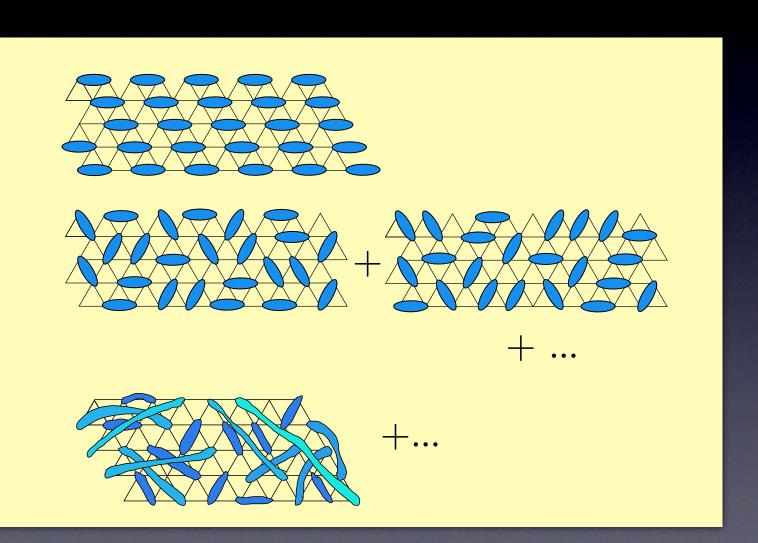

Quantum Spin Liquids

Ultimate frustration?

- Can quantum fluctuations prevent order even at T=0: f=∞?
- Many theoretical suggestions since Anderson (73)
 - "Resonating Valence Bond" QSL states

Variational methods

- Probably the most flexible and physical approach which has a good success record in theoretical physics is the variational wavefunction
- Pioneered by PW Anderson, who suggested "RVB" state for the triangular antiferromagnet (he was wrong, obviously!)
- Idea: best state for two spin-I/2 spins is a "Valence Bond" (VB), just a spin singlet


$$|VB\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

VB states

VBS

Shortrange RVB

Longrange RVB

General expectations for VB states

- Formation of a VB creates a gap to excite those two spins
 - Long-range VBs are more weakly bound, so with long-range VBs there need not be a spin gap for the system as a whole
 - But generally the susceptibility will be suppressed by VB formation
 - Excitations associated with moving VBs can have low energy but do not carry spin

The "landscape"

- As you can imagine, the number of RVB variational wavefunctions is vast
- It is now clear that the number of distinct Quantum
 Spin Liquid (QSL) phases is also huge
 - e.g. X.G. Wen has classified hundreds of different QSL states all with the same symmetry on the square lattice (and this is not a complete list!)
 - This makes it difficult to compare all of the states
 - and there may be many states with similar energies

Slave particles

- One approach to constructing variational wavefunctions is to begin with a state with free particles, and project it back to a spin wavefunction
 - Use a reference Hamiltonian

$$H_{ref} = \sum_{ij} \left[t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + \text{h.c.} + \Delta_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} + \text{h.c.} \right]$$

Project

$$|\Psi_{var}\rangle = \prod_{i} \hat{P}_{n_i=1} |\Psi_{ref}\rangle$$

Spinons and gauge theory

- It is usually believed that to such a wavefunction there corresponds an effective theory in which the c_i,c_i[†] fermions are elevated to "almost" real quasiparticles: spinons
- However they generally carry a gauge charge and interact with associated gauge fields that reflect the projection
 - Note that a gauge transformation of the c_i
 does not change the projected wavefunction

