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Extended Heisenberg models (“J-Q” models) with AF-VBS transitions 

The “deconfined” quantum-criticality scenario

QMC simulations in the valence-bond basis; finite-size scaling results

Emergent U(1) symmetry and U(1)-Z4 symmetry cross-over

Detection of spinon confinement/deconfinement
• triplet states in an extended valence-bond basis
• tests in 1D; ladders (2 coupled chains)
• preliminary results for J-Q model



H =
∑

〈i,j〉

Jij
!Si · !Sj

= J1

= J2

A challenging problem: frustrated quantum spins

Quantum phase transition between AF and VBS state expected at J2/J1≈0.45
• but difficult to study in this model
• exact diagonalization only up to 6×6
• sign problems for QMC

= 〈!Si · !Sj〉
Are there models with AF-VBS
transitions that do not have QMC
sign problems?

= (| ↑1↓2〉 − | ↓1↑2〉)/
√

2

• No spin (magnetic) order
• Broken translational symmetry

• ground state for g=J2/J1≈1/2 is most likely a VBS [Read & Sachdev (1989)]



= 〈!Si · !Sj〉

Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher,
 Science 303, 1490 (2004)

Generic continuous AF-VBS transition
• beyond the Landau-Ginzburg paradigm 
   (generically continuous AF-VBS transition)

Spinon deconfinement at
the critical point
Confinement inside VBS
phase associated with new
length scale and emergent
U(1) symmetry
• how to study this numerically?
• in what models (hamiltonians)?

“angular” VBS fluctuations → new length scale
• U(1) - Z4 cross-over length
• spinon confinement length

H = J
∑

〈i,j〉

Si · Sj + g ...



2D S=1/2 Heisenberg model with 4-spin interactions

H = J
∑

〈ij〉

Si · Sj − Q
∑

〈ijkl〉

(Si · Sj −
1

4
)(Sk · Sl −

1

4
)

weakly 1st order argued by
Jiang et al., JSTAT, P02009 (2008)
Kuklov et al., PRL 101, 050405 (2008)

AWS, Phys. Rev. Lett (2007)

• no sign problems in QMC simulations
• has an AF-VBS transition at J/Q≈0.04
• microscopic interaction not necessarily realistic for real materials
• macroscopic physics (AF-VBS transition) relevant for
‣ testing and stimulating theories (e.g., quantum phase transitions)
‣ there may already be an experimental realization of the critical point

= 〈!Si · !Sj〉

g = Q/J

In agreement with theory:
• dynamic exponent z=1
• “large” exponent ηspin

• emergent U(1) VBS symmetry 



|Vr〉 =
N/2∏

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/

√
2Valence-bonds between sublattice  A, B sites

A

B

Basis states; singlet products

|Ψ〉 =
∑

r

fr|Vr〉

The valence bond basis is overcomplete and non-orthogonal
• expansion of arbitrary singlet state is not unique

(all fr positive for non-frustrated system)

〈Vl|Vr〉|Vr〉|Vl〉

All valence bond states overlap with each other

〈Vl|Vr〉 = 2N◦−N/2 N◦ = number of loops in overlap graph

Spin correlations from loop structure

〈Vl|!Si · !Sj |Vr〉
〈Vl|Vr〉

=
{

3
4 (−1)xi−xj+yi−yj

0
(i,j in same loop)

(i,j in different loops)

More complicated matrix elements 
(e.g., dimer correlations) are also 
related to the loop structure
K.S.D. Beach and  A.W.S., 
Nucl. Phys. B 750, 142 (2006)



(-H)n projects out the ground state from an arbitrary state

Action of bond operators

H =
∑

〈i,j〉

!Si · !Sj = −
∑

〈i,j〉

Hij , Hij = (1
4 − !Si · !Sj)

