QUANTUM PHASE TRANSITIONS IN STRONGLY CORRELATED AND HIGHLY FRUSTRATED SPIN-LATTICE SYSTEMS:

An Ab Initio Quantum Many-Body Theory Formulation

by

Raymond Bishop

The University of Manchester, UK

- Collaborators
 - Peggy Li (The University of Manchester, UK)
 - Damian Farnell (The University of Manchester, UK)
 - Chuck Campbell (University of Minnesota, USA)

OUTLINE

- An Illustrative Model
- The Coupled Cluster Method
- Results
 - spin-1/2
 - spin-1

Reference (s = 1/2 only)

R.F. Bishop et al., Phys. Rev. B 79, 174405 (2009)

AN ILLUSTRATIVE MODEL

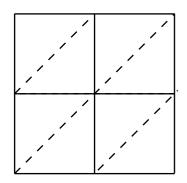
- J_1-J_2' model on a 2D square (or triangular) lattice
- ▶ We'll look at two cases : s = 1/2 spins and s = 1 spins

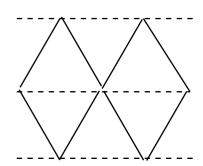
•
$$H = J_1 \sum_{\langle i,j \rangle} \mathbf{s}_i \cdot \mathbf{s}_j + J_2' \sum_{[i,j]} \mathbf{s}_i \cdot \mathbf{s}_j$$
 (and set $J_1 \equiv 1$)

where, on square lattice:

- $\langle i,j \rangle$ bonds $J_1 \equiv -$
- [i,j] bonds $J_2'\equiv$ - -

all NN bonds half NNN bonds



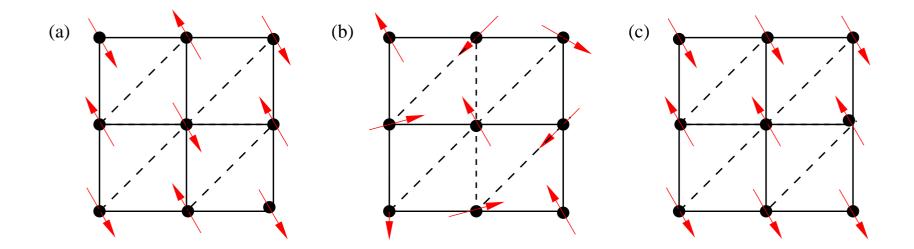


limits

- $J_2' = 0$: isotropic HAF on 2D square lattice
- $J_2' = 1$: isotropic HAF on 2D triangular lattice
- $J_2' \to \infty$: uncoupled HAF 1D chains
- classical limit $(s \to \infty)$
 - for $J_2'<\frac{1}{2}J_1$: gs is Néel ordered as in (a) below
 - for $J_2' > \frac{1}{2}J_1$: gs is spiral ordered as in (b) below with pitch angle at site (i, j)

$$\alpha_{ij} = \alpha_0 + (i+j)\alpha_{cl}$$
,
 $\alpha_{cl} = \cos^{-1}(-\frac{J_1}{2J_2'}) \equiv \pi - \phi_{cl}$

Néel, Spiral, and Striped Model States



 \Rightarrow in limit $J_2' \to \infty$: uncoupled 1D HAF chains with relative spin orientation of 90° between neighbouring chains (although with complete degeneracy between states of arbitrary relative ordering between chains)

⇒ clearly, exact limit for the spin-1/2 and spin-1 cases should also be 1D uncoupled isotropic HAF chains but

question: might the order by disorder mechanism lift this degeneracy to give, e.g., a striped state as in (c) above?

question: will the s=1/2 and s=1 cases be different?

