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• Introduction – the problem

• Mean Field Theory

• Mutually Orthogonal Latin Squares

• Applications to –
• Peptide structure
• Energy landscapes
• Protein structure
• Multiscale modelling
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The Problem

• Exploring and understanding the complex 
conformational space of molecules   
(proteins, peptides…) 

• Large number of dimensions

• Energy landscape is rugged 

• Multiple minima

Questions

• How rugged?

• How many minima?

• How deep are they? 
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Introduction

• Conformational space can be explored by MD 

simulation at high temperature  + quenching

• Also by the MOLS technique

• MOLS is essentially an optimization  technique

• MOLS may be explained as a variant of Mean 

Field Technique
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• Mean field technique has been applied, e.g. to
predict protein side chain structure

• Φ is the conformational search space

• This is divided into a number of subspaces φi

• Each such subspace has a number of states φij

each with a probability of occurrence ρij
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Φ

Φ is the conformational search space
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is divided into a number of subspaces φiΦ

φ1 φ2 φ3
φi
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• Each such subspace has a number of
states φij each with a probability of
occurrence ρij

Φ11

Probability = ρ11
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•Each such subspace has a number of
states φij each with a probability of
occurrence ρij

Φ12

Probability = ρ12
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•Each such subspace has a number of
states φij each with a probability of
occurrence ρij

Φ13

Probability = ρ13

Slide 11 of 37 Mean Field Technique



 

• First ρij = 1/ni

• ni is number of states of subspace i
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Next, the effective potential due to a state φrs of a 
subspace φr is evaluated as 

Veff(φ12) = ∑i,j ρijV(φ12, φij)

r = 1, s = 2           
Φ12 , 

i = 3, j = 1           
Φ31 , ρ31V(φ12, φ31)
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• Next, all the probabilities ρij re-evaluated  from 
the respective effective potential as 

ρij = exp{-Veff(φij)/RT} / ∑q exp{-Veff(φij)/RT}

• The cycle is repeated -------

• Evaluate effective potential based on 
probability

• Evaluate probability based on effective 
potential

----- until convergence
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• At convergence we have determined all the

probabilities ρij of all the states of every

subspace

• Finally, side-chain conformations (subspace

states) with highest probability represent the

‘true state’ of the side-chain conformational

space Φ
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Application to peptide/protein (backbone) structure      

------ Backbone torsion angles as subspaces?

φ1
φ2 φ4

Interaction between a pair of subspaces is not 
independent of other subspaces
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• Extension to torsion angle space is not straight-
forward

• The interaction between a pair of subspaces (when 
the subspaces are the torsion angles) does not 
depend only on their respective states, but is a 
function of the states of all other subspaces.

• i.e. V(φrs, φij) is not meaningful – we need              

V(φrs, φij, ……)

• Combinatorial explosion ! Complexity is NP
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• To avoid combinatorial explosion we use a small 
sample (~ n2) of the possible (mn) combinations

• We use mutually orthogonal Latin squares (MOLS) to 
identify the sample

• e.g. 3 torsion angles, 5 values each -

φij , i = 1, 3;  j = 1, 5

Totally 53 = 125 conformations
1 2
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Mutually Orthogonal Latin Squares
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3 MOLS of order 5
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• Each sub square corresponds to one conformation 
of the molecule

• The energy V is calculated for each of the 
n2 conformations



 

Mutually Orthogonal Latin Squares

•The effective energy is now 

Veff(φrs) = ∑q wqVq(φrs…)

• The summation is over all the points in the 
MOLS grid in which φrs occurs
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e.g. for φ11
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Mutually Orthogonal Latin Squares

• The effective energy is now 

Veff(φrs) = ∑q wqVq(φrs…)

wq = exp{-Vq(φrs…)/RT} / ∑q exp{-Vq(φrs…)/RT}

• Note: wq is calculated from Vq, not from Veff
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Mutually Orthogonal Latin Squares