Gauge theories

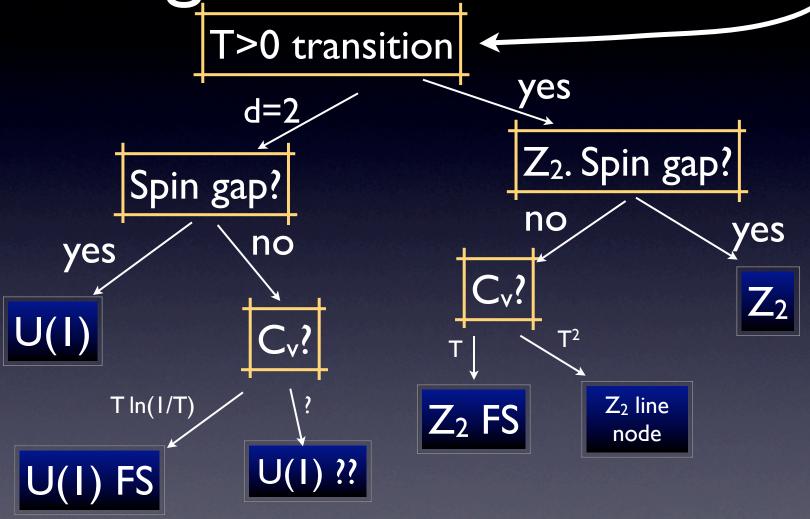
- All the known (in theory) QSL states seem to have some underlying gauge structure
 - This is probably necessary because of the nonlocality of spinons
- Various gauge structures are possible, most commonly U(1) and Z_2
- Also different spinon "band structures" are possible - gapped, Dirac, Fermi surface...
- These gross features are connected to "Projected Symmetry Group" structure (perhaps Sachdev will discuss?)

Gross low-E features from gauge theory

- How low?
- U(I) states
 - spinons unpaired
 - strong gauge fluctuations
 - spinons must be gapless in d=2
 - stable in d=3 at T=0 only
- Z₂ states
 - spinons paired
 - weak gauge fluctuations
 - stable in d=2 at T=0
 - T>0 Ising transition in d=3

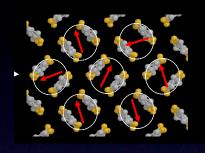
Search for QSLs

- Where do we look?
 - Spin-I/2 frustrated magnets
 - Intermediate correlation regime (near the Mott transition)

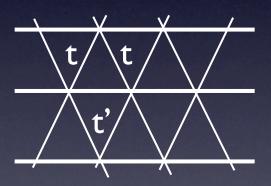

Search for QSLs

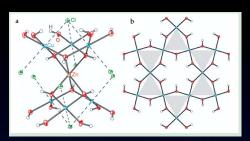
- I/f=T_c=0: no ordering (magnetic or otherwise!)
- No spin freezing (hysteresis, NMR, μSR)
- Structure of low energy excitations
 - $\chi(T)$, $C_v(T)$, I/T_I , κ , inelastic neutrons
 - theoretical guidance helpful!
- Smoking gun?

