

Supercomputing Facility for Bioinformatics & Computational Biology IITD

Some Challenges in Biomolecular Recognition Gene to Drug in Silico: A Molecular Bioinformatics Approach

Prof. B. Jayaram

Department of Chemistry, Supercomputing Facility for Bioinformatics & Computational Biology & School of Biological Sciences

Indian Institute of Technology Delhi

The Post Genomic Challenge

DevelopingAMolecularlevelunderstandingofthe entire Organism

Central Dogma of Life...

Genome sizes of some organisms

	Organism	Genome size
		((Mb) (Mb=Mega base
•	Eschericia coli	4.6
•	Sacchromyces cerevisiae (Yeast)	15
•	M tuberculosis	4.4
•	H.Influenza	1.83
•	C. elegans (Nematode)	100
•	Drosophila melanogaster (Fruit f	<i>ly</i>) 120
•	Gallus gallus (Chicken)	120
•	Homo sapiens (humans)	3300
•	Mouse	3000
•	Rice	430
•	Wheat	13500

(source: www.wormlab.caltech.edu/briggsae/genomeSize.html)

Specific genetic disorders

Genetic Disorder

- Huntington's Disease
- Parkinson's Disease
- Sickle Cell
- Tay-Sachs Disease
- Cystic Fibrosis
- Breast Cancer
- Leukemia
- Colon cancer
- Asthma
- Rett Syndrome
- Brukitt lymphoma
- Alzheimer disease
- Werner Syndrome
- Angelman Syndrome

Reason

Excessive repeats of a three-base sequence, "ĈAG" on chromosome Variations in genes on chromosomes 4,6. **DiseaseMutation in hemoglobin-b gene on** chromosome 11 Controlled by a pair of genes on chromosome 15 Mutations in a single (CFTR) gene Mutation on genes found on chromosomes 13 & 17 **Exchange of genetic material between the long** arms of chromosome 6 & 22 Proteins MSH2, MSH6 on chromosome 2 & MLH1 on chromosome 3 are mutated. **Disfunctioning of genes on chromosome 5, 6,** 11.14&12 Disfunctioning of a gene on the X chromosome. **Translocations on chromosome 8** Mutations on four genes located on chromosome 1, 14, 19 & 21. Mutations on genes located on chromosome 8 **Deletion of a segment on maternally derived** chromosome 15.

(Source:http://www.ncbi.nlm.nih.gov)

SCFBio

From Gene to Drug : The Dream @ SCFBio

www.scfbio-iitd.res.in

•Genome Analysis - *ChemGenome*

A novel *ab initio* Physico-chemical model for whole genome analysis

•Protein Structure Prediction – Bhageerath

A *de novo* energy based protein structure prediction software

•Drug Design – Sanjeevini

A comprehensive indigenous active site directed lead molecule design protocol

Supercomputing Facility for Bioinformatics & Computational Biology IITD

Arabidopsis Thaliana (Thale Cress)

Software	Method	Sensitivity	Specificity
GeneMark.hmm http://www.ebi.ac.uk/genemark/	5th-order Markov model	0.82	0.77
GenScan http://genes.mit.edu/GENSCAN.html	Semi Markov Model	0.63	0.70
MZEF http://rulai.cshl.org/tools/genefinder/	Quadratic Discriminant Analysis	0.48	0.49
FGENF http://www.softberry.com/berry.phtml	Pattern recognition	0.55	0.54
Grail http://grail.lsd.ornl.gov/grailexp/	Neural network	0.44	0.38
FEX http://www.softberry.com/berry.phtml	Linear Discriminant analysis	0.55	0.32
FGENESP http://www.softberry.com/berry.phtml	Hidden Markov Model	0.42	0.59

ChemGenome

A Physico-Chemical Model to Distinguish Genes from Non-Genes

"A Physico-Chemical model for analyzing DNA sequences", Dutta S, Singhal P, Agrawal P, Tomer R, Kritee, Khurana E and Jayaram B,J.Chem. Inf. Mod., 46(1), 78-85, **2006.**

i.....l j....m k....n

 $\mathbf{E}_{\mathbf{HB}} = \mathbf{E}_{\mathbf{i}-\mathbf{l}} + \mathbf{E}_{\mathbf{j}-\mathbf{m}} + \mathbf{E}_{\mathbf{k}-\mathbf{n}}$

 $E_{\text{Stack}} = (E_{i-m} + E_{i-n}) + (E_{j-l} + E_{j-n}) + (E_{k-l} + E_{k-m}) + (E_{i-j} + E_{i-k} + E_{j-k}) + (E_{l-m} + E_{l-n} + E_{m-n})$

Hydrogen bond & Stacking energies for all 32 unique trinucleotides were calculated from 50 ns long **Molecular Dynamics Simulation Trajectories on 39 sequences encompassing all possible tetranucleotides in the #ABC database* and the data was averaged out from the multiple copies of the same trinucleotide. The resultant energies were then linearly mapped onto the [-1, 1] interval giving the x & y coordinates for each codon.

*Beveridge et al. (2004). *Biophys J* 87, 3799-813. *Dixit et al. (2005). *Biophys J* 89, 3721-40.

Prediction of Melting Temperatures of 348 Oligonucleotides (Theory vs Experiment)

>				Antilard Antilard
TTT Phe -1	GGT Glv +1	TAT Tvr -1	GCT Ala +1	A MAGINITIE OF
TTC Phe -1	GGC Gly +1	TAC Tyr -1	GCC Ala +1	
TTA Leu -1	GGA Gly +1	TAA Stop -1	GCA Ala +1	
TTG Leu -1	GGG Gly +1	TAG Stop -1	GCG Ala +1	
ATT Ile -1	CGT Arg +1	CAT His +1	ACT Thr -1	
ATC Ile +1	CGC Arg -1	CAC His -1	ACC Thr +1	
ATA Ile +1	CGA Arg -1	CAA Gln +1	ACA Thr +1	
ATG Met -1	CGG Arg +1	CAG Gln -1	ACG Thr -1	
TGT Cys -1	GTT Val +1	AAT Asn -1	CCT Pro +1	
TGC Cys -1	GTC Val +1	AAC Asn +1	CCC Pro -1	
TGA Stop -1	GTA Val +1	AAA Lys +1	CCA Pro -1	
TGG Trp -1	GTG Val +1	AAG Lys -1	CCG Pro +1	
AGT Ser -1	CTT Leu +1	GAT Asp +1	TCT Ser -1	
AGC Ser +1	CTC Leu -1	GAC Asp +1	TCC Ser -1	
AGA Arg +1	CTA Leu -1	GAA Glu +1	TCA Ser -1	
AGG Arg -1	CTG Leu +1	GAG Glu +1	TCG Ser -1	

Extent of Degeneracy in Genetic Code is captured by *Rule of Conjugates*: A_{1,2} is the conjugate of C_{1,2} & U_{1,2} is the conjugate of G_{1,2}: eg. A₂ x C₂ & G₂ x U₂

With 6 h-bonds at positions 1 and 2 between codon and anticodon, third base is inconsequential With 4 h-bonds at positions 1 and 2 third base is essential

With 5 h-bonds middle pyrimidine renders third base inconsequential; middle purine requires third base.

