Structural Studies of Noncanonical Base pairs in RNA

Dhananjay Bhattacharyya Biophysics Division Saha Institute of Nuclear Physics Kolkata dhananjay.bhattacharyya@saha.ac.in

Cellular functions: DNA \rightarrow RNA \rightarrow Protein

RNA Classification - Mozilla Firefox

a. DUPLEXES

b. SINGLE STRANDED REGIONS

HAIRPIN LOOP HAIRPIN STEM

BULGE

SINGLE-BASE BULGE

e. INTERNAL LOOPS

f. JUNCTIONS

SYMMETRIC MISMATCH

ASYMMETRIC INTERNAL LOOP INTERNAL LOOP

THREE STEM

FOUR STEM

tRNA^{Ile} Crystal Structure (PDB ID: 1QU2)

Basepair Parameters (IUPAC/IUB recommendation

Base pair parameter definition in NUPARM

Buckle = $2 \sin^{-1}(\mathbf{Zm} \cdot \mathbf{Y}_{1})$ Opening = $2 \sin^{-1}(\mathbf{Zm} \cdot \mathbf{X}_{1})$ Propeller = $\cos^{-1}((\mathbf{X}_{1} \quad \mathbf{Zm}) \cdot (\mathbf{X}_{2} \quad \mathbf{Zm}))$ Shear = $-\mathbf{Xm} \cdot \mathbf{M}$ Stagger = $\mathbf{Ym} \cdot \mathbf{M}$ Stretch = $\mathbf{Zm} \cdot \mathbf{M}$

 $Xm = (X_{1} + X_{2}) / | (X_{1} + X_{2}) |$ $Ym = (Y_{1} + Y_{2}) / | (Y_{1} + Y_{2}) |$ $Zm = \{(X_{1} + X_{2}) \times (Y_{1} + Y_{2})\} / \{| (X_{1} + X_{2}) | | (Y_{1} + Y_{2}) |\}$

S. Mukherjee, M. Bansal; D. Bhattacharyya (2006) J. Comp. Aided Mol. Des. 20; 629

Non-canonical Basepairing

Base Pair Finder

- \checkmark Took a base edge
- ✓ Identify the H-bonding centers (N3G & N2G)
- ✓ Look for H-bond partner through distance calculation (N6A & N7A)
- ✓ Calculate pseudo-angles (such as C6G-N3G-N6A, N3G-N6A-N1A, N1G-N2G-N7A, N2G-N7A-N9A in figure) for

planarity

- \checkmark Confirm orientation through angle calculation
- ✓ Calculate $E=\Sigma_i(d_i-3.0)^2 + \frac{1}{2}\Sigma_k(\theta_k-\pi)^2$; i are for two H-bond distances and k are for four pseudo angles

Gives rise to: 6959 A: U W-W(C); 21965 G: C W-W(C) and 2786 G: U W-W(C) base pairs

Das, Mukherjee, Mitra & Bhattacharyya (2006) J Biomol Struct Dynam, 24, 149-

ADE (H):GUA (S) TRANS

Base pairs stabilized by C-H...N/O interactions along with N-H...N/O hydrogen bond

	Basepair (type & orientation)	Frequency	Example	Hydrogen bonding atoms and their precursors		
2	A:G h:s Cis	11	Observed but no	ot shown	C5-N7 N2-N1	
Done						
家 🔳 Terminal	🥘 Basepairs invo 💷	[xterm]	🕘 Downloads	🔳 xterm	🔳 xterm	

🔮 AG_HST_1MZP... 🔲 [xterm]

🕘 Download

Done

Applications	Places System		1:04 PM
۷	Different	type of possible base pairs between nucleotides are tabulated - Mozilla Firefox	_ = ×
<u>File Edit V</u> iew	<u>G</u> o <u>B</u> ookmarks	Tools Help	$\langle \rangle$
🔷 • 🏟 • 🛃	🖥 🛞 🚱 🗋	http://www.saha.ac.in/biop/www/db/local/RNAbase-pair.html	G, den linux download
Red Hat	ed Hat Magazine	Red Hat Network Red Hat Support	

Different types of possible base pairs occurring between nucleotides are tabulated. Numbers of geometries that can occur between any two base edges are hyper-linked. Examples of specific base pairing type obtained from PDB structures and involving regular bases are prepared with RASMOL. Those involving protonated bases are prepared with MOLDEN. The base pairs and base triples are detected by <u>BPFIND</u> and from a <u>set of structures</u> determined by X-ray crystallography. The outputs are created in a suitable way so that their structural parameters can be calculated by NUPARM (the older version of NUPARM can also be downloaded from PDB.