A diagnostic flowchart

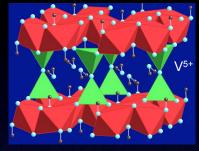


A diagnostic flowchart

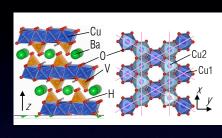


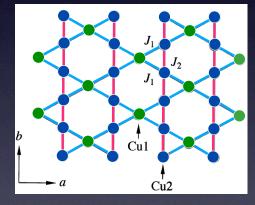

disordered possibilities neglected

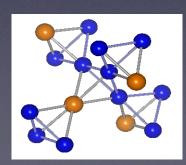
S=1/2 Materials

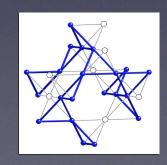


 $K-(BEDTTTF)_2Cu_2(CN)_3$ $EtMe_3Sb[Pd(dmit)_2]_2$




herbertsmithite




volborthite

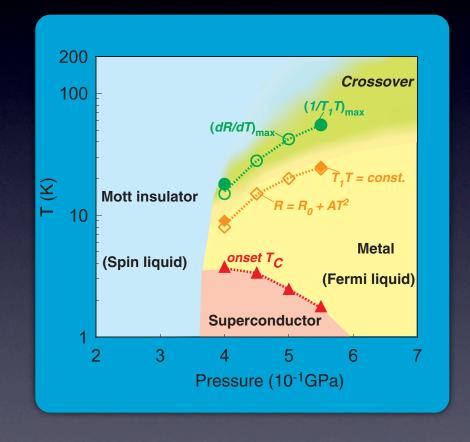
vesignieite

 $Na_4Ir_3O_8$

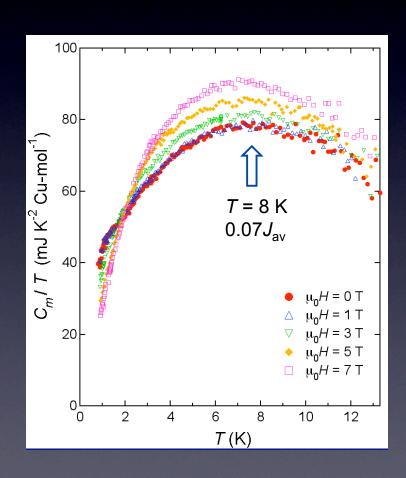
S=1/2 Candidates

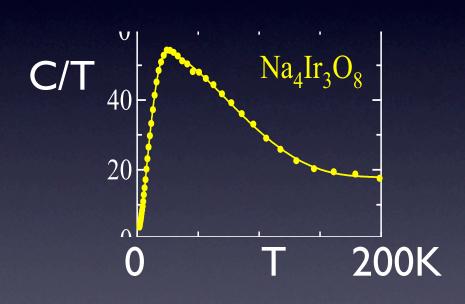
material	lattice	ground state	f
$K-(BEDTTTF)_2Cu_2(CN)_3$	≈triangular	QSL?	>103
EtMe ₃ Sb[Pd(dmit) ₂] ₂	≈triangular	QSL?	>103
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	kagome	QSL?	>103
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	a-kagome	AF? Glass?	≈I00
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	a-kagome	QSL?	>100
Na ₄ Ir ₃ O ₈	hyperkagome	QSL?	>103

S=1/2 Candidates


material	lattice	gı	f
$K-(BEDTTTF)_2Cu_2(CN)_3$	≈triangular		>103
EtMe ₃ Sb[Pd(dmit) ₂] ₂	≈triangular		>103
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	kagome		>103
Cu ₃ V ₂ O ₇ (OH) ₂ · 2H ₂ O (volborthite)	a-kagome	AF? Glass?	≈I00
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	a-kagome	QSL?	>100
Na ₄ Ir ₃ O ₈	hyperkagome	QSL?	>103

S=1/2 Candidates


material	Θ _{cw}	Type of MI	chemistry
$K-(BEDTTTF)_2Cu_2(CN)_3$	375K	weak	organic
$EtMe_3Sb[Pd(dmit)_2]_2$	350K	weak	organic
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	240K	strong	inorganic
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	120K	strong	inorganic
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	80K	strong	inorganic
Na ₄ Ir ₃ O ₈	600K	weak	inorganic


K-(BEDT-TTF)2Cu2(CN)3

- Material is proximate to a Mott transition
- Non-activated transport
- Optical pseudogap

Experimental Properties

volborthite (Hiroi)

Okamoto et al

- Specific heat
 - broad peak well below |Θ_{CW}|
 - approximately $\sim AT^2$ below the peak
 - at very low temperature ~γT
 - large variations $\gamma = 1-250 \text{ mJ/(mole-K}^2)$
- This clearly indicates large low energy density of states

material	γ [mJ/(mole K ²)]
$K-(BEDTTTF)_2Cu_2(CN)_3$	12
$EtMe_3Sb[Pd(dmit)_2]_2$?
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	240
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	40
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	50
Na ₄ Ir ₃ O ₈	I

