

Multiscale Exploration of Conformational Space Using the MOLS Technique

N. Gautham

Department of Crystallography and Biophysics University of Madras, Guindy Campus Chennai 600 025

Slide 2 of 37

In this talk

- Introduction the problem
- Mean Field Theory
- Mutually Orthogonal Latin Squares
- Applications to
 - Peptide structure
 - Energy landscapes
 - Protein structure
 - Multiscale modelling

Slide 3 of 37

Introduction

The Problem

- Exploring and understanding the complex conformational space of molecules (proteins, peptides...)
- Large number of dimensions
- Energy landscape is rugged
- Multiple minima

Questions

- How rugged?
- How many minima?
- How deep are they?

Slide 4 of 37

Introduction

These images from homepage of K.A. Dill

- Conformational space can be explored by MD simulation at high temperature + quenching
- Also by the MOLS technique
- MOLS is essentially an optimization technique
- MOLS may be explained as a variant of Mean Field Technique

Slide 6 of 37

Mean Field Technique

• Mean field technique has been applied, e.g. to predict protein side chain structure

• Φ is the conformational search space

• This is divided into a number of subspaces ϕ_i

• Each such subspace has a number of states ϕ_{ij} each with a probability of occurrence ρ_{ii}

Slide 7 of 37

Mean Field Technique

Φ is the conformational search space

Slide 8 of 37

Mean Field Technique

$(\ \phi \)$ is divided into a number of subspaces $(\phi_i \)$

Slide 9 of 37

Slide 10 of 37

Slide 11 of 37

- First $\rho_{ij} = 1/n_i$
- n_i is number of states of subspace i

Slide 13 of 37

Mean Field Technique

Next, the effective potential due to a state ϕ_{rs} of a subspace ϕ_r is evaluated as

Slide 14 of 37

Mean Field Technique

• Next, all the probabilities ρ_{ij} re-evaluated from the respective effective potential as

 $\rho_{ij} = \exp\{-V^{eff}(\phi_{ij})/RT\} / \Sigma_q \exp\{-V^{eff}(\phi_{ij})/RT\}$

- The cycle is repeated ------
 - Evaluate effective potential based on probability
 - Evaluate probability based on effective potential
 - ----- until convergence

Slide 15 of 37

- At convergence we have determined all the probabilities ρ_{ij} of all the states of every subspace
- Finally, side-chain conformations (subspace states) with highest probability represent the 'true state' of the side-chain conformational space Φ

Slide 16 of 37

Mean Field Technique

Application to peptide/protein (backbone) structure ----- Backbone torsion angles as subspaces?

 $\begin{array}{c} \varphi_1 \\ \varphi_2 \\ \varphi_4 \\ \varphi_4$

Interaction between a pair of subspaces is not independent of other subspaces

Slide 17 of 37

- Extension to torsion angle space is not straightforward
- The interaction between a pair of subspaces (when the subspaces are the torsion angles) does not depend only on their respective states, but is a function of the states of all other subspaces.
- i.e. $V(\phi_{rs}, \phi_{ij})$ is not meaningful we need $V(\phi_{rs}, \phi_{ij},)$
- Combinatorial explosion ! Complexity is NP

Slide 18 of 37 Mutually Orthogonal Latin Squares

- To avoid combinatorial explosion we use a small sample (~ n²) of the possible (mⁿ) combinations
- We use mutually orthogonal Latin squares (MOLS) to identify the sample
- e.g. 3 torsion angles, 5 values each -

$$\varphi_{ii}$$
, i = 1, 3; j = 1, 5

Totally $5^3 = 125$ conformations

Slide 19 of 37

Mutually Orthogonal Latin Squares

3 MOLS of order 5

Φ _{11,} Φ ₂₁	Φ _{12,} Φ ₂₂	Φ ₁₃ , Φ ₂₃	Φ ₁₄ , Φ ₂₄	<mark>Φ₁₅, Φ₂₅</mark>
Φ ₃₁	Φ ₃₂	Φ ₃₃	Φ ₃₄	Φ ₃₅
Φ ₁₅ , Φ ₂₄	Φ _{11,} Φ ₂₅	Φ_{12,} Φ₂₁	Φ _{13,} Φ ₂₂	Φ_{14,} Φ₂₃
Φ ₃₃	Φ ₃₄	Φ ₃₅	Φ ₃₁	Φ ₃₂
Φ _{14,} Φ ₂₂	Φ ₁₅ , Φ ₂₃	Φ _{11,} Φ ₂₄	Φ _{12,} Φ ₂₅	Φ _{13,} Φ ₂₁
Φ ₃₅	Φ ₃₁	Φ ₃₂	Φ ₃₃	Φ ₃₄
φ ₁₃ , φ ₂₅	Φ_{14}, Φ_{21}	Φ ₁₅ , Φ ₂₂	Φ ₁₁ , Φ ₂₃	Φ ₁₂ , Φ ₂₄