• Since wq is calculated from Vq, not from Veff

therefore wq is not ρij

and the procedure is not iterative

• For each torsion find value that gives Min(Veff)

• The set of Min(Veff) values is Minimum (Low)
energy conformation

• Procedure repeated for another low energy
structure
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Parameterize the search space

Use these to build a set of MOLS (chosen at random) to 
globally sample the space

Analyze the samples to obtain a low energy conformation
(This is followed by gradient minimization)

Another low energy
conformation?
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Mutually Orthogonal Latin Squares

• We obtain ~1500 low energy structures
• By clustering, we show these may be reduced 
to ~ 50 mutually dissimilar structures

e.g. 23 structures for 
Met-enkephalin
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Mutually Orthogonal Latin Squares

• The search is exhaustive
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Applications – Peptide Structure

Minimal energy envelope for Met-enkephalin
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Jl. Phys. Chem. B, 108, 11196, 2004

• Energy landscape, ECEPP/3 force field



 

Applications – Protein Structure

• Multiscale approach to protein structure prediction 
MOLS libraries   +   MOLS assembly
(ECEPP/3)         (AMBER + ‘hydrophobic’)

Myoglobin

Crystal structure Prediction
rmsd : 14.1 Å
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Applications – Protein Structure

• Multiscale approach to protein structure prediction 
• MOLS libraries   +   genetic algorithms

(ECEPP/3)         (AMBER + ‘hydrophobic’)

Selection

Initialization

Mutation

Variation

Diversity

Fragment

Libraries

Fragments

MOLS

Minimization 

& Clustering

Phase 1 Phase 2

Cross over
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Applications – Protein Structure

Avian Pancreatic 

Polypeptide  4.0 A Villin Head Piece 5.2 A Mellitin 4.3 

c-MYB 6.1 A Tryptophan zipper 1.8 A 

Left  Predicted;   Right  Experimental
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Figure1A 

 

Figure 1B 

 

Figure 1C 

Rab4 binding domain of Rabenosyn 5 

46 residues 

Backbone rmsd 3.6 Å 

Engrailed Homeodomain

56 residues 

Backbone rmsd 6.5 Å

Bovine Pancreatic Trypsin Inhibitor 

58 residues 

Backbone rmsd 10.2 Å
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Applications – Protein loops

• Loops in protein crystal structures classified 
by size. Structure predicted using ECEPP/3

…DSPEF…

…VNRKSD…

…INMTSQQ…

…TNASTLDT… …KAPGGGCND… …RNLTKDRCKP…

Blue – Predicted structure Orange – Crystal structure
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Applications – Docking

• Ligand (drug) docking to proteins

• Redefine the search space as the conformational 
space of peptide ligand (i.e. n torsion angles φ1 to 
φn), plus the ‘docking’ space (i.e. the rotation and 
translation parameters of the peptide in receptor 
site, r1 to r6). 

• Composite scoring function is now
f1{φ1 to φn}       +       f2{r1…r6}

conformational energy + ‘docking’ energy
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PDB ID: 1sua, RMSD = 1.50Å

Sequence: ALAL  
PDB ID: 1a30, RMSD = 0.66Å

Sequence: EDL

PDB ID: 8gch, RMSD = 1.04Å

Sequence: GAW

PDB ID: 1b32, RMSD = 0.51Å

Sequence: KMK  

PDB ID: 1dkx, RMSD = 1.35Å

Sequence: NRLLLTG
PDB ID: 1awq, RMSD = 1.50Å

Sequence: HAGPIA

Blue – predicted structure

Red – Crystal structure
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• Estimation of the numbers and density of low-energy 

structures in the conformational landscape of proteins. 

Applications – Structure density

rmsd (Å)
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The number of mutually dissimilar structures
found at different rmsd cut-offs for each peptide
in 10,000 MOLS structures using the ECEPP/3
potential.

m = a exp (bn)
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