•For the same form of Hamiltonian, γ should scale with I/J

material	γ [mJ/(mole K ²)]	γ \times $ \Theta_{\rm CW} /4500$
$K-(BEDTTTF)_2Cu_2(CN)_3$	12	
$EtMe_3Sb[Pd(dmit)_2]_2$?	?
ZnCu3(OH)6Cl2 (herbertsmithite)	240	13
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	40	1.1
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	50	0.89
Na ₄ Ir ₃ O ₈		0.13

material	γ [mJ/(mole K ²)]	γ \times $ \Theta_{\rm CW} /4500$
$K-(BEDTTTF)_2Cu_2(CN)_3$	12	
$EtMe_3Sb[Pd(dmit)_2]_2$?	?
ZnCu3(OH)6Cl2 (herbertsmithite)	240	13
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	40	1.1
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	50	0.89
Na ₄ Ir ₃ O ₈		0.13

	material	γ [mJ/(mole K ²)]	γ X $ \Theta_{\rm CW} /4500$
	$K-(BEDTTTF)_2Cu_2(CN)_3$	12	I
	$EtMe_3Sb[Pd(dmit)_2]_2$?	?
1	tempting to think non-z	13	
	intrinsic at least to 2d	1.1	
	(volborthite)		
	BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	50	0.89
	Na ₄ Ir ₃ O ₈		0.13

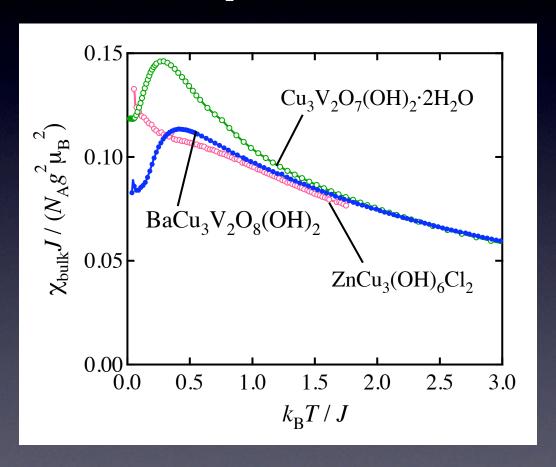
defects!

Susceptibility

- All the materials show approximate Curie-Weiss form, with some saturation at low T
 - In some cases there is a peak
 - Values of the low-T susceptibility vary within a range of only about 10
- Is this intrinsic? Or is it related to disorder or spinorbit coupling?
 - In a S=1/2 system, SOI = Dzyaloshinskii-Moriya interactions

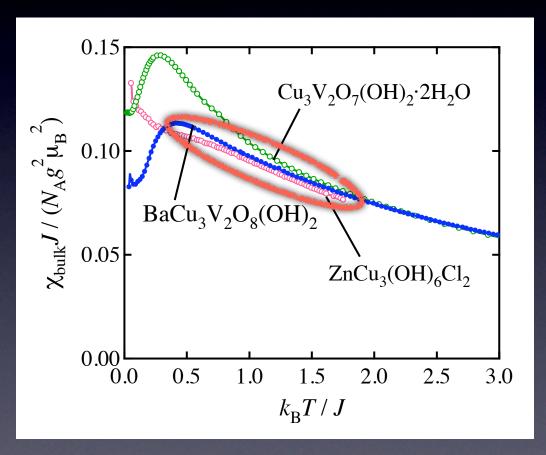
$$H_D = \sum_{ij} \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j$$

Susceptibility


material	χ (T=0) [10 ⁻⁴ emu/mole]
$K-(BEDTTTF)_2Cu_2(CN)_3$	3
$EtMe_3Sb[Pd(dmit)_2]_2$	4
ZnCu3(OH)6Cl2 (herbertsmithite)	5 (from ¹⁷ O)
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	30
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	25
Na ₄ Ir ₃ O ₈	10

•For the same form of Hamiltonian, χ should scale with I/J.