B. Jayaram, "Beyond Wobble: The Rule of Conjugates", J. Molecular Evolution, 1997, 45, 704-705.

Solute-Solvent Interaction Energy for Genes/Non-genes

Correlation of Protein-Nucleic Acid Interaction Parameter (Z) with Physical Properties of Codons

Swissprot Amino acid Frequency for 175000 Proteins vs. Codon Frequency Based on Protein-Nucleic Acid Interaction Parameter (Z) Assignment

ChemGenome

A Physico-Chemical Model to Distinguish Genes from Non-Genes

"A Physico-Chemical model for analyzing DNA sequences", Dutta S, Singhal P, Agrawal P, Tomer R, Kritee, Khurana E and Jayaram B, J.Chem. Inf. Mod., 46(1), 78-85, **2006.**

Distinguishing Genes (blue) from Non-Genes (red) in 372 Prokaryotic Genomes

Three dimensional plots of the distributions of gene and non-gene direction vectors for six best cases (A to F) calculated from the genomes of

(A) Agrobacterium tumefaciens (NC_003304), (B) Wolinella succinogenes (NC_005090),

(C) Rhodopseudomonas palustris (NC_005296), (D) Bordetella bronchiseptica (NC_002927),

(E) Clostridium acetobutylicium (NC_003030), (F) Bordetella pertusis (NC_002929)

Poonam Singhal, <u>B. Jayaram</u>, Surjit B. Dixit and David L. Beveridge. Molecular Dynamics Based Physicochemical Model for Gene Prediction in Prokaryotic Genomes, **2008**, *Biophysical Journal*, 94, 4173-4183

Genes Predicted using ChemGenome2.0 for Prokaryotic Genomes

S.N 0.	NCBI_ID	Initial Orfs	SS	SP	ChemG enome (DNA Space)	SS	SP	Chemg enome (Protei n Space)	SS	SP	Che mgen ome (Swis sprot Spac e)	Annot ated Genes	SS	SP
1	NC_000117	6773	99.78	13.18	4558	98.32	19.31	2135	94.97	39.81	1284	895	92.07	64.17
2	NC_000853	15104	99.46	12.24	10688	99.30	17.26	4991	96.50	35.92	3037	1858	92.47	56.57
3	NC_000854	11774	99.95	15.63	9616	98.59	18.87	5273	91.31	31.88	2282	1841	80.66	65.07
4	NC_000868	11066	99.89	17.12	6598	98.95	28.43	3524	96.62	51.99	2232	1896	90.08	76.52
5	NC_000907	11945	99.64	13.82	6582	96.68	24.34	3064	92.76	50.16	1926	1657	90.53	77.88
6	NC_000908	3334	70.66	10.26	1930	63.84	16.01	1035	48.55	22.71	602	484	43.80	35.22
7	NC_000909	7829	99.54	21.98	3786	98.67	45.06	2450	96.59	68.16	1488	1729	80.05	93.01
8	NC_000911	28534	99.91	11.09	20656	98.48	15.10	10459	95.17	28.82	5891	3167	92.86	49.92
9	NC_000912	5998	75.47	8.67	3628	67.05	12.73	1577	51.38	22.45	935	689	44.99	33.16
10	NC_000913	41399	99.54	10.36	30642	99.10	13.94	15618	97.01	26.78	8500	4311	94.22	47.79
11	NC_000915	9647	98.29	16.06	5829	96.38	26.06	3227	90.04	43.97	1807	1576	85.98	74.99
12	NC_000916	14586	99.89	12.83	10537	99.47	17.68	6315	97.17	28.82	3024	1873	91.40	56.61
13	NC_000917	17584	99.13	13.64	11988	98.64	19.91	6121	96.32	38.08	3584	2420	90.08	60.83
14	NC_000918	10140	100.00	15.08	6591	99.87	23.17	2784	97.65	53.63	1749	1529	91.24	79.76
15	NC_000919	11875	99.71	8.70	8694	98.75	11.77	4200	93.92	23.17	2165	1036	90.06	43.09
16	NC_000921	9384	98.86	15.71	5682	97.72	25.64	3155	92.49	43.71	1763	1491	89.20	75.44
17	NC_000922	7505	99.91	14.03	5040	98.01	20.50	2484	93.83	39.81	1504	1054	90.70	63.56
18	NC_000961	10026	99.95	19.50	5869	96.98	32.32	3317	93.56	55.17	2096	1956	86.04	80.30
19	NC_000962	45751	99.82	8.73	39813	99.82	10.03	21629	96.05	17.76	6342	3999	85.47	53.89
20	NC_000963	4307	100.00	19.39	2148	96.77	37.62	1271	93.05	61.13	805	835	85.87	89.07

Prediction accuracies of translation start sites using ChemGenome2.0 on reliable datasets as test sets

Organism	Test sets	No. of genes in	Accurate start predictions (%)				
		test set	Glimmer	GS- Finder	MED- Start	<i>ChemGenome2.0</i> (DNA space)	ChemGenome2.0 (DNA+Protein space)
E.coli	Ecogene Link	854 195	63.23 66.67	91.1 92.3	92.9 95.4	96.9 99.5	94.3 95.9
B.subtilis	Bsub1248 Bsub58 Bsub123 Bsub72 Bsub51	1248 58 123 72 51	61.30 68.96 48.78 48.61 41.76	96.6 83.7 90.3 92.2	90.1 96.6 87.8 93.1 96.1	99.5 100.0 100.0 100.0 100.0	92.5 98.3 81.3 84.7 86.3

Accuracy of *ChemGenome2.0* in locating the start and stop positions without a prior knowledge of start and stop sites

S.No.	Genome version	Number of experimentally verified genesPercentage of genes whose start site is identified to 			Percentage of genes whose start site is identified to within			es whose ified to
			<u>+</u> 10 bases	<u>+</u> 20 bases	<u>+</u> 30 bases	<u>+</u> 10 bases	<u>+</u> 20 bases	<u>+</u> 30 bases
1.	NC_000117.1	602	66.0	78.0	83.1	60.8	79.0	85.0
2.	NC_000853.1	1084	91.0	95.0	96.3	87.2	93.1	97.1
3.	NC_002570.2	2143	82.0	90.2	93.3	82.0	89.0	93.0

ChemGenome Performance

Gene evaluation data	Accuracy
372 Prokaryotic genomes	96%
for experimentally verified genes	
21 eukaryotic genomes for	97%
experimentally verified tRNA genes.	
21 eukaryotic genomes	82%
for experimentally verified genes.	

Software	Tested on Bacteria	Accuracy	
<i>ChemGenome</i> www.scfbio-iitd.res.in/chemgenome	372 systems	96.94%	
GeneMark www.ebi.ac.uk/genemark	7 systems	94.96%	
Glimmer www.tigr.org/software/glimmer/	31 systems	99.36%	
FgenesB www.softberry.com	1 system	98%	

Arabidopsis Thaliana (Thale Cress)

Software	Method	Sensitivity	Specificity
ChemGenome www.scfbio-iitd.res.in/chemgenome	Physico-chemical model	0.87	0.89
GeneMark.hmm http://www.ebi.ac.uk/genemark/	5th-order Markov model	0.82	0.77
GenScan http://genes.mit.edu/GENSCAN.html	Semi Markov Model	0.63	0.70
MZEF http://rulai.cshl.org/tools/genefinder/	Quadratic Discriminant Analysis	0.48	0.49
FGENF http://www.softberry.com/berry.phtml	Pattern recognition	0.55	0.54
Grail http://grail.lsd.ornl.gov/grailexp/	Neural network	0.44	0.38
FEX http://www.softberry.com/berry.phtml	Linear Discriminant analysis	0.55	0.32
FGENESP http://www.softberry.com/berry.phtml	Hidden Markov Model	0.42	0.59

SCFBio

http://www.scfbio-iitd.res.in/chemgenome/index.jsp

ChemGenome is ab initio in nature and has been tested on 294786 experimentally verified genes in 331 prokaryotic genomes. The observed average sensitivity, specificity & correlation-coefficient are found to be 96.9% (min: 90%, max: 100%), 86.0% & 85.0% respectively. Preliminary studies on eukaryotic genomes show that the model successfully separates the exonic regions from the non-coding regions. A software for whole genome analysis is available at www.scfbio-iitd.res.in/chemgenome2

ChemGenome	
Please specify the E-mail id : ailesh@scfbio-iitd.res.in	
Insert the Nucleotide sequence (in FASTA format)* : Help	
>Gene Name (This comment line is necessary) ATGTTGGTGTCCGCAAGGGTAGAGAAACAAAAGCGTGTTGCTTATCAGGGGAAGGCGACAGTGCTTGCT	<
SUBMIT RESET	
Browse Upload	

Instructions for using the Tool

- The tool takes DNA sequence in FASTA format as input file.
- Browse to select the input file and upload.
- The input file can contain multiple sequences, each sequence being in FASTA format.
- For multiple sequences, please specify the E-mail address or wait for a few minutes to get the on-line result.
- Click on Submit to get the result
- For further information, please see the Help file.