- Each sub square corresponds to one conformation of the molecule
- The energy V is calculated for each of the n² conformations

Slide 20 of 37 *Mutually Orthogonal Latin Squares*

•The effective energy is now

$$V^{\text{eff}}(\phi_{\text{rs}}) = \sum_{q} w_{q} V_{q}(\phi_{\text{rs}}...)$$

\bullet The summation is over all the points in the MOLS grid in which ϕ_{rs} occurs

Mutually Orthogonal Latin Squares

• The effective energy is now

Slide 22 of 37

 $V^{\text{eff}}(\phi_{\text{rs}}) = \sum_{q} w_{q} V_{q}(\phi_{\text{rs}}...)$

 $w_q = \exp\{-V_q(\phi_{rs}...)/RT\} / \Sigma_q \exp\{-V_q(\phi_{rs}...)/RT\}$

• Note: w_q is calculated from V_q , not from V^{eff}

Slide 23 of 37

Mutually Orthogonal Latin Squares

- Since w_q is calculated from V_q , not from V_{eff}^{eff} therefore w_q is not ρ_{ij} and the procedure is not iterative
- For each torsion find value that gives Min(V^{eff})
- The set of Min(V^{eff}) values is Minimum (Low) energy conformation
- Procedure repeated for another low energy structure

Biophysical Jl., 84, 2897, 2003

Slide 25 of 37 Mutually Orthogonal Latin Squares

We obtain ~1500 low energy structures
By clustering, we show these may be reduced to ~ 50 mutually dissimilar structures

e.g. 23 structures for Met-enkephalin

Slide 26 of 37 *Mutually Orthogonal Latin Squares*

• The search is exhaustive

Plot of 'new' structure versus structure number

(A)

Sample Overlap ▲ First sample ○ Second sample

Slide 27 of 37 Applications – Peptide Structure

• Energy landscape, ECEPP/3 force field

Minimal energy envelope for Met-enkephalin

Jl. Phys. Chem. B, 108, 11196, 2004

Slide 28 of 37

Applications – Protein Structure

 Multiscale approach to protein structure prediction MOLS libraries + MOLS assembly (ECEPP/3) (AMBER + 'hydrophobic')

Myoglobin

Applications – Protein Structure

Slide 29 of 37

 Multiscale approach to protein structure prediction
 MOLS libraries + genetic algorithms (ECEPP/3) (AMBER + 'hydrophobic')

Phase 1

Phase 2

Slide 30 of 37 Applications – Protein Structure Left → Predicted; Right → Experimental

Avian Pancreatic Polypeptide 4.0 A

Villin Head Piece 5.2 A

Mellitin 4.3

c-MYB 6.1 A

Tryptophan zipper 1.8 A

BBRC, 342,424, 2006

Slide 31 of 37

Applications – Protein Structure

Rab4 binding domain of Rabenosyn 5 46 residues Backbone rmsd 3.6 Å

Engrailed Homeodomain 56 residues Backbone rmsd 6.5 Å

Bovine Pancreatic Trypsin Inhibitor 58 residues Backbone rmsd 10.2 Å

Slide 33 of 37

Applications – Protein loops

Slide 34 of 37

Applications – Docking

- Ligand (drug) docking to proteins
- Redefine the search space as the conformational space of peptide ligand (i.e. n torsion angles ϕ_1 to ϕ_n), plus the 'docking' space (i.e. the rotation and translation parameters of the peptide in receptor site, r_1 to r_6).

• Composite scoring function is now $f_1{\{\phi_1 \text{ to } \phi_n\}} + f_2{\{r_1...r_6\}}$ conformational energy + 'docking' energy

Slide 35 of 37

Applications – Docking

PDB ID: 1a30, RMSD = 0.66Å Sequence: EDL

PDB ID: 1b32, RMSD = 0.51Å Sequence: KMK

PDB ID: 1sua, RMSD = 1.50Å Sequence: ALAL

PDB ID: 1dkx, RMSD = 1.35Å Sequence: NRLLLTG

PDB ID: 8gch, RMSD = 1.04Å Sequence: GAW

PDB ID: 1awq, RMSD = 1.50Å Sequence: HAGPIA

JCAMD, 22, 815, 2008

Blue – predicted structure Red – Crystal structure

ide 36 of 37 Applications – Structure density

• Estimation of the numbers and density of low-energy structures in the conformational landscape of proteins.

The number of mutually dissimilar structures found at different rmsd cut-offs for each peptide in 10,000 MOLS structures using the ECEPP/3 potential.

 $m = a \exp(bn)$

PLoS One, 2009

Slide 37 of 37

Acknowledgements

Z A Rafi, K Vengadesan, J Arunachalam, V Kanakasabai, P Arun Prasad

CSIR; DST; DBT; UGC

www.unom.ac.in/Gautham_mols.pdf

Thank You