Susceptibility


material	χ (T=0) [10-4 emu/mole]	χ× Θ _{CW} /1125
$K-(BEDTTTF)_2Cu_2(CN)_3$	3	
$EtMe_3Sb[Pd(dmit)_2]_2$	4	1.2
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	5 (from ¹⁷ O)	1.1
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	30	3.2
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	25	1.8
Na ₄ Ir ₃ O ₈	10	5.3

Scaled Kagome Susceptibilities

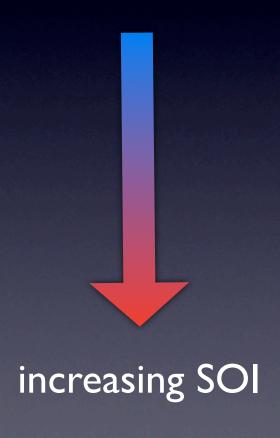
Hiroi

Scaled Kagome Susceptibilities

Hiroi

Agreement here suggests herbertsmithite and vesignieite have similar intrinsic hamiltonians

What about VB states?

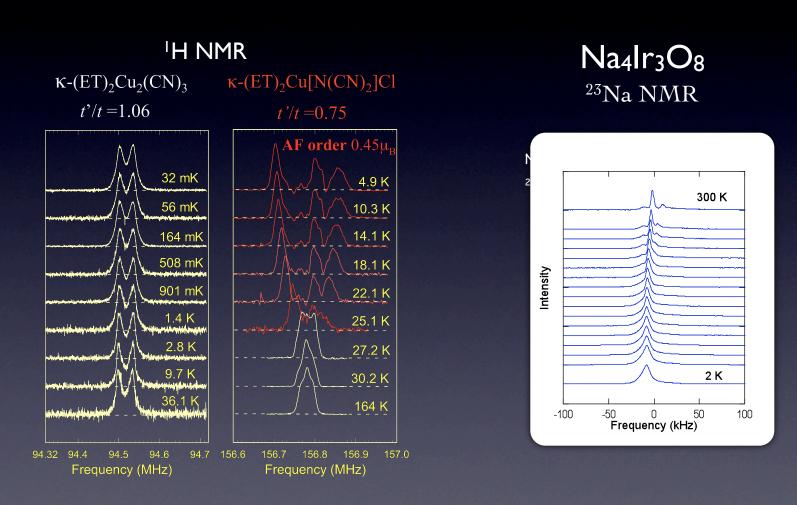

- Both VBS and RVB states are constructed from VBs, and hence should have a suppressed susceptibility
 - in fact, nearly all states that have been proposed for frustrated magnets have a vanishing susceptibility as T goes to 0
 - but this is not the case in experiment!

How important is SOI?

- ullet Wilson ratio $R=rac{4\pi^2k_B^2\chi_0}{3(g\mu_B)^2\gamma}$
 - R>>I is an indication of SOI enhancing χ
 - in general $\chi(T=0)$ is always non-zero with SOIs, even if there is a full gap (in that case, $\chi \sim D^2/\Delta^3$)
 - R~I is characteristic of free fermions carrying spin

Wilson Ratio

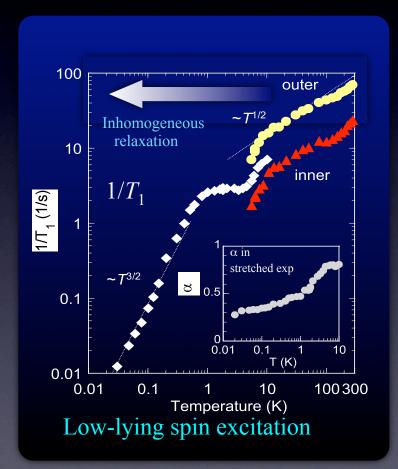
material	R
$K-(BEDTTTF)_2Cu_2(CN)_3$	~
$EtMe_3Sb[Pd(dmit)_2]_2$?
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	not intrinsic
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	6
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	4
Na ₄ Ir ₃ O ₈	70

