Relating Nucleotide-dependent Conformational Changes in Free Tubulin Dimer to Microtubule Dynamic Instability

Sanjib Senapati Department of Biotechnology Indian Institute of Technology Madras

MMSM2009, JNCASR, Dec. 17-20, 09

in femto - nanosecond timescale

Relating Nucleotide-dependent Conformational Changes in Free Tubulin Dimer to Microtubule Dynamic Instability soft matter

Sanjib Senapati Department of Biotechnology Indian Institute of Technology Madras

MMSM2009, JNCASR, Dec. 17-20, 09

Overview

- Why to study?
- What is microtubule?
- What is dynamic instability?
- How is tubulin dimer related to?
- A theorist's simple approach to the complex problem!!!
- Suggestion welcome.

Why are Microtubules important?

Microtubules are involved in many fundamental biological processes:

- segregating the chromosomes correctly during cell division
- most effective drug target to cancer therapy
- organize cytoplasm by positioning the organelles
- understanding microtubule rigidity/flexibility may bring new nano materials.

STRUCTURE OF MICROTUBULE

13 parallel protofilaments

25 nm in diameter; 200 nm -25μm in length

Built by the assembly of **α- and β- tubulin dimers**

Alpha tubulin exposed at one end (- end) & beta tubulin exposed at the other end (+ end)

Grows by adding individual tubulin dimers

Microtubule Assembly/Disassembly

Tubulin dimers can add or dissociate at either end of a microtubule

Greater tendency for subunits to add at **plus end**, where β -tubulin is exposed.

Contains two non-identical nucleotide binding sites – non-exchangale GTP site at α and GTP \leftrightarrow GDP exchangeable site at β

GTP must be bound to both $\alpha \& \beta$ subunits for a tubulin heterodimer to assemble

Subunit addition promotes **hydrolysis of GTP** bound to β -tubulin.

Microtubule Dynamic instability

Microtubule Dynamic instability

Akhmanova, A. and Steinmetz, M.O.Nat. Rev. Mol. Cell Biol. 9, 309 - 322 (2008)

Microtubule Dynamic instability

Akhmanova, A. and Steinmetz, M.O.Nat. Rev. Mol. Cell Biol. 9, 309 - 322 (2008)

Tubulin Pathway

Taxol is a mitotic inhibitor used in cancer therapy

It interferes with the normal function of microtubule by blocking the GDP-tubulin disassembly

Intrinsic GTPase activity of Tubulin dimer

- Only GTP-tubulin dimer can assemble to form protofilaments
- GDP-tubulin dimer can't bind effectively rather peels away from microtubule wall
- However, Taxol bound GDP-tubulin can keep the protofilament stable
- GTP-tubulin: α -GTP- β -GTP GDP-tubulin: α -GTP- β -GDP

Literature Review

Nogales, CMLS 1999, "The complex dynamic behavior of microtubules, though can be modulated by other cellular factors, is primarily due to the tubulin subunit architecture and its intrinsic GTPase activity".

Problems and our Approach to tackle them

- Structural information of free tubulins would help in understanding the function
- Crystalizing free GTP- and GDP-tubulins are difficult
- Modeling these structures would be important
- Can we correlate the structures with microtubule dynamic instability?
- We perform all atom MD simulations and Protein-Protein docking studies to gain insight

Our Starting Model to Explore the Tubulin Subunit Architecture

- Taxol-bound Tubulin X-ray structure from Zn⁺² induced β-sheet
- α-GTP-β-GDP Tubulin heterodimer bound to Taxol
- 3.5 Å resolution
- Each monomer consists of 3 domains
 - N terminal: S1 S6, H1 H7, T1 T7
 - Intermediate: S7 S10, H8 H10, M loop
 - C terminal: H11, H12

Lowe et al. J. Mol. Biol. 2001

Helices and Loops that are directly involved in interactions

Taxol binding Domain

Nucleotide binding Domain

Simulation details

- We performed two independent MD simulations of free tubulin dimers bound, respectively, to GDP and GTP at the E site
- Control simulation of Taxol bound to GDP-tubulin
- Amber force field on 16 processors of an Infiniband Xeon E5472 linux cluster
- ▶ 150 ns each

Evolution of the Systems

RMSD analyses of (a) full tubulin and (b) β -tubulin alone.

B factor analysis of β-tubulin

GDP and GTP bound form show differential flexibility in the Taxol binding site (allosteric effect?). Color scheme: GDP (green), GTP (red), Crystal (blue).