THE COUPLED CLUSTER METHOD

We use the coupled cluster method (CCM)

ground-state wavefunction :

MANCHESTER

The University of Manchester

OF MINNESOTA

$$|\Psi\rangle = e^{S}|\Phi\rangle; \quad \langle \tilde{\Psi}| = \langle \Phi|\tilde{S}e^{-S}; \quad \langle \tilde{\Psi}|\Psi\rangle = \langle \Phi|\Phi\rangle \equiv 1$$

$$S = \sum_{I\neq 0} S_{I}C_{I}^{+}; \quad \tilde{S} = 1 + \sum_{I\neq 0} \tilde{S}_{I}C_{I}^{-}$$

$$C_{0}^{+} \equiv 0; \quad C_{I}^{-} \equiv (C_{I}^{+})^{\dagger}; \quad C_{I}^{-}|\Phi\rangle = 0, \ \forall I\neq 0$$

- $C_I^+|\Phi\rangle$ are a complete set of wf's; $[C_I^+,C_J^+]=0$
- choose model state $|\Phi\rangle$ to be, e.g., classical gs (either Néel or spiral), and also try striped state
- choose spin axes on each site so that $|\Phi\rangle = |\downarrow\downarrow \cdots \downarrow\rangle$ in these local axes

$$ightharpoonup
ightharpoonup C_I^+
ightharpoonup s_{i_1}^+ s_{i_2}^+ \cdots s_{i_k}^+; \quad s_j^+ \equiv s_j^x + i s_j^y, \quad \text{in local axes}$$

- each s_i^+ in C_I^+ can appear at most once for s=1/2, twice for $s=1,\cdots,$ and 2s times for general spin-s case, on a given lattice site i
- CCM satisfies the Goldstone linked cluster theorem and
- satisfies the Hellmann-Feynman theorem, for all truncations on complete set {I}
- solve for $\{S_I, \tilde{S}_I\}$ from gs Schrödinger eqs. for $|\Psi\rangle$, $\langle \tilde{\Psi}|$
- we use triangular lattice geometry to define the approximation schemes and we retain all distinct fundamental configurations (fc) in the set $\{I\}$ with respect to space- and point-group symmetries of both the Hamiltonian and the model state $|\Phi\rangle$

- only approximation is to truncate set $\{I\}$
 - for s=1/2 case we use the LSUBm scheme in which we retain all possible multispin-flip correlations over different locales on lattice defined by m or fewer contiguous lattice sites
 - for s=1 case we use the SUBn-m scheme in which we retain all multispin-flip correlations involving up to n spin flips spanning a range of no more than m adjacent (or contiguous) lattice sites. We then set m=n and employ the so-called SUBm-m scheme NOTE: LSUB $m\equiv \text{SUB}2sm-m$ for general spin-s case, e.g., LSUB $m\equiv \text{SUB}m-m$ only for s=1/2 case)

Number of fundamental configurations

s = 1/2			s = 1			
Method	♯ f.c.		Method	♯ f.c.		
	stripe	spiral		stripe	spiral	
LSUB2	2	3	SUB2-2	2	4	
LSUB3	4	14	SUB3-3	4	26	
LSUB4	27	67	SUB4-4	60	189	
LSUB5	95	370	SUB 5-5	175	1578	
LSUB6	519	2133	SUB 6-6	2996	14084	
LSUB7	2617	12878	SUB7-7	11778	131473	
LSUB8	15337	79408				

NOTE: To obtain a single data point (i.e., for a given value of J_2' , with $J_1=1$) for the spiral phase at the LSUB8 level for the spin-1/2 case we typically required about 0.3 h computing time using 600 processors simultaneously.]

- at each LSUBm or SUBm-m level the CCM operates at the $N \to \infty$ limit from the outset
- calculate E/N and onsite magnetization $M \equiv -\langle \tilde{\Psi} | s_i^z | \Psi \rangle$ in local axes
- extrapolate to the exact $m \to \infty$ limit, using well-tested empirical scaling laws