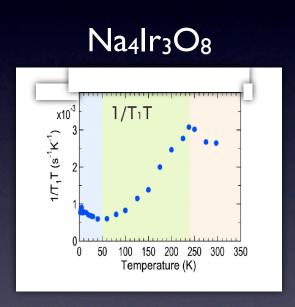

Wilson Ratio

material	R	estimated D/J
$K-(BEDTTTF)_2Cu_2(CN)_3$	~	2%
$EtMe_3Sb[Pd(dmit)_2]_2$?	2%
ZnCu ₃ (OH) ₆ Cl ₂ (herbertsmithite)	not intrinsic	5-10%
$Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ (volborthite)	6	5-10%
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesigniete)	4	5-10%
Na ₄ Ir ₃ O ₈	70	O(I)

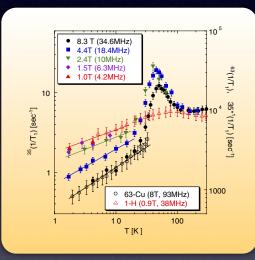
NMR/NQR/µSR

- Local probes
 - lineshape can tell if there are any static moments, even if not ordered
 - relaxation rate gives information on density of low energy states (dynamic local spin susceptibility)


NMR lineshapes



Evidence for lack of static moments


Relaxation Rate

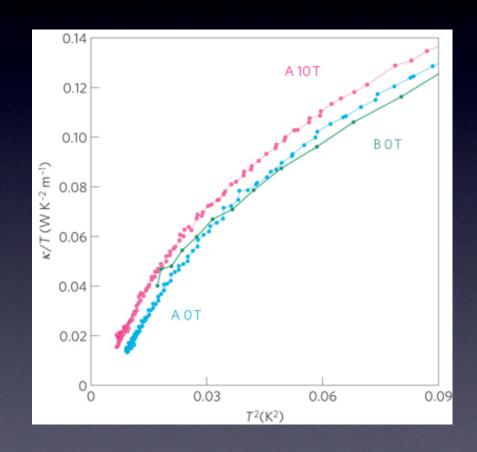
 $K-(BEDTTTF)_2Cu_2(CN)_3$

Power-laws indicate gapless excitations

Theory: Organics

- "non-magnetic insulator" found by Imada from projector MC methods in triangular lattice Hubbard model
 - now confirmed by several other calculations
- But what is it? And does it correspond to experiment?

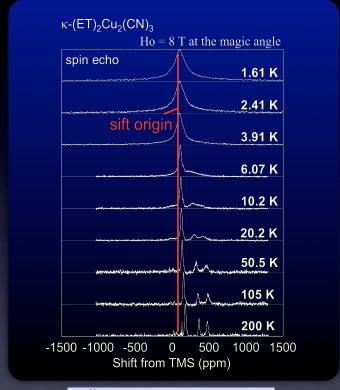
Theory: Organics

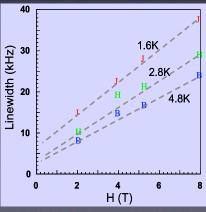

- RVB/QSL state:
 - Motrunich, Lee+Lee: (2005) "uniform RVB"
 - this is a kind of RVB state with very many (maybe a maximal number of?) long-range VBs
 - It is described by a "Fermi sea" of spinons coupled to a U(I) gauge field
- Good variational energy for triangular lattice Hubbard model
- How does it fit with experiments?

Circumstantial evidence

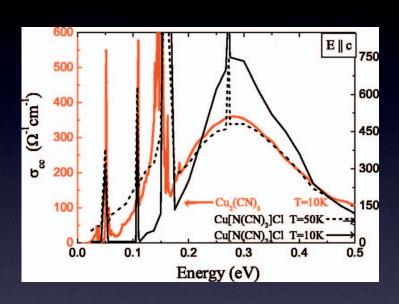
- No ordering
- Large T=0 susceptibility
- Linear specific heat (2)
 - theory predicts $C_v = AT^{2/3}$ due to gauge fluctuations
 - but if we ignore this, it seems reasonable that R=O(I)
- Power-law I/T_I
 - but it's not clear the actual power works