Suggestions and Comments

We will be glad to receive your suggestions and comments/feedback at scfbio@scfbio-iitd.res.in. References

[1] "A Physico-Chemical model for analyzing DNA sequences", Dutta S, Singhal P, Agrawal P, Tomer R, Kritee, Khurana E and Jayaram B, *J. Chem. Inf. Mod.*, 46 (1), 78-85, 2006. [ABSTRACT].

[2] "Beyond the Wobble : The rule of conjugates", Jayaram B, Journal of Mol. Evol., 1997.45.704.

Copyright 2004-2006, Prof B. Jayaram & Co-workers

The ChemGenome2.0 WebServer

http://www.scfbio-iitd.res.in/chemgenome/chemgenomenew.jsp

CHEMGENOME 2.0 An ab-initio Gene Prediction Software	
Chemgenome is an ab-intio gene prediction software, which find genes in prokaryotic genomes in all si reading frames. The methodology follows a physico-chemical approach and has been validated on 372 prokaryotic genomes. Read more about ChemGenome	ix !
Download CHEMGENOME 2.0 for Linux environment from here	
[General Info] [Data Set] [Valuated Result Set] [Uelp]	[thome]
In put File Browse	
JR paste Genome Sequence in FASTA format	
Run Chemgenome Gear	
Liditional Parameters	
mreshald Values : 100 Y Start Codon : ATG C CTG C GTG C TTG C	
4ethod : 💿 DNA 🗢 Pratein 🗢 Swissprot	
(opporta)	
Threshold Value: If you have small genome you can specify lower threshold value to find smaller gr you have large genomes you can specify higher threshold value to weed out false positives	enes. (F
ttart Codon: You can specify what should be the start codon with which you want to find genes.	
Nethod : DNA Space: The method takes complete or part of genome sequence of prokaryotic species in FASTA nput file. It searches for genes based on physico-chemical properties of double-helical deoxyribonu (DNA).	format as claic acid
Yrotein Space: The method takes the result generated from DNA space as input file and works as a f an stereochemical properties of protein sequences to reduce false positives.	ilter based
Swissprot Space :The method takes the result generated from protein space as input file and calcula standard deviation of a query nucleotide sequence (predicted gene sequence) with the swissprot p ased on the frequency of occurrence of aminoacids. A threshold standard deviation is chosen to ke false positives at minimum and precision at maximum.	ibes the robeins lep the
	available
There is no file size limitation for the genomes. We have tested on more than 5 MB genome file size with us. If the program crashes on large genome size, more than 5 MB, please intimate us.	

We will be glad to receive your suggestions and comments/feedback at scfbio@scfbio-iitd.res.in.

Results obtained on Aeropyrum pernix (NCBI ID: NC_000854)

http://www.scfbio-

itd.res.in/chemgenome/status_chemtrna.jsp?jobid=35741020gene_predictLthreshold=100Lmethod=3Lemail=

Job Submission Information

The job Number is : 35741020gene_predict The result(s) of the sequence submitted

tRNA genes

Tabular View							
Main R	eading Frame	(5'-3')	Complementary Reading Frame (3' - 5')				
First	Second	Third	First	Second	Third		

	P 📕	lon Gene Re	egion 🗖 🗖	Gene Region		
Graphical View						
Main R	eading Frame	(5'-3')	Compleme	ntary Reading F	-rame (3' - 5')	
First	Second	Third	First	Second	Third	

> +strand gene; start: 1 , end: 1395

ATGTIGGTGTCGCAAGGGTGAGAGAAACAAAAGCGTGTTGCTTATCAGGGGAAGGGACAGTGCTTGCT	G T CA T C G G G T AA

ChemGenome 2.0 Genes predicted in First Main Frame of the sequence submitted

Download all Gene Sequences

S. No.	Strand	Start	Stop			
1	+	1	1395			
2	+	Click to download sequ	2553			
3	+	2554	3711			
4	+	3712	4869			
5	+	4870	6027			
6	+	6028	7185			
7	+	7186	8343			
8	+	8344	9501			
9	+	9502	10659			
10	+	10660	11817			
11	+	11818	12975			
12	+	12976	14133			
13	+	14134	15291			
14	+	15292	16449			
15	+	16450	17607			
16	+	17608	18765			
17	+	18766	19923			
18	+	19924	21081			

First Main Reading Frame

Towards Designer Genomes?

An Orientational Analysis of Physico-chemical Vectors of DNA

Promoter Prediction Results in E. coli

Method	Sensitivity	Specificity
Chemgenome	0.959	0.734
TLS-NNPP	0.452	0.188
NNPP	0.443	0.109
Novel method (Manju Bansal & coworkers)	0.910	0.350

Chemgenome on Eukaryotes Exon data plot

Sensitivity= (645/668)=.9655

Database :Intron Exon database University of toledo http://hsc.utoledo.edu/depts/bioinfo/database.html

Chemgenome on Eukaryotes Gene Vectors of Experimentally verified Proteins from SwissProt

Sensitivity= (97/98)= .9897

Chemgenome on Eukaryotes

Octant analysis of Experimentally verified Proteins from Swiss-Prot

Supercomputing Facility for Bioinformatics & Computational Biology IITD

Base position for Escherichia coli K-12 (NC_000913)

Maiting profile for an experimentally varified game and its corresponding experimentally varified promoter sequence for Escherichie coll K-12 genome (NC_0003 13)

ChemGenome Summary

- An *ab-initio* physico-chemical model is proposed to characterize DNA sequences as genes and non-genes.
- Analyses of 372 bacterial genomes and 21 eukaryotic genomes present a proof of concept.
- Gene and non-gene regions separate out.
- Consequences of frame-shift mutations are correctly predicted.
- The specificities and sensitivities achieved are >90% (with reliable datasets)
- The methodology captures more than 90% genes without a prior knowledge of start and stop sites.
- Whole genome analysis software for gene prediction is available at www.scfbio-iitd.res.in/chemgenome2

Poonam Singhal, B. Jayaram, Surjit B. Dixit and David L. Beveridge. Molecular Dynamics Based Physicochemical Model for Gene Prediction in Prokaryotic Genomes, 2008, *Biophysical Journal*, 94, 4173-4183.

www.scfbio-iitd.res.in

•Genome Analysis - *ChemGenome* A novel *ab initio* Physico-chemical model for whole genome analysis

•**Protein Structure Prediction** – *Bhageerath*

A *de novo* energy based protein structure prediction software

•Drug Design – Sanjeevini

A comprehensive indigenous active site directed lead molecule design protocol

Bhageerath

Protein Tertiary Structure Prediction

.....GLU ALA GLU MET LYS ALA SER GLU ASP LEU LYS LYS HIS GLY VAL THR VAL LEU THR ALA LEU GLY ALA ILE LEU LYS LYS GLY HIS HIS GLU ALA GLU LEU LYS PRO LEU ALA GLN SER HIS ALA THR LYS HIS LYS ILE PRO ILE LYS TYR LEU GLU PHE ILE SER GLU ALA ILE ILE HIS LEU HIS.....

Protein Folding Problem

PROTEIN FOLDING LANDSCAPE

Supercomputing Facility for Bioinformatics & Computational Biology IITD

WHY FOLD PROTEINS ?

Pharmaceutical/Medical Sector

Drug Targets

- Active site directed drug-design
- Mapping the functions of proteins in metabolic pathways.