$$E/N = a_0 + a_1 m^{-2} + a_2 m^{-4}$$

$$M = b_0 + b_1 m^{-1} + b_2 m^{-2}$$

RESULTS

■ SPIN-1/2 CASE

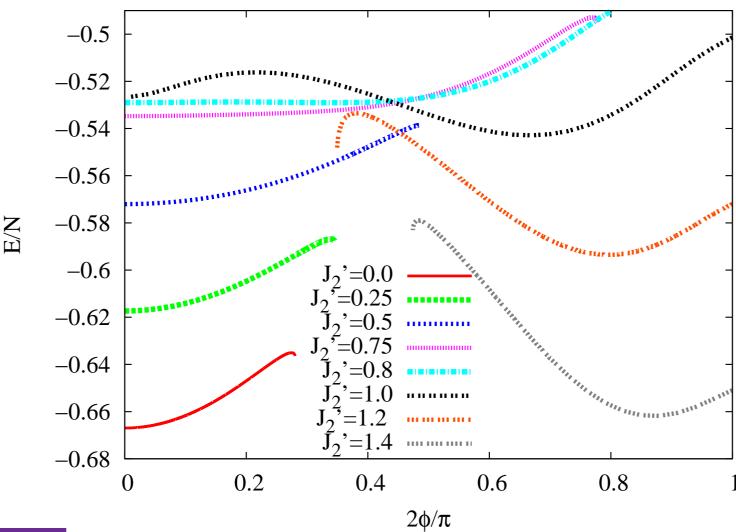
1. Néel and Spiral Phases

• for $|\Phi\rangle = |\Phi_{\rm spiral}\rangle$ we treat pitch angle ϕ as a variable and choose ϕ such that $E_{\rm LSUB}m(\phi) = \min$ at $\phi = \phi_{\rm LSUB}m$

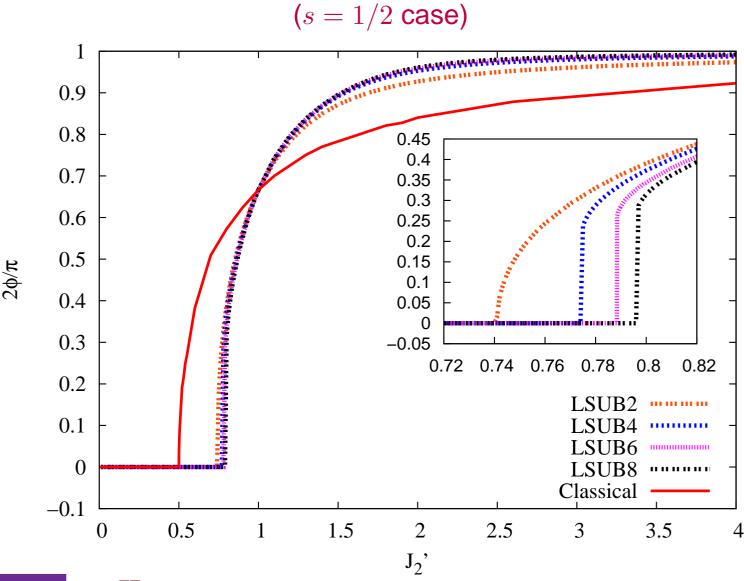
- we observe how $\phi \to \frac{1}{2}\pi$ as $J_2' \to \infty$ much faster than for classical counterpart (\Rightarrow more rapid approach to collinearity on the uncoupled 1D chains)
- notice how we often obtain (real) solutions only for certain ranges of ϕ depending on the value of $\kappa \equiv J_2'/J_1$, with termination points shown

GS Energy versus Pitch Angle for Spiral Phase

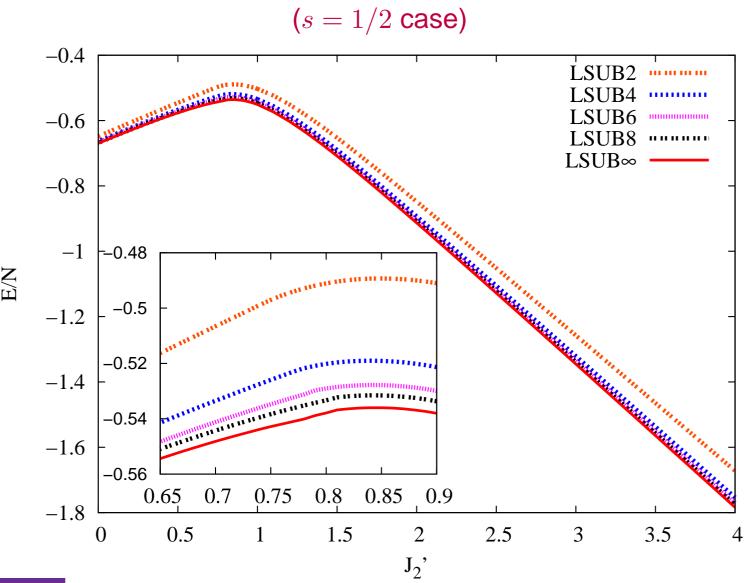
(s = 1/2 case; LSUB6 results shown)