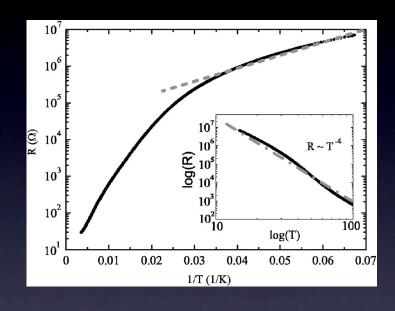
Challenges


- The thermal conductivity appears to show a small gap of order 0.5K at very low temperature
- Not consistent with uniform RVB
- Is it consistent with heat capacity?



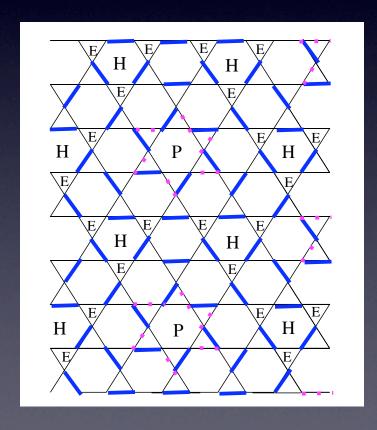
Challenges


- ¹³C NMR: line broadening at low temperature in a field
 - indicates


 inhomogenous AF
 moments induced
 by field

Challenges

very small or no optical gap (pseudogap)


non-activated resistivity (or gap <15 meV)

Theory: Kagomes

- ED: clearly indicates a non-magnetic ground state, with a small or zero gap to triplets and/or singlets
- There are at least two competing pictures of the ideal kagome lattice
 - VBS states
 - This idea has a long history but was revived recently by Huse+Singh, and seems to be favored by most numerical approaches
 - However, one should be cautious since many approaches are biased toward short-range VBs

Marston-Zeng VBS

• 36 site unit cell with a small gap

VBS vs expt

- In any VBS state, you should have a gap for all excitations
 - seemingly at odds with specific heat and NMR I/T_I
 - but it is also agreed that these gaps must be very small, so the state may be highly susceptible to disorder, SOI, anisotropy
 - one needs to understand how these perturbations affect the physics to make any real comparison (or get some new expts!)

Dirac QSL

- Y. Ran et al, 2007: proposed an RVB state built from projected lattice Dirac fermions, based on variational wavefunctions
- This state has $C_v \sim AT^2$ and $\chi \sim BT$, and certain power-law correlations of spin, etc.
 - need to invoke impurities to explain both linear C_v and non-zero $\chi(0)$
 - But quadratic specific heat can agree over an intermediate temperature range
 - Without impurities, DM is expected to induce magnetic order

Is theory natural?

- At the moment, all the viable ideas on purely theoretical grounds involve some degree of VB formation
- However, in experiment, it is not particularly clear that this is happening
- In addition, there are in either case very few aspects of the experiments that are actually predicted correctly by the ideal theory
 - so apart from theoretical biases, it is hard to say that there is any really compelling reason to believe in these theories!

Where now?

- Incremental improvements in theory and materials could converge
- It is possible we need a radically different theory of QSLs, which might naturally explain the experiments
- It would be good to have theories that focus less on very low temperature, and more on intermediate energy physics, and are more quantitative

The Smoking Gun

- Can we devise an experiment which convincingly shows the presence of exotic excitations directly?
 - maybe inelastic single crystal neutrons they do see spinons in 1d
 - the "Senthil experiment" to see visons (cannot be done on most materials)
 - Can you see 2k_F oscillations somehow in a Mott insulator?
 - something more clever?

Conclusions

- Frustrated magnets provide a rich variety of phenomena including a number of promising new quantum spin liquid candidates
- For QSLs, what is needed is a combined effort of innovative experimental and theoretical work, with attention of the latter paid to the former!