Present Scenario of Drug Targets

BLUE: Number of targets in each class. (Imming P, Sinning C, Meyer A. Nature Rev Drug Discov 2006;5: 821) (Total 218 targets & 8 classes)
GREEN: Number of 3D structures available in each class (Total: 130) (Protein Data Bank)

Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram, B. Current Pharmaceutical Design, 2007

Comparative Modeling Approaches

Homology

Similar sequences adopt similar fold is the basis.

Alignment is performed with related sequences. (SWISS-MODEL-www.expasy.org, 3D JIGSAW-www.bmm.icnet.uk etc).

Threading

Sequence is aligned with all the available folds and scores are assigned for each alignment according to a scoring function. (Threader - bioinf.cs.ucl.ac.uk)

Computational Requirements for *ab initio* Protein Folding

Strategy A

• Generate all possible conformations and find the most stable one.

• For a protein comprising 200 AA assuming 2 degrees of freedom per AA

• 2²⁰⁰ Structures => 2²⁰⁰ Minutes to optimize and find free energy.

2²⁰⁰ Minutes = 3 x 10⁵⁴ Years!

Strategy B

• Start with a straight chain and solve F = ma to capture the most stable state

- A 200 AA protein evolves
- ~ 10⁻¹⁰ sec / day / processor

• 10⁻² sec => 10⁸ days

~ 10^6 years

With 10⁶ processors ~ 1 Year

structures for small alpha helical globular proteins.' Phys. Chem. Chem. Phys. 2005, 7, 2364-2375.

Sampling 3D Space

Filter-Based Structure Selection

Persistence Length Analysis of 1,000 Globular Proteins

Frequency vs Hydrophobicity Ratio of 1,000 Globular Proteins

 $N^{3/5}$ plot incorporates excluded volume effects (Flory P. J., *Principles of Polymer Chemistry*, Cornell University, New York, 1953) .

Frequency vs Packing Fraction of 1,000 Globular Proteins

Globular proteins are known to exhibit packing fractions around 0.7

Removal of Steric Clashes in Selected Structures (Distance Based Monte Carlo)

Validation of Empirical Energy Based Scoring Function

Narang, P., Bhushan, K., Bose, S., and Jayaram, B. *J. Biomol.Str.Dyn*, **2006**,*23*,385-406; Arora N.; Jayaram B.; *J. Phys. Chem. B.* **1998**, *102*, 6139-6144; Arora N, Jayaram B, *J. Comput. Chem.*, **.1997**, *18*, 1245-1252.

ProRegIn

Protein Regularity Index for selection of native-like structures of proteins

A web-enabled tool developed based on the regularity in the ϕ , ψ dihedral angles of the amino acids that constitute loop regions.

Thukral L, Shenoy S R, Bhushan K and Jayaram B. *ProRegIn* : A Regularity Index for the Selection of Native-like Tertiary Structures of Proteins. *J. Biosci.* **2007**, 32, 71-81.

Performance of *Bhageerath* **on 50 Small Globular Proteins**

Sl. No.	PDB ID (i)	Number of amino acids (ii)	Number of secondary structure elements	Number of structures accepted after	Lowest RMSD in the final 100	Energy Rank of the lowest RMSD	After ProRegIn Filter			After Topology and Accessible Surface Area Filter		
				length and Radius of gyration filters (iv)	(Å) (v)	in 100 structures (vi)	Number of structures selected (Number of structures < 6 Å) (vii)	Lowest RMSD (Å) (viii)	Energy Rank of the lowest RMSD structure in 100 structures (ix)	Number of structures selected (Number of structures < 6 Å) (x)	Lowest RMSD (Å) (xi)	Energy Rank of the lowest RMSD structure in 10 structures (xii)
1.	1E0Q	17	2E	128	2.5	2	100 (29)	2.5	2	10 (10)	2.5	2
2.	1B03	18	2E	64	4.4	2	64 (5)	4.4	2	10 (5)	4.4	2
3.	1WQC	26	2H	128	2.5	6	100 (53)	2.5	6	10 (10)	2.5	3
4.	1RJU	36	2H	64	4.6	48	64 (3)	4.6	48	10 (2)	5.9	6
5.	1EDM	39	2E	128	2.9	100	100 (59)	2.9	100	10 (10)	3.5	2
6.	1AB1	46	2Н	128	2.4	10	100 (82)	2.4	10	10 (10)	2.9	6
7.	1BX7	51	2E	128	2.2	71	100 (85)	2.2	71	10 (10)	3.1	8
8.	1B6Q	56	2Н	128	3.1	27	100 (8)	3.1	27	10 (5)	3.1	10
9.	1ROP	56	2Н	128	4.3	2	100 (6)	4.3	2	10 (2)	4.3	2
10.	1NKD	59	2Н	128	3.8	8	100 (4)	3.8	8	10 (4)	3.8	6
11.	1RPO	61	2Н	128	3.8	2	100 (6)	3.8	2	10 (4)	3.8	2
12.	1QR8	68	2Н	128	4.4	80	100 (3)	4.4	80	10 (2)	4.4	10
13.	1FME	28	1H,2E	15592	2.9	52	100 (90)	2.9	52	10 (8)	3.7	5
14.	1ACW	29	1H,2E	15726	3.9	97	100 (45)	3.9	97	10 (5)	5.1	8
15.	1DFN	30	3E	13174	4.4	77	98 (11)	4.4	77	10 (4)	5.0	1
16	102K	31	1H 2E	16020	4.2	46	100 (20)	4.2	46	10 (4)	4.2	9

Supercomputing Facility for Bioinformatics & Computational Biology IITD

VV												
17.	1SCY	31	1H,2E	15423	3.1	10	100 (40)	3.1	10	10 (4)	3.1	5
18.	1XRX	34	1E,2H	14630	3.9	28	100 (19)	3.9	28	10(1)	5.6	1
19.	1ROO	35	3Н	1071	2.5	14	100(100)	2.5	14	10 (10)	2.8	5
20.	1YRF	35	3Н	15180	3.8	16	100 (62)	3.8	16	10 (9)	4.8	4
21.	1YRI	35	3Н	15180	2.8	81	100 (70)	2.8	81	10 (8)	3.8	6
22.	1VII	36	3Н	16380	3.7	7	100 (50)	3.7	7	10 (6)	3.7	2
23.	1BGK	37	3Н	14139	3.8	33	100 (56)	3.8	33	10 (8)	4.1	3
24.	1BHI	38	1H,2E	14923	5.3	2	100 (5)	5.3	2	10 (2)	5.3	2
25.	10VX	38	1H,2E	12074	3.2	8	100 (76)	3.2	8	10 (5)	4.0	1
26.	1I6C	39	3E	2927	4.1	31	100 (32)	4.1	31	10 (3)	5.1	2
27.	2ERL	40	3Н	16268	3.1	18	100 (32)	3.1	18	10 (2)	3.2	6
28.	1RES	43	3Н	16135	4.0	30	100 (40)	4.0	30	10 (7)	4.2	2
29.	2CPG	43	1E,2H	10905	3.6	20	100 (18)	3.6	20	10(1)	5.3	2
30.	1DV0	45	3Н	14488	4.0	20	100 (21)	4.0	20	10(1)	5.1	4
31.	1IRQ	48	1E,2H	11592	3.5	74	100 (18)	3.5	74	10(1)	5.3	9
32.	1GUU	50	3Н	13410	4.5	74	100 (42)	4.5	74	10 (7)	4.6	6
33.	1GV5	52	3Н	11109	3.5	33	99 (24)	3.5	33	10 (5)	4.1	2
34.	1GVD	52	3Н	10626	3.8	18	100 (35)	3.8	18	10 (6)	4.9	9
35.	1MBH	52	3Н	10632	3.8	48	100 (24)	3.8	48	10 (5)	4.0	4
36.	1GAB	53	3Н	14495	3.6	16	100 (12)	3.6	16	10 (3)	3.6	6
37.	1MOF	53	3Н	16384	2.4	57	100 (96)	2.4	57	10 (10)	2.9	5
38.	1ENH	54	3Н	13622	3.2	12	100 (23)	3.2	12	10 (3)	4.6	3
39.	1IDY	54	3Н	11133	3.3	84	100 (52)	3.3	84	10 (8)	3.5	6
40.	1PRV	56	3Н	5468	4.4	55	99 (25)	4.4	55	10 (7)	4.9	9