S=1/2 Heisenberg model

Project with string of bond operators

Hab|...(a, b)...(c, d)...〉 = |...(a, b)...(c, d)...〉

Hbc|...(a, b)...(c, d)...〉 =
1
2

|...(c, b)...(a, d)...〉

∑

{Hij}

n∏

p=1

Hi(p)j(p)|Ψ〉 → r|0〉 (r = irrelevant)

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(−H)n|Ψ〉 = (−H)n
∑

i

ci|i〉 → c0(−E0)n|0〉



Expectation values: 〈A〉 = 〈0|A|0〉
Strings of singlet projectors

Pk =
n∏

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
∑

k

Pk|Vr〉 =
∑

k

Wkr|Vr(k)〉 → (−E0)nc0|0〉

∑

g

〈Vl|P ∗
g =

∑

g

〈Vl(g)|Wgl → 〈0|c0(−E0)n

|Vr〉〈Vl| A
Monte Carlo sampling 
of operator strings

6-spin chain example:

〈A〉 =
∑

g,k〈Vl|P ∗
g APk|Vr〉∑

g,k〈Vl|P ∗
g Pk|Vr〉

=
∑

g,k WglWkr〈Vl(g)|A|Vr(k)〉
∑

g,k WglWkr〈Vl(g)|Vr(k)〉



Loop updates in the valence-bond basis
AWS and H. G. Evertz, ArXiv:0807.0682

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
• good valence-bond trial wave functions can be used
• larger systems accessible
• sample spins, but measure using the valence bonds

|Ψ〉〈Ψ|

A

More efficient ground state QMC algorithm → larger lattices 



T=0 results with the improved valence-bond algorithm

Universal exponents? Two different models: J-Q2 and J-Q3

Cij = 1
4 − Si · Sj

H2 = −Q2

∑

〈ijkl〉

CklCij

H3 = −Q3

∑

〈ijklmn〉

CmnCklCij

H1 = −J
∑

〈ij〉

Cij

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Studies of J-Q2 model and J-Q3 model on L×L lattices with L up to 64 

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉

Exponents ηs, ηd, and ν from the squared order parameters 



coupling ratio

J-Q2 model; qc=0.961(1)

ηs = 0.35(2)
ηd = 0.20(2)
ν = 0.67(1)

J-Q3 model; qc=0.600(3)

ηs = 0.33(2)
ηd = 0.20(2)
ν = 0.69(2)

q =
Qp

Qp + J
, p = 2, 3

Exponents universal (within error bars)
• still higher accuracy desired (in progress)



T,L scaling properties
R. G. Melko and R. Kaul, PRL 100, 017203 (2008)

Additional confirmation of 
a critical point
• using finite-T SSE
• larger systems (because T>0)
• good agreement on critcal Q/J

z = 1, η ≈ 0.35
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FIG. 6: Scaling of χu and ρs at J = 0.038 ≈ Jc, with z = 1
and d = 2. These plots are the universal functions Y(x, 0) and
Z(x, 0) up to the non-universal scale factor c on the x-axis.
The expected asymptotes (see text) are plotted as dashed
lines Y(x → 0, 0) = Aρ/x and Z(x → ∞, 0) = Aχxd/z. From
fits to the data, we find Aχ/c2 = 0.041(4) and Aρc = 0.37(3),
allowing us to estimate a universal model-independent num-
ber associated with the QCP, Aρ

p

Aχ ≈ 0.075(4).

support for a z = 1 QCP between 0.038 ≤ J ≤ 0.040.

Finally, we hold the second argument of the scaling
functions [Eqs. (2,3)] constant by tuning the system to
g = 0. One then expects a data collapse for ρs/T and
Lχu when they are plotted as a function of LzT (with z =
1). Fig. 6 shows this collapse for simulations carried out
with extremely anisotropic arguments LT , varying over
almost three orders of magnitude. There is an excellent
data collapse over 8 orders of magnitude of the range of
the universal functions, with no fit parameters. This data
together with that in Fig. 4 provide our most striking
evidence for the existence of a QCP with z = 1 in the
proximity of J/Q ≈ 0.038.