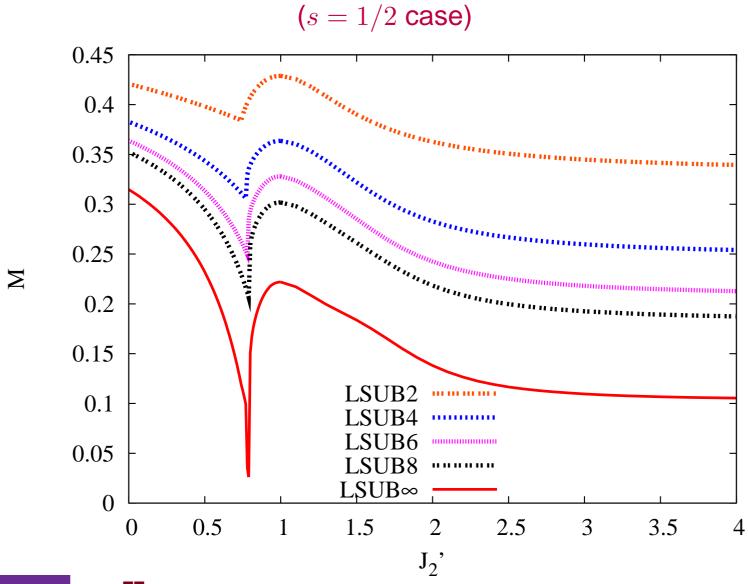
Pitch Angle $\phi = \phi_{LSUBm}$ of Spiral Phase versus J_2' ($\phi = 0 \Rightarrow$ Néel Phase)



GS Energy versus J_2' in Néel and Spiral Phases



Onsite Magnetization (Order Parameter) versus J_2' in Néel and Spiral Phases



Results for Isotropic HAF on Square and Triangular Lattices

(s = 1/2 case)

E/N	M		E/N	M	
square ($\kappa = 0$)			triangular ($\kappa=1$)		
-0.64833	0.4207	-(0.50290	0.4289	
-0.64931	0.4182	-(0.51911	0.4023	
-0.66356	0.3827	-(0.53427	0.3637	
-0.66345	0.3827	-(0.53869	0.3479	
-0.66695	0.3638	-(0.54290	0.3280	
-0.66696	0.3635	-(0.54502	0.3152	
-0.66816	0.3524	-(0.54679	0.3018	
Extrapolations					
-0.66974	0.3099	-(0.55244	0.1893	
-0.67045	0.3048	-(0.55205	0.2085	
-0.669437(5)	0.3070(3)	-C).5458(1)	0.205(10)	
-0.6693(1)	0.307(1)	-C).5502(4)	0.19(2)	
	square (<i>i</i> -0.64833 -0.64931 -0.66356 -0.66345 -0.66695 -0.66696 -0.66816 -0.66974 -0.67045 -0.669437(5)	square ($\kappa = 0$)-0.648330.4207-0.649310.4182-0.663560.3827-0.663450.3827-0.666950.3638-0.666960.3635-0.668160.3524Extrapolations-0.669740.3099-0.670450.3048-0.669437(5)0.3070(3)	square ($\kappa = 0$)-0.648330.42070.649310.41820.663560.38270.663450.38270.666950.36380.666960.36350.668160.3524-Extrapolations-0.669740.30990.670450.30480.669437(5)0.3070(3)-	square ($\kappa = 0$)triangula-0.648330.4207-0.50290-0.649310.4182-0.51911-0.663560.3827-0.53427-0.663450.3827-0.53869-0.666950.3638-0.54290-0.666960.3635-0.54502-0.668160.3524-0.54679Extrapolations-0.669740.3099-0.55244-0.670450.3048-0.55205-0.669437(5)0.3070(3)-0.5458(1)	

^a Using LSUBm; $m = \{4, 6, 8\}$

^b Using LSUBm; $m = \{3, 5, 7\}$

we observe a weakly first-order (or possibly second-order) quantum phase transition at a

first critical point $\kappa_{c_1}=0.80\pm0.01$ ($\kappa\equiv J_2'/J_1$)