Supercomputing Facility for Bioinformatics & Computational Biology IITD

41.	1HDD	57	3Н	12849	3.2	74	100 (22)	3.2	74	10 (2)	4.8	8
42.	1BDC	60	3Н	11255	4.2	44	100 (19)	4.2	44	10 (2)	4.8	5
43.	1I5X	61	3Н	16384	2.6	29	99 (54)	2.6	29	10 (10)	2.6	6
44.	1I5Y	61	3Н	16384	2.6	20	100 (48)	2.6	20	10 (10)	2.6	7
45.	1KU3	61	3Н	5701	4.9	68	100 (14)	4.9	68	10 (3)	5.5	4
46.	1 YIB	61	3Н	16384	2.9	7	100 (75)	2.9	7	10 (9)	3.5	5
47.	1AHO	64	1H,2E	2429	4.7	58	100 (15)	4.7	58	10(1)	6.0	6
48.	1DF5	68	3Н	16384	3.1	10	100 (41)	3.1	10	10 (6)	3.1	8
49.	1QR9	68	3Н	16384	2.9	49	100 (33)	2.9	49	10 (9)	3.8	2
50.	1AIL	70	3Н	16384	4.2	42	100 (5)	4.2	42	10 (3)	4.2	7

Jayaram, B., Bhushan, K., Shenoy, S. R., Narang, P., Bose, S., Agrawal, P., Sahu, D., Pandey, V.S. Bhageerath : An Energy Based Web Enabled Computer Software Suite for Limiting the Search Space of Tertiary Structures of Small Globular Proteins. *Nucl. Acids Res.*, 2006, 34, 6195-6204.

Predicted Structures for 50 Globular Proteins with Bhageerath

Native structure

Bhageerath versus Homology modeling

No	Protein PDB ID	CPHmodels RMSD(Å)	ESyPred3D RMSD(Å)	Swiss-model RMSD(Å)	3D-PSSM RMSD(Å)	Bhageerath# RMSD(Å)
1.	1IDY (1-54)*	3.96 (2-54)*	3.79 (2-51)*	5.73 (1-51)*	3.66 (1-51)*	3.36
2.	1PRV (1-56)*	5.66 (2-56)*	5.56 (3-56)*	6.67 (3-56)*	5.94 (1-56)*	3.87

*Numbers in parenthesis represent the length (number of amino acids) of the protein model. #Structure with lowest RMSD bracketed in the 100 lowest energy structures.

The above two proteins have maximum sequence similarity of 38% and 48% respectively.

In cases where related proteins are not present in structural databases, Bhageerath achieves comparable accuracies.

Flowchart for constraint minimization of proteins with β -sheets

10 Candidate Structures for the Native

Parameterization of Structures

Hydrogen atom addition Addition of distance (β-sheet non-bonded) constraints Force Field Parameter Assignment

Energy Minimization of the candidate structures

2500 SD + 7500 CG (For Proteins with β -Sheets)

Refined Structures

Energy Ranking using empirical energy function RMSD calculations vis-à-vis native structure

SD: Steepest Descent; CG: Conjugate Gradient

Results on β -sheet proteins after constraint minimization

Sl. No	PDB ID	Number of Amino Number of Secondary		After ProRegIn a Filter	nd Topology 's	After distance (β sheet) constraints		
		Acids	Structural Elements	Lowest RMSD in 10 final structures (Å)	Energy Rank	Lowest RMSD after constraint minimization (Å)	Energy Rank	
1.	1E0Q	17	2E	2.5	2	2.2	4	
2.	1B03	18	2E	4.4	3	1.9	4	
3.	1EDM	39	2E	3.5	2	1.5	9	
4.	1BX7	51	2 E	3.1	8	2.2	5	
5.	1FME	28	1H ,2 E	3.7	5	4.1	8	
6.	1DFN	30	3E	5.0	1	4.3	7	
7.	1Q2K	31	1H ,2 E	4.2	9	3.9	8	
8.	1SCY	31	1H ,2 E	3.1	5	3.1	5	
9.	1BHI	38	1H ,2 E	5.3	2	3.4	10	
10.	10VX	38	1H ,2 E	4.0	1	3.4	5	
11.	1I6C	39	3E	5.1	2	2.6	4	

Superimposed structures before and after constraint minimization

BHAGEERATH : An Energy Based Protein Structure Prediction Server

The present version of "Bhageerath" accepts amino acid sequence and secondary structure information to predict 10 candidate structures for the native. It is anticipated that at least one native like structure (RMSD < 6Å without end loops) is present in the final structures. The server has been validated on 50 small globular proteins. Know about Protein Folding

			[Repository]	[General Info]	[Links] [Help]	[Home]
Process ID	15658883					
E-mail Address:		(Opti	onal)			
Input Amino acid	sequence in FASTA for	nat OR	Click on the Aming	o acid to add to t	he sequence	
			ALA VAL MET PHE THR CYS ASP GLU	LEU ILE (TRP GLY (ASN GLN (LYS ARG (PRO SER TYR HIS	
Secondary Struc	ture Information					
Residu	le Kange I					
	ET					
Retrieve previo	us results Job ID:		Ge	t Status		

Supercomputing Facility for Bioinformatics & Computational Biology IITD

The 20 amino acids and some stereochemical properties of their side chains.

Amino acid	I. Presence of sp ³ hybridized γ carbon (g)	II. Presence of hydrogen bond donor group (d)	lll. Absence of δ carbon (s)	IV. Absence of forks with hydrogens (I)	Assignment #
A Alanine	No	No	Yes	Yes	$\mathbf{g}_0 \mathbf{d}_0 \mathbf{s}_2 \mathbf{l}_1$
C Cysteine	No	Yes	Yes	No	$\mathbf{g}_0 \mathbf{d}_1 \mathbf{s}_2 \mathbf{l}_0$
D Aspartate	No	No	Yes	Yes	$\mathbf{g}_0 \mathbf{d}_0 \mathbf{s}_1 \mathbf{l}_2$
E Glutamate	Yes	No	No	Yes	$\mathbf{g_1}\mathbf{d_0}\mathbf{s_0}\mathbf{l_2}$
F Phenylalanine	No	No	No	Yes	$\mathbf{g}_0 \mathbf{d}_0 \mathbf{s}_0 \mathbf{l}_3$
G Glycine	No	No	Yes	No	$g_0 d_0 s_3 l_0$
H Histidine	No	Yes	No	Yes	$\mathbf{g}_{0}\mathbf{d}_{2}\mathbf{s}_{0}\mathbf{l}_{1}$
I Isoleucine	Yes	No	Yes	No	$\mathbf{g}_2 \mathbf{d}_0 \mathbf{s}_1 \mathbf{l}_0$
K Lysine	Yes	Yes	No	Yes	$\mathbf{g}_1 \mathbf{d}_1 \mathbf{s}_0 \mathbf{l}_1$
L Leucine	Yes	No	No	No	$\mathbf{g}_{3}\mathbf{d}_{0}\mathbf{s}_{0}\mathbf{l}_{0}$
M Methionine	Yes	No	Yes	Yes	$\mathbf{g_1}\mathbf{d_0}\mathbf{s_1}\mathbf{l_1}$
N Asparagine	No	Yes	Yes	No	$\mathbf{g}_{0}\mathbf{d}_{2}\mathbf{s}_{1}\mathbf{l}_{0}$
P Proline	Yes	No	No	Yes	$\mathbf{g}_2 \mathbf{d}_0 \mathbf{s}_0 \mathbf{l}_1$
Q Glutamine	Yes	Yes	No	No	$\mathbf{g}_1 \mathbf{d}_2 \mathbf{s}_0 \mathbf{l}_0$
R Arginine	Yes	Yes	No	No	$\mathbf{g}_2 \mathbf{d}_1 \mathbf{s}_0 \mathbf{l}_0$
S Serine	No	Yes	Yes	Yes	$\mathbf{g}_0 \mathbf{d}_1 \mathbf{s}_1 \mathbf{l}_1$
T Threonine	Yes	Yes	Yes	No	$\mathbf{g}_1 \mathbf{d}_1 \mathbf{s}_1 \mathbf{l}_0$
V Valine	Yes	No	Yes	No	$\mathbf{g_1d_0s_2l_0}$
W Tryptophan	No	Yes	No	No	$\mathbf{g}_{0}\mathbf{d}_{3}\mathbf{s}_{0}\mathbf{l}_{0}$
Y Tyrosine	No	Yes	No	Yes	$g_0 d_1 s_0 l_2$