Discussion: In this paper we have presented exten-
sive data for the SU(2) symmetric JQ model which in-
dicates that the Néel order (present when J $ Q) is
destroyed at a continuous quantum transition as Q is in-
creased [6]. In the finite-T quantum critical fan above
this QCP, scaling behavior is found that confirms the
dynamic scaling exponent z = 1 to high accuracy. The
anomalous dimension of the Néel field at this transition is
determined to be ηN ≈ 0.35(3), almost an order of mag-
nitude more than its value of 0.038 [13] for a conventional
O(3) transition. For sufficiently large values of Q we find
that the system enters a spin-gapped phase with VBS or-
der. To the accuracy of our simulations, our results are
fully consistent with a direct continuous QCP between
the Néel and VBS phases, with a critical coupling be-
tween J/Q ≈ 0.038 and J/Q ≈ 0.040. We have found no
evidence for double-peaked distributions, indicating an
absence of this sort of first-order behavior on the rela-
tively large length scales studied here. It is interesting to

compare our results to the only theory currently available
for a continuous transition out of the Néel state into a
quantum paramagnetic VBS state in an S = 1/2, SU(2)
symmetric quantum magnet: the deconfined quantum
criticality scenario [4], in which the Néel-VBS transition
is described by the non-compact CP

1 field theory. All of
the qualitative observations above, including an unusu-
ally large ηN [14] agree with the predictions of this theory.
Indeed, our estimate for ηN is in remarkable numerical
agreement with a recent field-theoretic computation [15]
of this quantity which finds, ηN = 0.3381. With regard
to a detailed quantitative comparison, we have provided
the first step by computing many universal quantities,
Xχ(x), XS(x), ηN ≈ 0.35 [Fig. 3], Y(x, 0), Z(x, 0) and
Aρ

√

Aχ ≈ 0.075 [Fig. 6] in the JQ model. Analogous

computations in the CP
1 model, although currently un-

available [16] are highly desirable to further demonstrate
that the JQ model realizes this new and exotic class of
quantum criticality.
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spin stiffness, uniform susceptibility

staggered spin structure factor and susceptibility



Jiang, Nyfeler, Chandrasekharan, Wiese, JSTAT, P02009 (2008)
Kuklov, Matsumoto, Prokof'ev, Svistunov, Troyer, PRL 101, 050405 (2008)

Could the transition be first-order?
First-order transition argued for (vigorously) by

Q2 =
〈m4〉
〈m2〉2

Binder ratio

g2 = (5− 3Q2)/2

Binder cumulant

Size independent
(curve crossings) at
criticality

Let’s look at a well known signal of first-order transition:

g2 < 0 at a first-order
transition
• no signs of g2<0 in 

SSE results for L 
up to 256

J −Q2 model

(unpublished)

SSE results; β = L



What kind of VBS; columnar or plaquette?
➭ look at joint probability distribution P(Dx,Dy)

Dx Dx

Dy Dy

|0〉 =

∑

k

ck|Vk〉

The simulations sample the ground state;

Graph joint probability distribution                      P (Dx, Dy)

Dx =
〈Vk| 1

N

∑N
i=1(−1)xiSi · Si+x̂|Vp〉

〈Vk|Vp〉

Dy =
〈Vk| 1

N

∑N
i=1(−1)yiSi · Si+ŷ|Vp〉

〈Vk|Vp〉

➭ 4 peaks expected; Z4-symmetry unbroken in finite system

critical



VBS fluctuations in the theory of deconfined quantum-critical points
➣ plaquette and columnar VBS “degenerate” at criticality
➣ Z4 “lattice perturbation” irrelevant at critical point
    - and in the VBS phase for L<Λ∼ξa, a>1 ❨spinon confinement length❩
➣ emergent U(1) symmetry
➣ ring-shaped distribution expected for L<Λ

Dx Dx

Dy Dy

L=32
J=0

AWS, Phys. Rev. Lett (2007)

No sign of cross-over to Z4 symmetric
order parameter seen in the J-Q2 model
• length Λ > 32



Order parameter histograms P(Dx,Dy), J-Q3 model

This model has a more robust VBS phase
• can the symmetry cross-over be detected?