	Ade W	Ade H	Ade S	GuaW	Gua H	Gua S	Cyt W	Cyt H	Cyt S	Ura W	Ura H	Ura S
Ade W	<u>two</u>	two	two	one	two	two	four		two	two	two	two
Ade H		two	two	one	4	<u>two</u>	<u>three</u>		one	<u>two</u>	two	one
Ade S			one	one	two	one	one			two	one	
Gua W				one	<u>two</u>	one	<u>three</u>		two	two	one	two
Gua H					one	three	two	two				
Gua S						one	three		one	two	one	one
Cyt W							three	two	two	four	one	two
Cyt H									two			two
Cut S												

Downloads

xterm

xterm

Different type ... 🔤 [xterm]

http://www

Terminal

U:U W:W Cis (84)

G:U W:W Cis (846)

A:G W:W Cis (150)

A:U H:W Trans (410)

A:G H:S Trans (558)

A:A H:H Trans (109)

Property of good and stable Base Pair

Geometry Optimization by different Methods

- Selected structures of BPs from PDB
- Optimized Structures by B3LYP/6-31G**
- Optimized by MP2/6-31G**
- Optimized by HF/CC-pVDZ
- Optimized by GGA-BW91/DZP
- Optimized by semi-empirical methods (AM1, PM3)
- Optimized by AMBER force-field
- Compared structure and dynamics with Molecular Dynamics Simulations

Failure of AM1 (most popular semiempirical method)

2.09

2.37

2.11

Strengths of different H-bonds from 33 non-canonical Base Pairs

Considered Energy components, E^{NHO} , E^{NHN} , etc are additive. Additional stabilities, δ_i may come from van der Waals, dipoledipole etc interactions.

$$E_{\text{int}}^{i} = n_{i}^{\text{NHO}} E^{\text{NHO}} + n_{i}^{\text{NHN}} E^{\text{NHN}} + n_{i}^{\text{OHN}} E^{\text{OHN}} + n_{i}^{\text{CHO}} E^{\text{CHO}} + n_{i}^{\text{CHO}} E^{\text{CHN}} E^{\text{CHN}} + \delta_{i}^{\text{OHN}} E^{\text{OHN}} + \delta_{i}^{\text{OHN}} + \delta_{i}^{\text{OHN}} + \delta_{i}^{\text{OHN}} + \delta_{i}$$

Least Squares Fit indicates δ_i , errors should be smallest for best Fit

\sum_{i}	$\delta_i^2 = \sum_i \mathbf{E}_{int}^i - n_i^{NHO}$	$E^{NHO} - n_i^{NHN} E^{NHN}$	$-n_i^{OHN} E$	E OHN	-1	n _i CHO	E^{CH}	10 _	n_i^{CHN}	E'	CHN	
	Type of H-bond	ΔE (kcal/mol)			-30	-25	-20	-15	-10	-5	0	
	N-HO	-7.82		(kc					••	¥	-5 -	
	N-HN	-5.62		requation 3				•	•		-10 -	
	O-HN	-6.89		Energy from			•	•	•		-15 -	
	С-НО	-1.33									-20 -	
	C-HN	-0.67				•)FT-calcula	ted Energ	v (kcal/mol)		-25	

Roy, Bhattacharyya, Panigrahi, Bhattacharyya, (2008) J. Phys. Chem. B B112, 3786

Comparison with X-ray

DISTRIBUTION OF BUCKLE VALUE OF GC WWC CCD:-4.2 FREQUENCY DFT:-0.3 Series1 ŝ ŝ ŝ MP2: **BUCKLE VALUE** ADF:-1.5

Hydrogen Bond Geometries

Structures of others with weaker H-bonds

Theory of Harmonic Vibration

$$m\frac{d^{2}x}{dt^{2}} + kx = 0$$

$$V_{ij} = \frac{\partial^{2}V}{\partial x_{i}\partial x_{j}}$$

$$T_{ij}\ddot{\eta}_{j} + V_{ij}\eta_{j} = 0$$
V is Total (QM) Potential Energy

$$V_{11} - \omega^{2} T_{11} \quad V_{12} - \omega^{2} T_{12} \quad \dots \quad V_{1n} - \omega^{2} T_{1n}$$

$$V_{21} - \omega^{2} T_{21} \quad \dots \quad \dots \quad V_{2n} - \omega^{2} T_{2n}$$

$$\dots \quad \dots \quad \dots \quad \dots$$

$$V_{n1} - \omega^{2} T_{n1} \quad \dots \quad \dots \quad V_{nn} - \omega^{2} T_{nn}$$

= 0

Assignment of Vibration modes (frequency) to type of Motion:

Generated two sets of coordinates of all the atoms, Xⁱ_{max} & Xⁱ_{min} Ran NUPARM on both to find major differences in parameters