'Yes' indicates that the property is satisfied and 'No' indicates that the property is not satisfied. # Subscript refers to the number of times each property occurs in the corresponding amino acid.

A stereochemical analysis of genomic (ncbi) and protein (Swissprot) sequences

	Swissprot# Sequences	Gene *	Intergenic (Nongene) Sequences *	Random sequences
Total Number considered	157210	239418	204047	10000
Number of proteins identified	141784	227033	14699	806

Software available at <u>www.scfbio-iitd.res.in/software/proteomics/progenie.jsp</u> *Prediction Sensitivity = **0.95; Specificity = 0.94; Correlation coefficient = 0.88** #Prediction Sensitivity = **0.90**

Jayaram, B.. Decoding the Design Principles of Amino Acids and the Chemical Logic of Protein Sequences. Available from *Nature Precedings*. http://hdl.handle.net/10101/npre.2008.2135.1 **2008**

Conclusions and Future Perspectives

- * Structures with native-like topology are bracketed within the 10 lowest energy structures. "Needle in a haystack problem" is thus reduced to finding the best 10 energy structures at least for small proteins.
- * Further improvements to the methodology include introduction of Flexible MC / Explicit solvent MD so as to aid better side-chain packing, as well as usage of hydrophobicity and packing fraction filters to reduce the number of candidate structures for the native.
- * The suite of programs christened "*Bhageerath*" is made accessible at <u>www.scfbio-iitd.res.in/bhageerath</u>

Jayaram, B., Bhushan, K., Shenoy, S. R., Narang, P., Bose, S., Agrawal, P., Sahu, D., Pandey, V.S. Bhageerath : An Energy Based Web Enabled Computer Software Suite for Limiting the Search Space of Tertiary Structures of Small Globular Proteins. *Nucl. Acids Res.*, 2006, 34, 6195-6204.

www.scfbio-iitd.res.in

•Genome Analysis - *ChemGenome* A novel *ab initio* Physico-chemical model for whole genome analysis

•Protein Structure Prediction – *Bhageerath* A *de novo* energy based protein structure prediction software

•Drug Design – Sanjeevini

A comprehensive indigenous active site directed lead molecule design protocol

Target -Site Directed Lead Design Sanjeevini

COST & TIME INVOLVED IN DRUG DISCOVERY

14 yrs \$1.4 billion

Source: PAREXEL's Pharmaceutical R&D Statistical Sourcebook, 2001, p96.; Hileman, Chemical Engg. News, 2006, 84, 50-1.

SCFBio

Active Site Directed Lead Molecule Design

Some Concerns in Lead Design In Silico

- Novelty and Geometry of the Ligands
- Accurate charges and other Force field parameters
- Ligand Binding Sites
- Flexibility of the Ligand and the Target
- Solvent and salt effects in Binding
- Internal energy versus Free energy of Binding
- Druggability
- Computational Tractability

SCFBio

De novo LEAD-LIKE MOLECULE DESIGN: THE IITD PATHWAY

Jayaram, B., Latha, N., Jain, T., Sharma, P., Gandhimathi, A., Pandey, V.S., Indian Journal of Chemistry-A. 2006, 45A, 1834-1837.

TEMPLATE LIBRARY

The substructure-based template library has ~ 160 chemical moieties consisting of unique rings, side chains and linkers

CANDIDATE MOLECULE GENERATION in silico & STRUCTURE VALIDATION

Candidate Generation

Supercomputing facility for bioinformatics and computational biology IIT Delhi

Molecular Descriptors / Drug-like Filters

Lipinski's rule of five

Molecular weight	≤ 500
Number of Hydrogen bond acceptor	rs <u><</u> 10
Number of Hydrogen bond donors	<u><</u> 5
logP	≤ 5

Additional filters

Molar Refractivity ≤ 140 Number of Rotatable bonds ≤ 10

Quantum Chemistry on Candidate drugs for Assignment of Force Field Parameters

MONTE CARLO DOCKING OF THE CANDIDATE DRUG IN THE ACTIVE - SITE OF THE TARGET

www.scfbio-iitd.res.in/dock/pardock.jsp

STRUCTURES WITH LOWEST ENERGY SELECTED

ParDOCK

Automated Server for Protein Ligand Docking

Energy Analysis of the Receptor (Target) -Candidate (Drug) Complex

Database for Experimental Binding Free Energy of Protein-Ligand Complexes

Protein Ligand Database *PLD* (http://www-mitchell.ch.cam.ac.uk/pld) Ligand Protein Database *LPDB* (http://lpdb.scripps.edu/) Protein Drug Binding Database *PDBbind* (http://www.pdbbind.org/) Crystal Structure RCSB (http://www.rcsb.org/pdb/)

Parameterization of Ligand

AM1 Geometry Optimization HF/6-31G*/RESP Charge Derivation Force Field Parameter Assignment

Parameterization of Protein

Energy Optimization of the Complex

Interaction Energy Calculation & Residue Wise Analysis

Supercomputing facility for bioinformatics and computational biology IIT Delhi

Binding Affinity Analysis

SCFBio

ENERGY BASED SCORING FUNCTION

 $\Delta G_{bind} = \Delta H_{el} + \Delta H_{vdw} - T\Delta S_{rtvc} + \Delta G_{hpb}$

Correlation between experimental & calculated binding free energy for 161 protein-ligand complexes (comprising 55 unique proteins)

Jain, T & Jayaram, B, *FEBS Letters*, **2005**, 579, 6659-6666 www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp

S.A Shaikh and B.Jayaram, J. Med.Chem. , **2007**, 50, 2240-2244

www.scfbio-iitd.res.in/software/drugdesign/preddicta.jsp

Comparative Evaluation of Scoring Functions

S	Scoring		Dataset		Correlation	Reference			
No.	Function	Method	Training Test		Coefficient				
					(r)				
1	Present	Force field /	61	100	r = 0.92	FEBS Letters, 2005, 579, 6659			
1.	Work(BAPPL*)	Empirical							
2.	DOCK	Force field	-	-	-	J. ComputAided Mol. Des. 2001, 15, 411			
3.	EUDOC	Force field	-	-	-	J. Comp. Chem. 2001, 22, 1750			
4.	CHARMm	Force field	-	-	-	J. Comp. Chem. 1992, 13, 888			
5.	AutoDock	Force field	-	-	-	J. Comp. Chem. 1998, 19, 1639			
6.	DrugScore	Knowledge	-	-	-	J. Mol. Biol. 2000, 295, 337			
7.	SMoG	Knowledge	-	36	r = 0.79	J. Am. Chem. Soc. 1996, 118, 11733			
8.	BLEEP	Knowledge	-	90	r = 0.74	J. Comp. Chem. 1999, 202, 1177			
9.	PMF	Knowledge	-	77	r = 0.78	J. Med. Chem. 1999, 42, 791			
10.	DFIRE	Knowledge	-	100	r = 0.63	J. Med. Chem. 2005, 48, 2325			
11.	SCORE	Empirical	170	11	r = 0.81	J. Mol. Model. 1998, 4, 379			
12.	GOLD	Empirical	-	-	-	J. Mol. Biol. 1997, 267, 727			
12		Empirical	82	12	r = 0.83	J. ComputAided Mol. Des. 1994, 8, 243 &			
15.	LUDI	Empiricai				1998, 12, 309			
14.	FlexX	Empirical	-	-	-	J. Mol. Biol. 1996, 261, 470			
15.	ChemScore	Empirical	82	20	r = 0.84	J. ComputAided Mol. Des. 1997, 11, 425			
16.	VALIDATE	Empirical	51	14	r = 0.90	J. Am. Chem. Soc. 1996, 118, 3959			
17.	Ligscore	Empirical	50	32	r = 0.87	J. Mol. Graph. Model. 2005, 23, 395			
10		Empirical	200	30	r = 0.77	J. ComputAided Mol. Des. 2002, 16, 11			
18.	A-CSCORE	(consensus)							
10	CLIDE	Force field /	-	-	-	J. Med. Chem. 2004, 47, 1739			
19.	GLIDE	Empirical							

Binding Affinity Analysis on Zinc Containing Metalloprotein-Ligand Complexes

Correlation between the predicted and experimental binding free energies for 90 zinc containing metalloprotein-ligand complexes comprising 5 unique targets

T. Jain & B. Jayaram, *Proteins: Struct. Funct. Bioinfo.* 2007, 67, 1167-1178.

www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp

Comparative evaluation of some methodologies reported for estimating binding affinities of zinc containing metalloproteinligand complexes

S. No.	Contributing Group	Method	Protein Studied	Training Set	Test Set	R ²
1.	Donini et al	t al MM-PBSA MMP		-	6	
2.	Raha et al	Raha et alQMCA & CPA		-	23	0.69
3.	Toba <i>et al</i>	FEP	MMP	-	2	-
4.	Hou, et al	LIE	MMP	-	15	0.85
5.	Hu et al	Force Field	MMP	-	14	0.50
6.	Rizzo et al	MM-GBSA	MMP	-	6	0.74
7.	Khandelwal et al	QM/MM	MMP	-	28	0.76
8.	Present Work	Force Field / Empirical	CA, CPA, MMP, AD & TL	40	50	0.77

BAPPL server

HIV-I Protease complexed with U75875 (1hiv.pdb)

Welcome to the BAPPL server

Binding Affinity Prediction of Protein-Ligand (BAPPL) server computes the binding free energy of a nonmetallo protein-ligand complex using an all atom energy based empirical scoring function [1] & [2].

PreDDICTA

Predict DNA-Drug Interaction strength by Computing ∆Tm and Affinity of binding.

About Preddicta

DNA Drug Interaction

DNA Drug Complex Data Set

Molecular Dynamics & post-facto Binding Affinity Analyses

Sanjeevini1.0 distinguishes Drugs (NSAIDS, blue) from Non-Drugs (red) for Cyclooxygenase-2 Target

SCFBio

FREE ENERGY COMPONENT ANALYSIS

Free energy component analysis indicates how Drugs are energetically favoured over Non-drugs and facilitates further optimization of leads

Supercomputing facility for Bioinformatics and Computational Biology IIT Delhi

Molecular Dynamics Simulations

Energy components	After minimization (kcal/mol)	Molecular dynamics (2 nanoseconds) (kcal/mol)		
van der Waals	- 21.3	-20.8		
Net electrostatics	-13.3	-8.6		
Cavitation	-3.4	-3.6		
Entropy	22.5	23.9		
Adaptation	0	3.7		
Net binding free energy*	-15.5 - 5.4			
Experimental binding free energy	-	-5.9		

*The computed absolute binding free energies with current state of the art methodology carry an uncertainty of the order of ± 2 kcal/mol.

CONFIGURATIONAL AVERAGING ENHANCES THE QUALITY OF BINDING AFFINITY ESTIMATES

CH3-C

Free Energy Component Analysis of Binding of Two Inhibitors to HIV-1 Protease Target

Parul Kalra, Vasisht Reddy, <u>B. Jayaram</u>, "A Free Energy Component Analysis of HIV-I Protease-Inhibitor Binding", *J. Med.Chem.*, 2001, *44*, 4325-4338.

Affinity / Specificity Matrix for Drugs and Their Targets/Non-Targets

Shaikh, S., Jain. T., Sandhu, G., Latha, N., <u>Jayaram., B</u>., A physico-chemical pathway from targets to leads, 2007, Current Pharmaceutical Design, 13, 3454-3470.

	Drug1	Drug2	Drug3	Drug4	Drug5	Drug6	Drug7	Drug8	Drug9	Drug10	Drug11	Drug12	Drug13	Drug14
Target1														
Target2														
Target3														
Target4														
Target5														
Target6														
Target7														
Target8														
Target9														
Target10														
Target11														
Target12														
Target13														
Target14														

BLUE: HIGH BINDING AFFINITY

GREEN: MODERATE AFFINITY

ORANGE: POOR AFFINITY

Diagonal elements represent drug-target binding affinity and off-diagonal elements show drug-non target binding affinity. Drug 1 is specific to Target 1, Drug 2 to Target 2 and so on. Target 1 is lymphocyte function-associated antigen LFA-1 (CD11A) (1CQP; Immune system adhesion receptor) and Drug 1 is lovastatin.Target 2 is Human Coagulation Factor (1CVW; Hormones & Factors) and Drug 2 is 5-dimethyl amino 1-naphthalene sulfonic acid (dansyl acid). Target 3 is retinol-binding protein (1FEL; Transport protein) and Drug 3 is n-(4-hydroxyphenyl)all-trans retinamide (fenretinide). Target 4 is human cardiac troponin C (1LXF; metal binding protein) and Drug 4 is 1-isobutoxy-2-pyrrolidino-3[n-benzylanilino] propane (Bepridil). Target 5 is DNA {1PRP; d(CGCGAATTCGCG)} and Drug 5 is propamidine. Target 6 is progesterone receptor (1SR7; Nuclear receptor) and Drug 6 is mometasone furoate. Target 7 is platelet receptor for fibrinogen (Integrin Alpha-11B) (1TY5; Receptor) and Drug 7 is n-(butylsulfonyl)-o-[4-(4-piperidinyl)butyl]-l-tyrosine (Tirofiban). Target 8 is human phosphodiesterase 4B (1XMU; Enzyme) and Drug 8 is 3-(cyclopropylmethoxy)-n-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)benzamide (Roflumilast). Target 9 is Potassium Channel (2BOB; Ion Channel) and Drug 9 is tetrabutylammonium. Target 10 is {2DBE; d(CGCGAATTCGCG)} and Drug 10 is Diminazene aceturate (Berenil). Target 11 is Cyclooxygenase-2 enzyme (4COX; Enzymes) and Drug 11 is indomethacin. Target 12 is Estrogen Receptor (3ERT; Nuclear Receptors) and Drug 12 is 4-hydroxytamoxifen. Target 13 is ADP/ATP Translocase-1 (1OKC; Transport protein) and Drug 13 is carboxyatractyloside. Target 14 is Glutamate Receptor-2 (2CMO; Ion channel) and Drug 14 is 2-({[(3e)-5-{4-[(dimethylamino)(dihydroxy)-lambda~4-~sulfanyl]phenyl}-8-methyl-2-oxo-6,7,8,9-tetrahydro-1H-pyrrolo[3,2-H]isoquinolin-3(2H)-ylidene]amino}oxy)-4-hydroxytamocic acid. The binding affinities are calculated using the software made available at http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp an

Future of Drug Discovery: Towards a Molecular View of ADMET

The distribution path of an orally administered drug molecule inside the body is depicted. Black solid arrows: Complete path of drug starting from absorption at site of administration to distribution to the various compartments in the body, like sites of metabolism, drug action and excretion. Dashed arrows: Path of the drug after metabolism. Dash-dot arrows: Path of drug after eliciting its required action on the target. Dot arrows: Path of the drug after being reabsorbed into circulation from the site of excretion.