D4 =
∫

rdr

∫
dφP (r,φ) cos(4φ)

VBS symmetry cross-over
• Z4-sensitive order parameter

Λ ∼ ξa ∼ q−aν

Finite-size scaling gives U(1)
(deconfinement) length-scale

q = 0.635
(qc ≈ 0.60)

L = 32

q = 0.85

L = 32

L1/aν(q − qc)/qc

α ≈ 1.20± 0.05

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)



Is it possible to directly observe deconfinement of spinons?
Valence bond projector method: direct access 
to the distribution of the triplet in an excited state

Singlet propagation

|ΨS〉 |ΨT 〉

Triplet propagation

(| ↑↓〉 − | ↓↑〉)/
√

2

(| ↑↓〉 + | ↓↑〉)/
√

2

=

=

Creating a triplet corresponds to acting with Sz operators

S
z(q) =

∑

r

eiq·r
S

z(r)S
z(q)|ΨS(0)〉 = |ΨT (q)〉

In principle triplets with arbitrary momentum can be studied
• but phases cause problems in sampling
• in practice q close to (0,0) and (π,π) are accessible



Deconfinement of spinons in the 1D Heisenberg model
Probability distribution of the triplet bond length
- a triplet bond corresponds to two spinons; are they bound?

q = π − n2π/L q = n2π/L

n = 0

n = 1

n = 2

n = 3

Pq(r)
Jy

Jx

Jy/Jx = 1/2



Λ

Spinon deconfinement for Jy/Jx→0

= spin correlation length

= confinement length (average triplet size)

Λ ∝ ξ

In this case

Λ ∼ ξa, a > 1

At a deconfined
quantum-critical
point

ξ



Confinement length in the VBS phase of the J-Q2 model

J −Q2 model, J = 0

preliminary results show Λ > ξ at J=0
• does this Λ scale as the U(1) length?
• more calculations to be done (J-Q3 model will be better)



Experimental realizations of deconfined quantum-criticality? 

EtMe3Sb[Pd(dmit)2]2 shows
no magnetic order
• May be a realization of the 

deconfined quantum-critical 
point [Xu and Sachdev, PRB 
79, 064405 (2009)]

 VBS state

Layered triangular-lattice systems based on [Pd(dmit)2]2 dimers

Y. Shimizu et al, J. Phys.: Condens. Matter 19, 145240 (2007)

J = 200-250 K



η ≈ 0.35

T. Itou et al, Phys. Rev. B 77, 104413 (2008)

NMR spin-lattice relaxation rate is sensitive to η

Quantum-critical scaling 
with exponent η in good
agreement with the QMC
calculations

1
T1
∼ T η



Summary and Conclusions

Simulation methods in the valence bond basis
• May be the most efficient tools for studying ground state of many     

unfrustrated quantum spin models
• Direct way to investigate spinon confinement/deconfinement

Unfrustrated multi-spin interactions
• J-Q model and wide range of generalizations
• Give unprecedented access to VBS states and transitions

Neel-VBS transition in square-lattice J-Q models
• Finite-size behavior indicated deconfined quantum-critical point
• Same exponents for two models; strengthens the case
• Emergent U(1) symmetry; cross-over quantified
• No signs of first-order transition (Binder cumulant is > 0)

Experimental realizations of deconfined quantum-criticality?
• EtMe3Sb[Pd(dmit)2]2 is the most promising candidate so far
• NMR 1/T1 shows scaling with the QMC value for ηs