 $X_{\text{max}}^{i} = X_{o}^{i} \{1 + A \sin(90)\}$ and $X_{\min}^{i} = X_{o}^{i} \{1 + A \sin(-90)\}$ $\frac{d^2x}{dt^2} + \omega^2 x = 0,$ $\rho(\alpha) = e^{-\frac{1}{2}k(\theta - \theta_o)^2 / k_B T}$ where, $\omega^2 = \sqrt{k/\mu}$ 0.8 0.75 Calculated σ 0.5 0.6 0.25 0.4 -2 -3 2 з 0.2 -0.2 0.4 0.6 0.8 1 $\sigma_{\text{calc}} = \sqrt{2 \ln 2.k_B T / k}$ **Crystallographic** σ

Roy, Panigrahi, Bhattacharyya & Bhattacharyya, J. Phys. Chem. B (2008) B112, 3786 Sen, K.; Basu, S.; Bhattacharyya, D. Int. J. Quant. Chem. (2006) 106, 913 ✓Base pairs vibrate mostly along five (instead of six) directions

✓ Vibrations by breaking H-bonds are often prohibited

✓Vibrations are in the time scale of pico second

✓ Force constants can be used for CG simulations

no.	base pair	buckle	open angle	propeller	stagger	Shear
1	G:C W:W C	43.19; 82.5		31.00; 26.2	73.36; 3.18	
2	A:U W:W C	29.84; 38.0		38.74; 30.6	73.38; 3.0	100.8; 6.0
3	G:U W:W C	32.04; 43.7	60.09; 22.3	31.55; 32.5	73.57; 3.0	
4	A:G H:S T	20.49; 28.9	38.22; 119.5	38.22; 40.2	64.26; 2.5	
5	A:G s:s T	12.47; 12.7	24.81; 56.2		44.3; 0.97	
6	A:U H:W T	25.0; 24.4	48.24; 120.0	33.72; 23.2	67.39; 3.0	93.57; 5.5
7	A:A H:H T	20.06; 24.4	44.34; 139.9	29.45; 23.1	75.3; 2.8	60.79; 2.0
8	G:A W:W C	16.88; 21.4		25.27; 17.6	59.74; 1.9	74.96; 3.0
9	G:A S:W T	14.59;16.8	37.72; 133.0	26.37; 11.8	37.72; 0.78	101.49; 5.9
10	A:A W:W T	19.33; 28.6	59.6; 306.5	28.16; 15.8	42.07; 1.1	97.32; 5.6
12	A:U W:W T	19.71; 27.3	64.76; 335.7	35.65; 22.7	69.77; 2.9	107.3; 7.5
13	A:A H:W T	22.86; 35.1	48.04; 181.6	30.13; 22.9	48.04; 1.2	100.8; 6.6
14	A:U H:W C	24.63; 23.6	65.49; 221.5	36.61; 27.3	74.4; 3.2	
15	A:G w:s C	18.78; 27.0	30.87; 94.4	23.22; 16.0	41.5; 1.0	61.43; 2.1
18	G:G S:S T		36.28; 131.1	24.2; 19.7	36.28; 0.7	102.5; 5.5
21	A:C w:w C	26.98; 30.2		27.51; 29.6	39.01; 0.8	65.92; 2.38
22	AU s:w C	40.6; 71.6	110.2; 672.4	31.71; 24.7	73.17; 3.0	
24	G:G H:W T	13.94; 15.1	40.9; 157.2	33.67; 45.6	52.96; 1.8	70.2; 3.3
25	A:A w:w C	20.07; 29.9	34.97; 111.2	15.89; 10.9	44.08; 1.1	82.00; 3.7
26	U:U h:w T	45.75; 83.3	93.39; 488.1	30.83; 15.3	67.86; 2.9	75.89; 3.5
30	A:C W:W T	53.32; 127.2	68.3; 288.3	34.56; 24.6	53.32; 1.6	
31	C:UW:WT	37.90; 45.7	119.9; 592.4	22.2; 9.5	68.67; 2.8	95.81; 6.1
33	C:C w:h C	47.71; 99.3	57.61; 177.5	39.41; 41.4	65.53; 2.1	-

TABLE 5: Calculation of Dynamics of the Base Pairs along the Five Intra-Base-Pair Parameter Directions^a

Conclusions / Appeals

- Non canonical base pairs are important for RNA structure prediction
- Many of these are sufficiently strong
- Estimated Force-constants can be used for CG modeling

Their stacking interactions (combination of p-p interactions and hydrophobic effect) needs to be estimated.

Major contributors:

Malyasri Bhattacharyya Shayantani Mukherjee Jhuma Das Swati Panigrahi Ashim Roy

Sukanya Halder

Collaborators:

Prof. Manju Bansal

Prof. Abhijit Mitra

Prof. Jaydeb Chakrabarti

Prof. Jiri Sponer

Supporters:

CSIR and DBT (Govt. of India) CAMCS and CBAUNP (DAE, SINP) CDAC (Pune)