SUMMARY

- * *Sanjeevini* sorts out drugs from non-drugs for COX-2.
- ✤ Predicts relative affinities of drugs in conformity with experiment (COX-2, HIV-1 protease).
- ✤ A Scoring function has been developed for rapid assay of candidates to protein/DNA targets.
- ✤ Methodology has been configured in a high performance computing environment (70 UltraSparc III 900 MHz processor cluster with a compute power of over 100 Gigaflops).
- ✤ Work on other systems eg. nuclear receptor, DHFR, DNA targets is in progress.
- ✤ Development of a Lead-like molecular database with well defined forcefield parameters.
- ✤ A number of tools for drug design are web-enabled for free access at

www.scfbio-iitd.res.in

Supercomputing Facility for Bioinformatics & Computational Biology IITD

Some Web Enabled Softwares at www.scfbio-iitd.res.in

Utility	Description	URL
ChemGenome 1.1	Gene Evaluator	www.scfbio-iitd.res.in/chemgenome/index.jsp
ChemGenome 2.0	A Physico-Chemical method for Whole Genome Analysis	www.scfbio-iitd.res.in/chemgenome/chemgenomenew.jsp
Bhageerath	An Energy Based Protein Structure Prediction Server	www.scfbio-iitd.res.in/bhageerath/index.jsp
ProSEE	Scoring Function for Protein Structure Evaluation	www.scfbio-iitd.res.in/utility/proteomics/energy.jsp
ProRegIn	Protein Regularity Index	www.scfbio-iitd.res.in/software/proregin/proregin.jsp
pardock	Protein-Ligand Docking	www.scfbio-iitd.res.in/dock/pardock.jsp
BAPPL	Binding Affinity Prediction of Protein-Ligand	www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp
BAPPL-Z	Binding Affinity Prediction of Protein-Ligand Complexes Containing Zinc	www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp
PreDDICTA	Predict DNA-Drug Interaction strength by Computing Δ Tm and Affinity of binding	www.scfbio-iitd.res.in/software/drugdesign/preddicta.jsp

Gene to Drug

Bioinformatics suite developed at SCFBio, IIT Delhi

A Chemical Model for Genome Analysis

ChemGene 1.0

Active Site Directed Lead Design Sanjeevini 1.0

Gene (Blue) & Non Gene (Red) 120 Procaryotic genomes were evaluated & ~ 90 % sensitivity & specificity was observed

Protein Structure Prediction

Bhageerath 1.0

.....GLU ALA GLU MET LYS ALA SER GLU ASP LEU LYS LYS HIS GLY VAL THR VAL LEU THR ALA LEU GLY ALA ILE LEU LYS LYS LYS GLY.....

Bhageerath brackets the native like topology in the hundred best energy structure for small alpha helical proteins (green - native) Sanjeevini distinguishes Drugs (NSAIDs blue) from Non-Drugs (red) for COX-2

Vision

IIT Delhi as one of the nodal centers with one Teraflops capacity on a national biocomputing grid acessible to scientists, engineers and students from all over the country

Supercomputing Facility for Bioinformatics & Computational Biology IITD *A Few Key References*

- (a) Dutta,S., Singhal,P., Agrawal,P., Tomer,R., Kritee, Khurana,E. and Jayaram.B. A Physico-Chemical Model for Analyzing DNA sequences, 2006, Journal of Chemical Information & Modelling, 46(1), 78-85. (b) Poonam Singhal, B. Jayaram, Surjit B. Dixit and David L. Beveridge. Molecular Dynamics Based Physicochemical Model for Gene Prediction in Prokaryotic Genomes, 2008, Biophysical Journal, 94, 4173-4183.
- (a), Narang,P, Bhushan,K., Bose,S. and Jayaram,B. A computational pathway for bracketing native-like structures for small alpha helical globular proteins. 2005, Phys. Chem. Chem. Phys., 7, 2364.; (b) Narang,P, Bhushan,K., Bose, S., Jayaram,B. Protein structure evaluation using an all atom energy based empirical scoring function, 2006, J. Biomol. Struct. Dyn., 23, 385-4006. (c) Jayaram et al., Bhageerath, 2006, Nucleic Acid Res., 34, 6195-6204; (d) Jayaram, B.. Decoding the Design Principles of Amino Acids and the Chemical Logic of Protein Sequences. Available from Nature Precedings. http://hdl.handle.net/10101/npre.2008.2135.1 2008
- (a) Jain, T and Jayaram, B. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes. 2005, FEBS Letters, 579, 6659; (b) Jain, T and Jayaram, B. A computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. 2007, Proteins: Structure, Function & Bioinformatics, 67, 1167-1178; (c) Shaikh, S., Jayaram. B., A swift all atom energy based computational protocol to predict DNA-Drug binding affinity and ΔTm, 2007, J. Med. Chem., 50, 2240-2244; (d) Shaikh, S., Jain. T., Sandhu, G., Latha, N., Jayaram., B., A physico-chemical pathway from targets to leads, 2007, Current Pharmaceutical Design, 13, 3454-3470.

SCFBio Team

Supercomputing Facility for Bioinformatics & Computational Biology IITD

BioComputing Group, IIT Delhi (PI : Prof. B. Jayaram)

Present

Dr. Sandhya Shenoy

Tanya Singh

Vandana

Pallavi Mohanty

Sanjeev Kumar

Shashank Shekhar Priyanka Dhingra Bharat Lakhani Nagarajan Garima Khandelwal Goutam Mukherjee Avinash Mishra Preeti Bisht

Former

Dr. Achintya Das Dr. Tarun Jain Dr. Kumkum Bhushan Dr. Nidhi Arora Pankaj Sharma A.Gandhimathi Neelam Singh Dr. N. Latha Dr. Saher Shaikh Dr. Poonam Singhal Dr. E. Rajasekaran Praveen Agrawal Gurvisha Sandhu Shailesh Tripathi Dr. Pooja Narang Dr. Parul Kalra Dr. Surjit Dixit Surojit Bose Vidhu Pandey Anuj Gupta Dhrubajyoti Biswas

Lead Invent

Technologies

Novel Drug Discovery

Acknowledgements

Department of Biotechnology

Department of Science & Technology

Ministry of Information Technology

Council of Scientific & Industrial Research

Indo-French Centre for the Promotion of Advanced Research (CEFIPRA)

HCL Life Science Technologies

Dabur Research Foundation

Indian Institute of Technology, Delhi

Prof. D. L. Beveridge

OVERVIEW OF METABOLISM AND TRANSPORT IN P.Falciparum

Research

Software & Tools

Publications

Services

Tutorials

Collaborations

Bioinformatics @IITD

Bioinformatics Links

Video

Photo Gallery

HR Training

ChemGenome Genome Analysis Software Suite

Bhageerath Protein Structure Prediction Software

Sanjeevini In-Silico Drug Design Software

Progenie Exploring the logic of DNA and protein sequences

Our Vision

To develop novel scientific methods and highly efficient algorithms for Genome analysis, Protein structure prediction and active site directed Drug Design to pursue the dream, **GENE to DRUG**..... read more>>

The facility is committed towards providing bioinformatics and computational biology applications to scientific community. Resources available at the facility are freely accessible to its user community.

Copyright 2004-2007, Prof B. Jayaram & Co-workers. All rights reserved. | Disclaimer

Visit Us at www.scfbio-iitd.res.in

Thank You