interlayer pair-tunneling

As a mechanism behind high T_c in cuprates

- Cooper pairs in SC state tunnel across CuO₂ layers by the Josephson tunneling process,

$$\mathcal{H}_J = -\sum_{\mathbf{k}} T_J(\mathbf{k}) \left(c_{\mathbf{k}\uparrow}^{(1)\dagger} c_{-\mathbf{k}\downarrow}^{(1)\dagger} c_{-\mathbf{k}\downarrow}^{(2)} c_{\mathbf{k}\uparrow}^{(2)} + h.c. \right)$$

- It was believed that this lowers kinetic energy in the SC state and provides the large SC condensation energy in cuprates.
- So makes the T_c high.

Experimental contradictions

- c-axis penetration depth, λ_c is related to the condensation energy due to the lowering of kinetic energy.
- Experimentally measured value of λ_c in a number of cuprates differs the predicted value by an order of magnitude.

ILPT

A relook from a different point of view

- The Gutzwiller projected *d*-wave BCS wavefunction is used quite often to describe superconductivity in cuprates.
- How well does this state support the ILPT scenario?

A relook from a different point of view

- The Gutzwiller projected *d*-wave BCS wavefunction is used quite often to describe superconductivity in cuprates.
- How well does this state support the ILPT scenario?

We examine this issue using VMC

Model - Consider two 2D t-J layers connected by H_J ,

$$\mathcal{H} = - t \sum_{m \langle i, j \rangle \sigma} \left(c_{i\sigma}^{(m)\dagger} c_{j\sigma}^{(m)} + h.c. \right) + J \sum_{m \langle i, j \rangle} \left(\mathbf{S}_{i}^{(m)} . \mathbf{S}_{j}^{(m)} - \frac{1}{4} n_{i}^{(m)} n_{j}^{(m)} \right)$$
$$- \sum_{\mathbf{k}} T_{J}(\mathbf{k}) \left(c_{\mathbf{k}\uparrow}^{(1)\dagger} c_{-\mathbf{k}\downarrow}^{(1)\dagger} c_{-\mathbf{k}\downarrow}^{(2)} c_{\mathbf{k}\uparrow}^{(2)} + h.c. \right)$$

m (=1, 2) is the layer index.

Pair tunneling amplitude

$$T_J(\mathbf{k}) = \frac{t_\perp^2}{16t} (\cos k_x - \cos k_y)^4$$

- $t_{\perp} \sim 0.15$ eV, $t \sim 0.4$ eV. $t_{\perp}/t \sim 0.4$. J = 0.35t.

Variational wavefunction

- Product of two Gutzwiller projected *d*-wave BCS states with variable particles numbers, one for each layer,

$$|\Psi_{var}\rangle = |\Psi\rangle^{(1)}|\Psi\rangle^{(2)}$$

$$|\Psi\rangle^{(m)} = \mathcal{P}_G^{(m)} |\Psi_{BCS}\rangle^{(m)} = \mathcal{P}_G^{(m)} \prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{(m)\dagger} c_{-\mathbf{k}\downarrow}^{(m)\dagger} \right) |0\rangle$$

- Allowing particle number fluctuations is necessary.

Grand canonical VMC

Why GVMC

- Since the particle number is not fixed, it is necessary to perform simulation in grand canonical scheme.

Grand canonical VMC

Why GVMC

- Since the particle number is not fixed, it is necessary to perform simulation in grand canonical scheme.

VMC vs GVMC

Concentrate on the grandcanonical BCS wavefunction for a single layer

$$|\Psi\rangle = \sum_{N=0,2,\dots}^{N_s} S_N \left(\sum_{R_N} C(R_N) |R_N\rangle \right)$$

$$|R_N\rangle = c_{i_1\uparrow}^{\dagger} \dots c_{i_{N/2}\uparrow}^{\dagger} c_{j_1\downarrow}^{\dagger} \dots c_{j_{N/2}\downarrow}^{\dagger} |0\rangle$$
. $S_N = \pm 1$.

It is a state in a Hilbert space, \mathbb{H} with fluctuating particle number.

Fixed N VMC

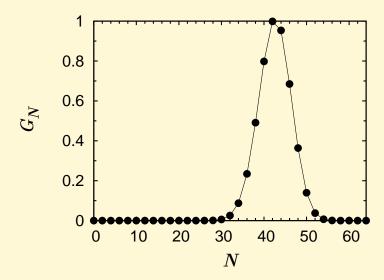
- Generate a Markov chain of states $|R'_N\rangle \to |R'_N\rangle \to \dots$ by doing a random walk in a fixed N subspace, \mathbb{H}_N .
- Monte Carlo moves (i) hopping a spin to a vacant site
 (ii) exchanging two antiparallel spins.

GVMC

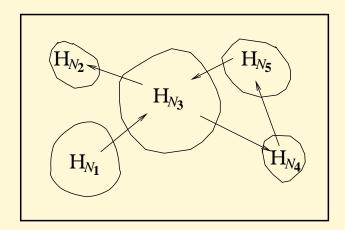
- Generate a Markov chain of states $|R'_{N_1}\rangle \to |R'_{N_2}\rangle \to \dots$ by doing a walk in $\mathbb H$.
- Monte Carlo moves need to create or destroy spins in pairs in addition to (i) and (ii).

A random walk in \mathbb{H}

- Dimension, G_N of a subspace \mathbb{H}_N strongly depend on N.



