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Introduction
The Problem

* Exploring and understanding the complex
conformational space of molecules
(proteins, peptides...)

* Large number of dimensions
* Energy landscape is rugged
* Multiple minima

Questions

ow rugged?

OW many minima?
ow deep are they?




Introduction
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Introduction

Conformational space can be explored by MD
simulation at high temperature + quenching

Also by the MOLS technique

MOLS is essentially an optimization technique

MOLS may be explained as a variant of Mean
Field Technique




Mean Field Technique

® Mean field technique has been applied, e.g. to
predict protein side chain structure

® O is the conformational search space

® This is divided into a number of subspaces ®.

® Each such subspace has a number of states @,
each with a probability of occurrence p;




Mean Field Technique




Mean Field Technique

@ is divided into a number of subspaces ©.




Mean Field Technique

® Fach such subspace has a number of
states ¢; each with a probability of
occurrence p;,
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Mean Field Technique

® Fach such subspace has a number of
states ¢, each with a probability of
occurrence p;,

) 2

13
Probability = p;

O




Mean Field Technique

® First p; = 1/n,

® n.is number of states of subspace i




Mean Field Technique
. =
Next, the effective potential due to a state ¢, of a

subspace @, is evaluated as

Veff((l)lz) = Zi,j PijV((Plzf (Pij)

v,

)

r=1,s=2 i=3,j=1
CPRRE Dy, Pay p31V((P12/ (P31)




Mean Field Technique

* Next, all the probabilities p; re-evaluated from
the respective effective potential as

pij = exp{_veff((pij)/ RT} / zq eXp{'Veff(q)ij)/ RT}
®* The cycle is repeated

* Evaluate effective potential based on
probability

* Evaluate probability based on effective
potential

until convergence




Mean Field Technique

® At convergence we have determined all the
probabilities p; of all the states of every

subspace

® Finally, side-chain conformations (subspace
states) with highest probability represent the
‘true state’ of the side-chain conformational

space @

i




Mean Field Technique

Application to peptide/protein (backbone) structure

Backbone torsion angles as subspaces?
(Pl (P (P4

Interaction between a pair of subspaces is not
independent of other subspaces




Mean Field Technique

® Extension to torsion angle space is not straight-
forward

® The interaction between a pair of subspaces (when
the subspaces are the torsion angles) does not
depend only on their respective states, but is a
function of the states of all other subspaces.

® ie. V(9 ®;) is not meaningful — we need

® Combinatorial explosion ! Complexity is NP




Mutually Orthogonal Latin Squares

® To avoid combinatorial explosion we use a small
sample (~ n2) of the possible (m") combinations

® \\e use mutually orthogonal Latin squares (MOLS) to
identify the sample

® ¢.g. 3 torsion angles, 5 values each -

(Pij/ 1=1,3, J=1,5

(I)l (I)2 (|)3

Totally 53 = 125 conformations

i




Mutually Orthogonal Latin Squares

3 MOLS of order 5

- Each sub square corresponds to one conformation
of the molecule

* The energy V is calculated for each of the
n2 conformations




Mutually Orthogonal Latin Squares

eThe effective energy is now

VE(@,s) = 2, WVo(Pps-)

e The summation is over all the points in the
MOLS grid in which ¢ . occurs




Mutually Orthogonal Latin Squares




Mutually Orthogonal Latin Squares

e The effective energy is now
VE(@,s) = 2, WVo(Pps-)

W, = exXp{-Vo(®P.. )/RT} [ 2. exp{-V (P...)/RT}

* Note: w, is calculated from V,, not from \feft




Mutually Orthogonal Latin Squares

e Since w, is calculated from V,, not from Veff
therefore w, is not p;
and the procedure is not iterative

e For each torsion find value that gives Min(Veft)

e The set of Min(Ve™) values is Minimum (Low)
energy conformation

e Procedure repeated for another low energy
structure




Mutually Orthogonal Latin Squares

Parameterize the search space

¥

Use these to build a set of MOLS (chosen at random) to
globally sample the space

v

Analyze the samples to obtain a low energy conformation
(This is followed by gradient minimization)

\

Another low energy
conformation?

