Studies on the Bilayer Gel to Liquid Crystalline Transition: Influence of Polymer Grafting and Composition

Foram M Thakkar and K. G. Ayappa

Department of Chemical Engineering Indian Institute of Science Bangalore – INDIA 560012

The Lamellar Phase

- Water-Surfactant Systems
- Cell Membrane Lipid Bilayers
- Chain Lengths: C16-C18

Surfactant/Lipid

Multiscaling:Bridging Length and Time Scales

Lipid Bilayers

Phase Behaviour...

- Chain Melting Transition
- Melting Temperatures : Saturation and Composition
- •Polymer Grafted Bilayers

Polymer Grafted Membranes

Polymer Stabilized Vesicles

Applications

- Drug delivery systems
- Precusors for supported membranes
- Cell mimicking systems
- Micropipette experiments

Polymer Supported Membranes

Applications

- Lipid protein interactions
- Interactions with cells
- Biosensors
- Surface forces: AFM, SFA Experiments
- Surface modification

Gel (L_{β})

Liquid crystalline (L_{α})

- Influence on phase transition
- Bending modulus, d-spacing
- Polymer brush physics

Dissipative Particle Dynamics (DPD)

Hoogerbrugge and Koelman, Europhys. Lett., 19, 155 (1992) Espanol and Warren, Europhys. Lett. 30, 191 (1995)

Achieving the Tensionless State

• Interfacial tension

$$\gamma = \frac{1}{2} \int_{-\infty}^{\infty} [p_N(z) - p_T(z)] dz$$

Normal pressure
$$p_N(z) = p_{ZZ}(z) \qquad p_T(z) = \frac{p_{XX}(z) + p_{YY}(z)}{2}$$

Andersen Barostat

- Volume fluctuates to achieve desired pressure
- Previous methods : Monte Carlo moves to change the area

Polymer Grafting

• First bead of polymer attached to the bilayer surface

Grafting Fraction - G_f

Number of Polymer Chains

Number of Lipid Molecules (800)

$$G_f = 0, 0.04, 0.09, 0.16, 0.2$$

Order Parameter

Orientational order parameter

$$s = \frac{1}{2} \left\langle 3\cos^2 \phi - 1 \right\rangle$$

Bilayer Melting Transition

Melting Transition: Low Grafting Fraction

Density Distributions: Low Grafting Fraction

Melting Transition: High Grafting Fraction (0.2)

Melting Transition: High Grafting Fraction (0.2)

Head Group Area: High Grafting Fraction

Membrane Thickness

Shorter Lipids: HT6 and HT4

Polymer Scaling Relations

Bulk Polymer Scalings: Bead Spring Model

Monomer Density Scaling

Scalings for Area per Head Group: Single Tail Lipids

Scalings for Area per Head Group: Two Tailed Lipids

Bending Modulus

Bending Modulus: Theoretical Background

• Energy of the lipid bilayer

• For a flat bilayer

Saddle-splay modulus

 $E = \int dA \, \mathbf{k} + 2\kappa \overline{c}^2$

Theoretical Background contd...

• Expressing in terms of fluctuations

$$e(h) = \frac{\gamma}{2} \nabla h^2 + \frac{\kappa}{2} \langle \nabla^2 h \rangle^2$$

• Final equation, after Fourier transform and using equipartition theorem $[h(x, y) \rightarrow h(q)]$

$$S(q) = A \left\langle |h(q)|^2 \right\rangle = \frac{kT}{\kappa q^4 + \gamma q^2}$$

Valid only at low $q=2\pi/L$ \longrightarrow Large simulation Box needed

• At high q(L< membrane thickness)

$$S(q) = \frac{kT}{\gamma_p q^2}$$
 γ_p - protrusion tension

Frequency Spectrum: High T

 HT_4

 HT_6

Effect of Membrane Thickness

Fernandez-Puente et al., 1994

Bilayer Headgroup Surface (Delanuay Triangulation)

 L_{β} phase: Very low fluctuations L_{α} phase: High fluctuations Low temperature

High temperature

Frequency Spectrum: Low T (GEL PHASE)

 $\kappa_{gel}/\kappa_{lc} = 12.5$

 $\kappa_{gel}/\kappa_{lc} = 16.4$

DPPC: $\kappa_{gel}/\kappa_{lc} \approx 10$ to 20

Lee et al., PRE, 64, 020901 (2001)

- Prabal Maiti (Physics), V. Kumaran (Chemical)
- Venkat Ganesan (U. T. Austin)
- Animesh Agarwal
- Funding: Department of Science and Technology (DST) India, Procter and Gamble, USA

Low grafting density

Gel (L_{β})

Liquid crystalline (L_{α})

High grafting density

Interdigitated

Liquid crystalline (L_{α})

Surfactant Bilayers: Influence of Composition on Phase Behaviour

Membrane compositions investigated

Bilayer	Number of molecules			NVT (ns)	NPT (ns)	
	BTMAC	\mathbf{SA}	Water			
S1	50	150	13484	1	25	Water offect
S2	50	150	4000	1	25	Muler effect
S3	74	150	4000	1	25	BTMAC effect
S4	100	150	4000	1	25	

Semi-isotropic ensemble Simulations run using **GROMACS**

Bilayer with high water content: S1

Area per head group (a_h) and d-spacing

Water content does not influence the transition temperature

Influence of membrane composition Larger BTMAC head groups affect transition

Order parameter and d-spacing

Density Distributions for 54

Bilayer S4, Larger System: Low Temperature Phases

Conclusions

For high and low water content bilayer main transition same, above 338 K, confirms water does not play role in transition.

BTMAC to SA ratio increases, transition temperature decreases from 338 K to 330 K, due to larger BTMAC head group: ensures the transition occurs due to chain melting.

Rippling observed in low temperature phases, water expulsion Accompanied by sharpening of interface, hydrophobic effect