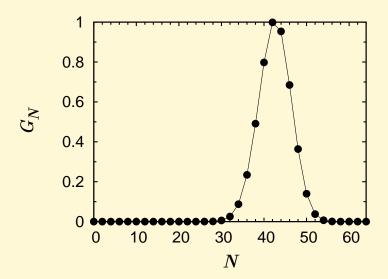
 G_N vs N for a 8×8 lattice



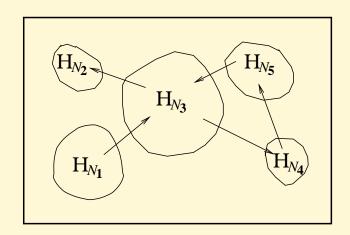
A random walk in \mathbb{H}

A random walk in \mathbb{H}

- Dimension, G_N of a subspace \mathbb{H}_N strongly depend on N.



 G_N vs N for a 8×8 lattice



A random walk in \mathbb{H}

How often should we attempt jumping to a particular \mathbb{H}_N ?

GVMC

- Should be proportional to G_N . However the actual number may be different. It depends on $C(R_N)$.

GVMC

- Should be proportional to G_N . However the actual number may be different. It depends on $C(R_N)$.

Consider the hypothetical wavefunction,

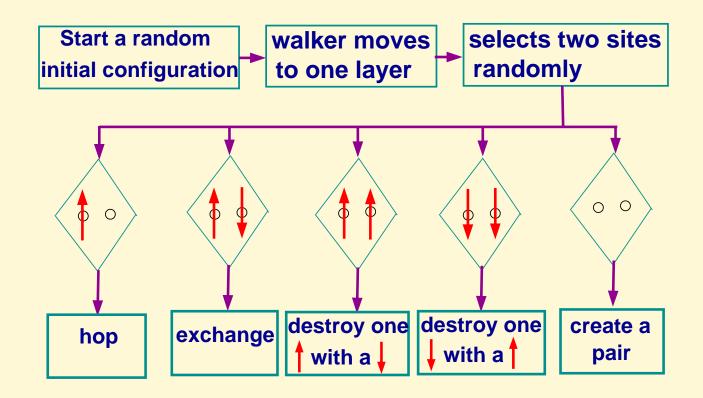
$$|\Psi_{hyp}\rangle = \sum_{N=0,2,\dots}^{Ns} \sum_{R_N} |R_N\rangle$$

- In simulation of $|\Psi_{hyp}\rangle$, the number of actual jumps, M_N to a \mathbb{H}_N must be proportional to G_N . That is here we require

$$M_N \propto G_N$$

How to satisfy the above condition?

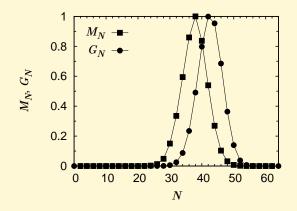
A new algorithm



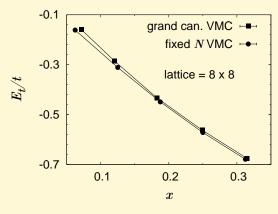
Monte Carlo moves for GVMC simulation

Verifying the algorithm

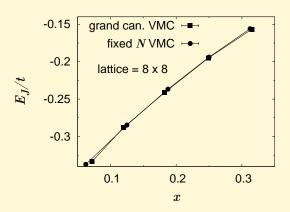
- Comparison of calculated M_N with G_N



- Energy for the 2D t-J model



hopping



exchange

Pair tunneling energy

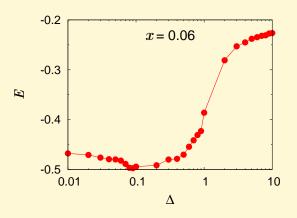
Wavefunction in real space,

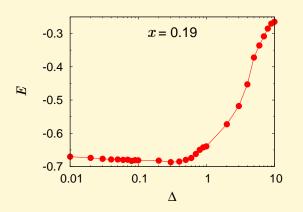
$$|\Psi_{var}\rangle = \sum_{N,N'} S_N S_{N'} \left(\sum_{R_N^{(1)}} \sum_{R_{N'}^{(2)}} C(R_N^{(1)}) C(R_{N'}^{(2)}) |R_N^{(1)}\rangle |R_{N'}^{(2)}\rangle \right)$$

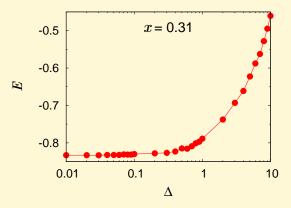
- Variational parameter is Δ (d-wave SC gap parameter).
- Average particle number is fixed by chemical potential, μ .
- Lattice parameters: size= $8 \times 8 \times 2$. J = 0.35t. $t_{\perp}/t = 1$.

Pair tunneling energy

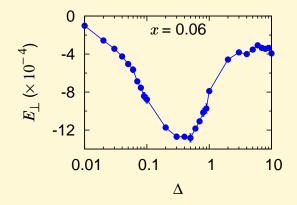
Total variational energy, E vs Δ

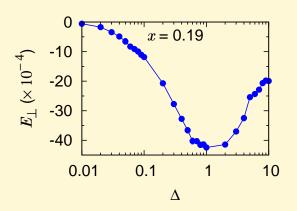


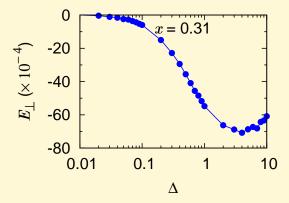




Pair tunneling energy, E_{\perp} vs Δ







Pair tunneling energy

Interesting variation of E_{\perp} with Δ .

- E_{\perp} tends to enhance optimal Δ , thereby SC pairing.
- However the magnitude of Δ is too small to have any appreciable effect eventually.
- Contribution of E_{\perp} towards the SC condensation energy is only 10% of the total.

Thank You