Biophysical JI., 84, 2897, 2003




Mutually Orthogonal Latin Squares

e We obtain ~1500 low energy structures
e By clustering, we show these may be reduced
to ~ 50 mutually dissimilar structures

8 A %

% 135 ?’ @ $  e.g. 23 structures for
@*W&fﬁ@ Met-enkephalin
L ey

=k F

Biopolymers, 74, 476 2004 =




Mutually Orthogonal Latin Squares

| |
e The search is exhaustive

r22

Plot of ‘new’ structure
versus structure number

No. of new clusters

3 5 7 9 11 13 15
Structure numbers (in hundreds)

Sample Overlap
A First sample
O Second sample

2nd Principal Axis (A)

1st Principal Axis (A)




Applications — Peptide Structure

Minimal energy envelope for Met-enkephalin
JI. Phys. Chem. B, 108, 11196, 2004




Applications — Protein Structure

e Multiscale approach to protein structure prediction
MOLS libraries + MOLS assembly
(ECEPP/3) (AMBER + ‘hydrophobic’)

Myoglobin

Crystal structure Prediction
rmsd : 14.1 A




Applications — Protein Structure

e Multiscale approach to protein structure prediction
e MOLS libraries + genetic algorithms
(ECEPP/3) (AMBER + ‘hydrophobic’)

Fragments Initialization

l p

Mutation

|

Variation

Y l
Minimization Diversity
& Clustering l

l Cross over

Fragment l
Libraries Selection

Phase 1 Phase 2




Applications — Protein Structure
Left 2 Predicted; Right > Experimental

B oans g4

Avian Pancreatic N
Polypeptide 4.0 A Villin Head Piece 5.2 A Mellitin 4.3

c-MYB 6.1 A Tryptophan zipper 1.8 A

BBRC, 342,424, 2006




Applications — Protein Structure

2 Rab4 binding domain of Rabenosyn 5
46 residues
Backbone rmsd 3.6 A

Engrailed Homeodomain
56 residues
Backbone rmsd 6.5 A

E;

Bovine Pancreatic Trypsin Inhibitor
58 residues
Backbone rmsd 10.2 A




Applications — Protein loops

e Loops in protein crystal structures classified
by size. Structure predicted using ECEPP/3

Blue — Predicted structure Orange — Crystal structure

...VNRKSD...

...INMTSQQ...

... INASTLDT... ..KAPGGGCND... | ...RNLTKDRCKP...
Proteins, 67, 908, 2007




Applications — Protein loops
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Applications — Docking

e Ligand (drug) docking to proteins

o Redefine the search space as the conformational
space of peptide ligand (i.e. n torsion angles @, to
¢,), plus the ‘docking’ space (i.e. the rotation and
translation parameters of the peptide in receptor

site, r, to r).

e Composite scoring function is now

f.{p, to ¢ .} + fo{ry..res
conformational energy + ‘docking’ energy




PDB ID: 1a30, RMSD = 0.66A
Sequence: EDL

PDB ID: 1b32, RMSD = 0.51A
Sequence: KMK

Blue — predicted structure
Red — Crystal structure

Applications — Docking

PDB ID: 1sua, RMSD = 1.50A
Sequence: ALAL

PDB ID: 1dkx, RMSD = 1.35A
Sequence: NRLLLTG

PDB ID: 8gch, RMSD = 1.04A
Sequence: GAW
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PDB ID: lawq, RMSD = 1.50A
Sequence: HAGPIA

JCAMD, 22, 815, 2008




Applications — Structure density

= « Estimation of the numbers and density of low-energy
structures in the conformational landscape of proteins.
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rmsd (A)

The number of mutually dissimilar structures
found at different rmsd cut-offs for each peptide
in 10,000 MOLS structures using the ECEPP/3
potential.

PL0S One, 2009

m = a exp (bn)
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