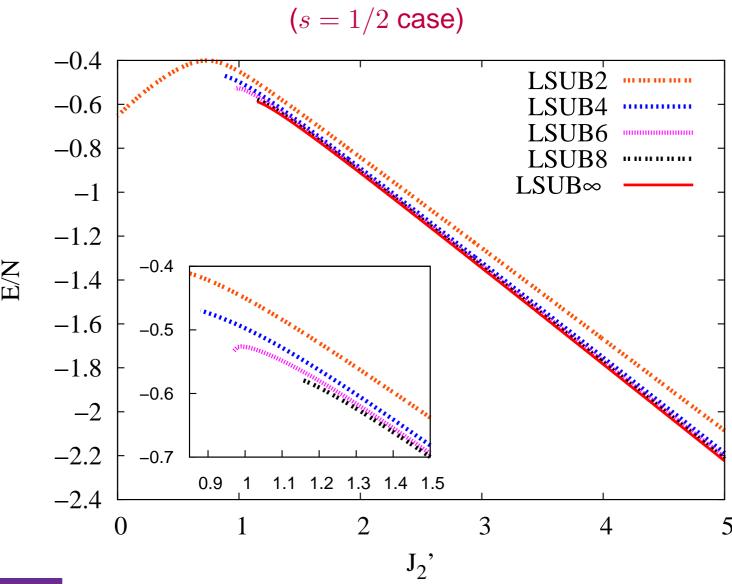
[c.f. second-order classical transition at $\kappa_{\rm cl} = 0.5$]

- and thus the collinear Néel order exists to larger frustration than in the classical counterpart
- which is another example of the fact that quantum fluctuations favour collinearity

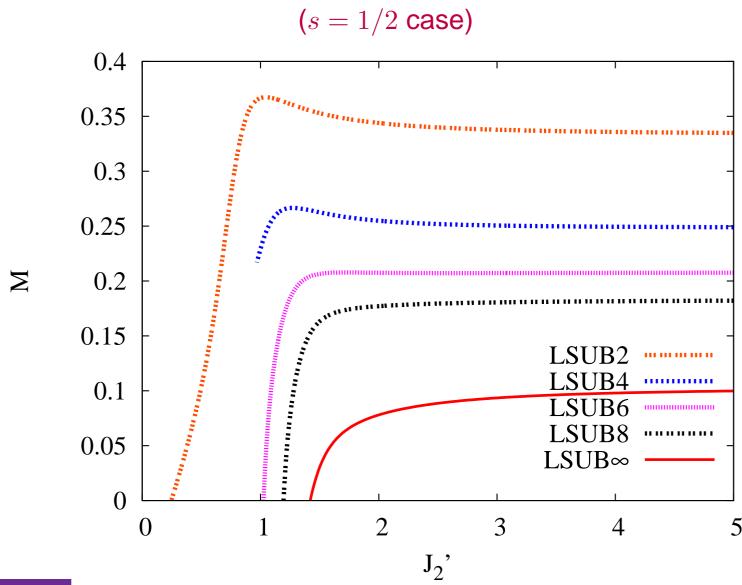
2. Spiral and Striped Phases

- we also use $|\Phi\rangle \to |\Phi_{\rm stripe}\rangle$ as CCM model state
- and recall again : the spiral phase approaches collinearity ($\phi = \frac{1}{2}\pi$) for the uncoupled 1D chain limit (as $J_2' \to \infty$) much faster than in the corresponding classical model

GS Energy versus J_2' in Striped Phase



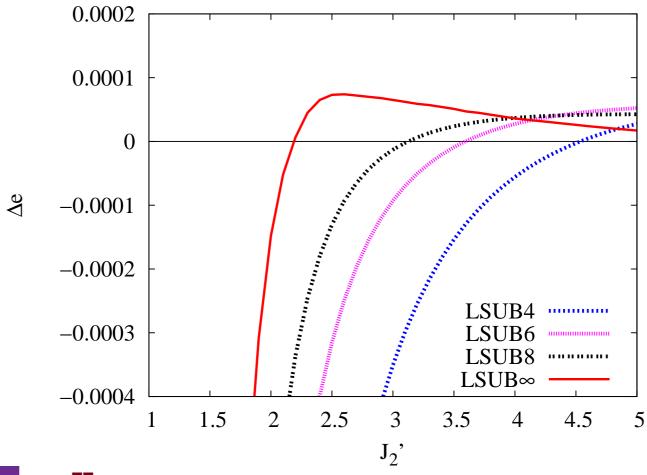
Onsite Magnetization (Order Parameter) versus J_2' in Striped Phases