Allosteric effect in place

Structural Comparison Between free GTP- and GDP-tubulins

Nucleotide state confers significant conformational changes in tubulin dimer
M loop, H6-H7 loop, H3 helix, H1-S2 loop expose greatly in GTP-bound form
Color scheme: GDP (green), GTP (red), Crystal (blue)

Electrosatic Surface of Tubulin

Tubulin-GDP

Tubulin-GTP

Mg²⁺ dependence of guanine nucleotide

GTP-tubulin

– Spontaneous appearance of Mg^{+2} ions into the nucleotide binding pocket of β -tubulin – as seen in other GTPase X-ray structures

– The role of water in hydrolysis is implied by the occurrence of 2 Mg^{+2} and 2 water in GTP-bound form

 $-Mg^{+2}$ is hexacoordinated

Angular Distribution of Tubulin dimers

 \rightarrow Free GTP-tubulin and Taxol-bound GDP-tubulin are 5 – 7 degrees straighter than free GDP-tubulin

Looking Back to Literature

- Nogales et al. Nature 2005, We hypothesize that GTP-tubulins are straight but GDPtubulins are kinked, and hence the later is energetically unfavorable on microtubule wall.
- Elie-Caille et al. Curr. Biol. 2007, "Straight GDP-tubulin protofilaments form in the presence of taxol".

Model Structures of Free Tubulin Dimers seem to be good

- Model structures of free GTP- and GDPtubulin dimers are ready
- Let's try correlating that to microtubule dynamic instability

Conflicting models of Tubulin assembly in protofilament

Allosteric model

J. Cell. Biol. 1991, PNAS 1998, Nature 2004

Lattice model

PNAS 2008

Protein-protein docking to check the mode of tubulin assembly

- Two dimers are docked laterally, both for GDP- and GTP-tubulins
- Two dimers are docked longitudinally, both for GDP- and GTP-tubulins
- Strength of interactions is estimated by SASA
- Docking performed through HADDOCK

HADDOCK: High Ambiguity Driven protein-protein Docking

 Protein-Protein docking approach based upon available experimental data

Data directed docking

 Include data directly in the docking by adding an additional energy term or limiting the search space

Requisites

- 3D structures of the two partners must be known
- No large conformational change must take place upon complex formation
- Information available to map the interaction interface of the both partners, e.g.
 - Chemical shift perturbation
 - Mutagenesis data
 - Any type of other data

Haddock docking protocol

Combine biochemical or biophysical data and semi-flexible docking to model biomolecular complexes

Interface definition:

Active residues:

involved in the interaction (e.g. from NMR data, mutagenesis, _) and high solvent accessibility

Passive residues:

all solvent accessible neighbors

Ambiguous interaction restraints:

Scoring

Ref. Bonvin et al. JACS 2003, 125, 1731

Lateral and Longitudinal Docking Protocol

- Two tubulin dimers were docked to obtain a model of the tubulin complex formed due to lateral or longitudinal interactions
- Active and passive residues include M, H1-S2, H6-H7 loops, H3 helix and adjacent residues
- 1000 structures were sampled in the first stage of rigid body docking
- Out of these 1000 structures, 500 were then selected for the second step which is a semi-flexible refinement
- Then 200 out of the 500 were selected for the final step of explicit solvent refinement.
- The selection in each step was done based on the HADDOCK scoring function

Structures of Tubulin-Tubulin Complex via Lateral Interactions

Tubulin-GDP state Week sidewise interactions

Tubulin-GTP state Strong sidewise interactions

Structures of Tubulin-Tubulin Complex via Longitudinal Interactions

GDP state ⇒Bent protofilament might peel away

GTP state ⇒Straight protofilament can increase interprotofilament interactions

A Quantitative Comparison of Straight vs. Kinked Tubulin Structures

Intradimer Angle

Lateral docking	Angle (deg)	Angle (deg)
Tubulin-GDP	150.55	150.30
Tubulin-GTP	166.57	166.15
Longitudinal docking		
Tubulin-GDP	154.74	155.18
Tubulin-GTP	165.95	165.29

Interdimer Angle

Longitudinal docking	Angle (deg)
Tubulin-GDP	165.38
Tubulin-GTP	178.52

Solvent Accessibility at inter-dimer interfaces

Solvent accessibility at inter-dimer interface of GDP-tubulin is more during lateral docking

Summary

Conclusion

- We examine the intrinsic conformational changes of free tubulin dimer in its different nucleotide states
- Results suggest that the nucleotide state has a direct influence on lateral and longitudinal interactions among tubulin dimers by modifying the geometry and chemical properties of the interacting surfaces
- M, H3, H6-H7 loops in free GTP-tubulin are observed to experience high flexibility, which could be a requirement for its efficient reactivity
- MD in conjunction with Protein-Protein docking provide insight on microtubule dynamic instability
- Model suggests an Allosteric Model of tubulin assembly in protofilament

Acknowledgements

- N. Kathiresan
- T. P. Karthigeyan
- Jagan Mohan
- DST, DBT, SERC FAST, IITM

Ambiguous Interaction Restraints (AIRs)

 AIR defined as an ambiguous distance restraint with a maximum value of 2-3Å between any atom of an active residue i of protein A and any atom of all active and passive residues of protein B

Dealing with flexibility in HADDOCK

- Docking from ensembles of starting structures (e.g. from MD)
- "Soft" docking by scaling down intermolecular interaction

- 1) First side-chains at interface
- Then both side-chains and backbone at interface