Energy Difference Between Spiral and Striped Phases versus J_2'

$$(s = 1/2 \text{ case})$$

• we calculate $\Delta e = e^{\rm spiral} - e^{\rm stripe}$, $e \equiv E/N$



- we observe a second critical point at $\kappa_{c_2} = 1.8 \pm 0.4$ where a first-order quantum phase transition occurs from the spiral phase to the striped phase
 - thereby providing quantitative verification of a recent qualitative prediction of Starykh and Balents using an RG analysis of this model, which did not, however, evaluate the actual critical point
 - thus providing yet another example of the fact that quantum fluctuations tend to preserve collinear order
 - and where, this time, the quantum phase transition is driven by the competition between different collinear structures on the chains connected by J_2' bonds
 - but where the striped phase is also completely collinear

■ SPIN-1 CASE

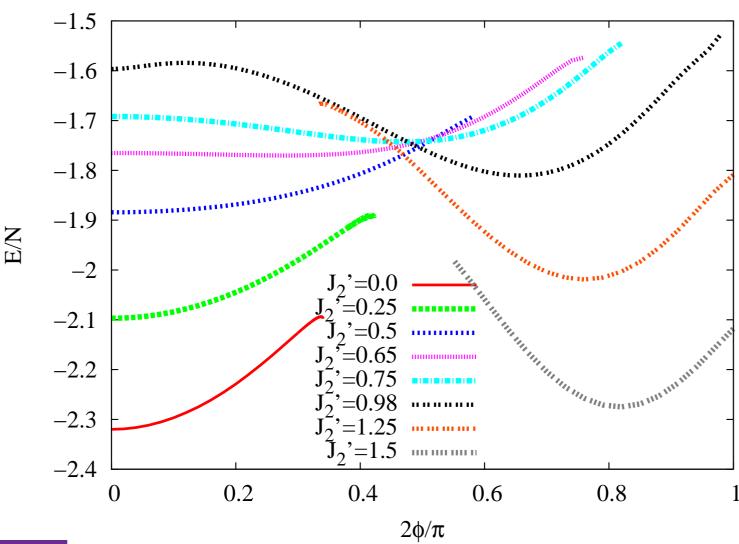
1. Néel and Spiral Phases

• again, for $|\Phi\rangle = |\Phi_{\rm spiral}\rangle$ we treat pitch angle ϕ as a variable to be chosen so that

$$E_{\mathrm{SUB}m-m}(\phi) = \min \text{ at } \phi = \phi_{\mathrm{SUB}m-m}$$

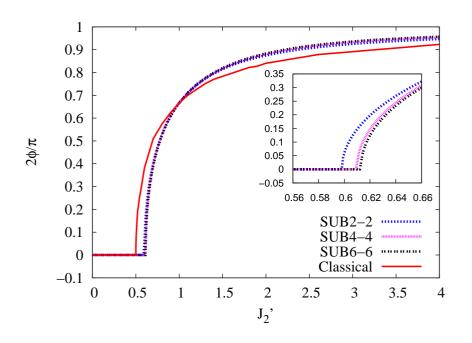
- again, we observe how $\phi \to \frac{1}{2}\pi$ as $J_2' \to \infty$ faster than for the corresponding classical case, but by no means as fast as for the s=1/2 case considered previously
- again, we often obtain (real) solutions only for certain ranges of ϕ depending on the value of $\kappa \equiv J_2'/J_1$, with termination points clearly seen, exactly as in the s=1/2 case considered previously

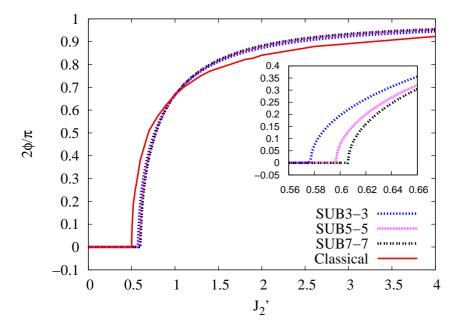
GS Energy versus Pitch Angle for Spiral Phase



Pitch Angle $\phi = \phi_{SUBm-m}$ of Spiral Phase versus J_2' ($\phi = 0 \Rightarrow$ Néel Phase)

(s=1 case)

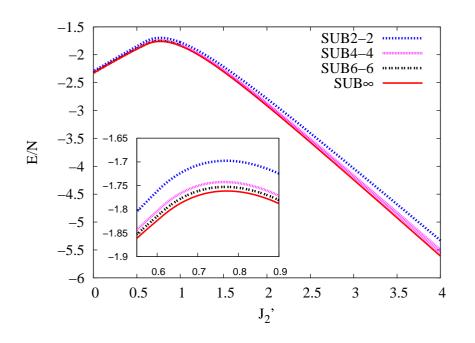


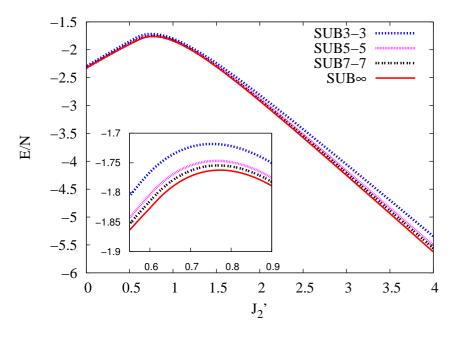


(a) SUBm-m; $m = \{2, 4, 6\}$

GS Energy versus J_2' in Néel and Spiral Phases

(s=1 case)

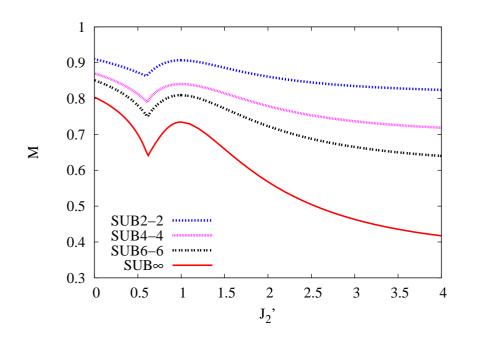


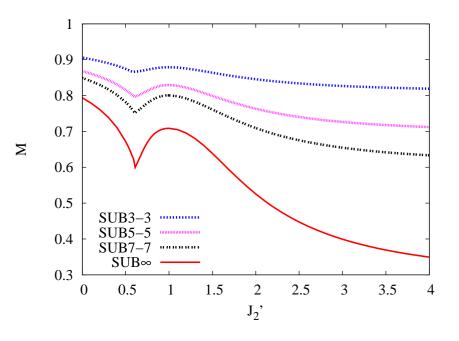


(a) SUBm-m; $m = \{2, 4, 6\}$

Onsite Magnetization (Order Parameter) versus J_2' in Néel and Spiral Phases

$$(s=1 \text{ case})$$





(a) SUBm-m; $m = \{2, 4, 6\}$

Results for Isotropic HAF on Square and Triangular Lattices

(s)	=	1 case)

Method	E/N	M		E/N	M	
	square ($\kappa = 0$)		triangular ($\kappa=1$)			
SUB2-2	-2.29504	0.9100		-1.77400	0.9069	
SUB3-3	-2.29763	0.9059		-1.80101	0.8791	
SUB4-4	-2.31998	0.8702		-1.82231	0.8405	
SUB 5-5	-2.32049	0.8682		-1.82623	0.8294	
SUB 6-6	-2.32507	0.8510		-1.83135	0.8096	
SUB7-7	-2.32535	0.8492		-1.83288	0.8006	
Extrapolations						
SUB^{∞} a	-2.32924	0.8038		-1.83860	0.7345	
$SUB\infty$ b	-2.32975	0.7938		-1.83968	0.7086	
SWT-3	-2.3282	0.8043				
SE	-2.3279(2)	0.8039(4)				

^a Using SUBm-m; $m = \{2, 4, 6\}$

^b Using SUBm-m; $m = \{3, 5, 7\}$

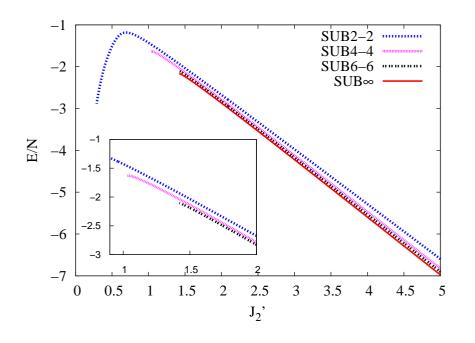
- we observe now a second-order quantum phase transition at a *critical point* $\kappa_c = 0.62 \pm 0.01$ ($\kappa \equiv J_2'/J_1$) [c.f. second-order classical transition at $\kappa_{\rm cl} = 0.5$ for $s \to \infty$ case, and weakly first-order transition at $\kappa_c \equiv 0.80 \pm 0.01$ for s = 1/2 case]
- where the collinear Néel order continues to exist to larger frustration than in the classical counterpart, but not to such high value of frustration as for the intrincally more quantum-mechanical s=1/2 counterpart

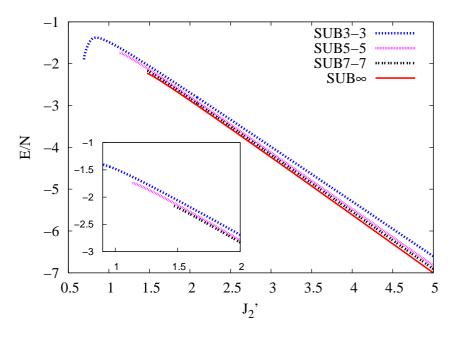
2. Spiral and Striped Phases

- once again we also use $|\Phi\rangle \to |\Phi_{\rm stripe}\rangle$ as an alternative CCM model state
- and now we recall again that although the spiral phase approaches collinearity ($\phi = \frac{1}{2}\pi$) for the uncoupled 1D chain limit (as $J_2' \to \infty$) faster than in the corresponding classical model, the approach is not as rapid as for the s=1/2 counterpart
 - \rightarrow the striped phase, if it exists at all, is likely to be even more fragile than in the s=1/2 case

GS Energy versus J_2' in Striped Phase

(s=1 case)



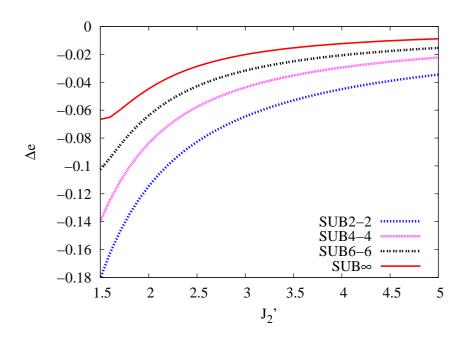


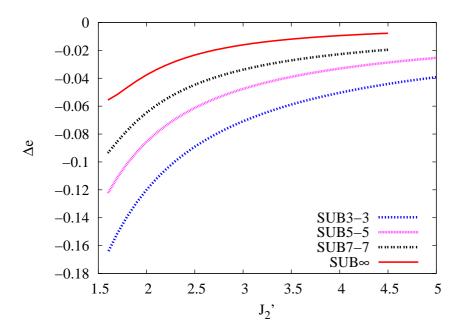
(a) SUBm-m; $m = \{2, 4, 6\}$

Energy Difference Between Spiral and Striped Phases versus J_2^\prime

$$(s=1 \text{ case})$$

• we calculate $\Delta e = e^{\rm spiral} - e^{\rm stripe}$, $e \equiv E/N$





(a) SUBm-m; $m = \{2, 4, 6\}$

- we observe now the spiral phase always lies considerably lower in energy than the striped phase for the s=1 case, at all values of J_2' , compared with the much smaller energy advantage of the striped phase over the spiral phase for values of $\kappa > \kappa_{c_2} = 1.8 \pm 0.4$ in the s=1/2 case
- and hence, that for the s=1 case, there is no second phase transition from a spiral to a striped phase, unlike in the s=1/2 case

- In conclusion, we know of no more powerful nor more accurate method than the CCM for dealing with these strongly correlated and highly frustrated 2D spin-lattice models of quantum magnets, such as the one example used here for an illustration
- We, and our collaborators, have studied many other spin-lattice models using the CCM – by now there are probably more than 100 papers on such applications

THANK YOU FOR YOUR ATTENTION!

