Bridging the timescale gap with transition path sampling

Peter Bolhuis van 't Hoff institute for Molecular Sciences University of Amsterdam, The Netherlands

Outline

- Part I
 - Rare events
 - The need for unbiased transition paths
 - Sampling the path ensemble
- Part 2
 - Analyzing the path ensemble
 - Calculation of rate constants
 - Transition state ensemble and reaction coordinate
- Part 3
 - Application to protein folding

Rare events

Interesting transitions in complex fluids

- solution chemistry
- phase transitions
- protein folding
- enzymatic reactions
- nucleation
- complex surface reaction
- membrane fusion

These reactions happen on a long time scale compared to the molecular timescale (eg solvent F motion)

dominated by collective, rare events: straightforward MD is unpractical

Transition state theory

F(λ)

В

λ

 λ^*

- Oldest attempt to describe rare events
 - Marcelin 1915
 - Eyring 1935
 - Wigner 1938

$$k_{AB}^{TST} \equiv \nu e^{-\beta \Delta F}$$
 kinetic prefactor

- Why can't we simply apply TST to all problems?
 - assumes that all trajectories that reach top with positive velocity will end in B
 - not always easy due to rough energy landscapes

Smooth vs rough energy

- # saddle points limited
- reaction coordinate known
- pathways can be enumerated
- TST (Arrhenius) applies

- saddle points uncountable
- reaction coordinates unknown
- entropy important, many pathways
- TST still applies?

How do we explore? Usually by free energy surface

Free energy for protein folding

Questions

- How do we get free energy? (thermodyamics)
- How do we compute rate constants? (kinetics)
- How do find transition states? (mechanism)
- What is the reaction coordinate of a reaction/process?
- How do we know we have the correct reaction coordinate?

How do we get free energy as a function of an order parameter λ ?

Free energy by umbrella sampling

The regular distribution of an order parameter λ is

$$P(\lambda) = \langle \delta[\lambda - \lambda(x)] \rangle = \frac{\int dx \rho(x) \delta[\lambda - \lambda(x)]}{\int dx \rho(x)}$$
$$\rho(x) = e^{-\beta \mathcal{H}(x)}/Z \qquad Z = \int e^{-\beta \mathcal{H}(x)} dx$$

multiplying both sides with $exp(-\beta V_{bs})$ gives

$$P_{bs}(\lambda) = \frac{\int dx \rho(x) \exp\left[-\beta V_{bs}(\lambda(x))\delta(\lambda - \lambda(x))\right]}{\int dx \rho(x) \exp\left[-\beta V_{bs}(\lambda(x))\right]}$$

where $V_{\mbox{\scriptsize bs}}$ is the bias potential

Free energy is given by

$$\beta F(\lambda) = -\ln P_{bs}(\lambda) - \beta V_{bs}(\lambda) + const$$

Man Sou 2000 se

Umbrella sampling

Biasing potential can take any functional form simplest one quadratic

$$V_{bs}(\lambda(x)) = c(\lambda(x) - \lambda_i)^2$$

Biasing potential forces system in to unlikely region

Breakdown of biased sampling

Objectives: free energy barrier, rates, transition states and mechanism. But if RC is not correct, all these might be wrong!

all trajectories that lead over barrier and connect stable states.

Path probability density

System consisting of N particles in 3D

$$x = \{r_1, r_2 \dots r_N; p_1, p_2 \dots p_N\} \in \mathbb{R}^{6N}$$

Discrete representation

$$\mathbf{x}(L) = \{x_0, x_1, \dots, x_L\}$$
$$\mathcal{P}[\mathbf{x}(L)] = \rho(x_o) \prod_{i=0}^{L-1} p(x_i \to x_{i+1})$$

Can be defined for deterministic and stochastic dynamics Newtonian (Hamiltonian) dynamics:

$$\begin{split} \dot{r} &= \frac{\partial \mathcal{H}(r,p)}{\partial p} & \phi_t(x_0) \\ \dot{p} &= -\frac{\partial \mathcal{H}(r,p)}{\partial r} & x_0 \\ \end{split}$$
Canonical initial conditions $\rho(x) &= \exp\{-\beta \mathcal{H}(x)\}/Q \qquad Q(\beta) = \int dx \exp\{-\beta \mathcal{H}(x)\}$

Transition path probability density

Path probability distribution

$$\mathcal{P}_{AB}[\mathbf{x}(L)] = h_A(x_0)\mathcal{P}[\mathbf{x}(L)]h_B(x_L)/Z_{AB}(L)$$
$$Z_{AB}(L) \equiv \int \mathcal{D}\mathbf{x}(L)h_A(x_0)\mathcal{P}[\mathbf{x};L]h_B(x_L)$$
$$\int \mathcal{D}\mathbf{x}(L) = \int \dots \int dx_0 dx_1 \dots dx_L$$

Importance sampling using Metropolis rule :

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A[x_0^{(n)}]h_B[x_L^{(n)}]\min\left[1, \frac{\mathcal{P}[\mathbf{x}^{(n)}]\mathcal{P}_{gen}[\mathbf{x}^{(n)} \to \mathbf{x}^{(o)}]}{\mathcal{P}[\mathbf{x}^{(o)}]\mathcal{P}_{gen}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}]}\right].$$

Define stables states A and B by indicator functions $h_{A}(\boldsymbol{x})$

<hR

$$h_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

MMSM 2009

Standard shooting algorithm

- take existing path
- choose random time slice t
- change momenta at t
- integrate forward and backward in time to create new path of length L (by MD)
- accept if A and B are connected, otherwise reject and retain old path
- calculate averages
 - repeat

$$P_{acc}[\mathbf{x}^{(o)} \rightarrow \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_T^{(n)})$$

Definition of stable states

Path sampling of nucleation

TIS in NPH ensemble, as density and temperature change

N=10000, P=5.68 H=1.41 (25 % undercooling)

order parameter is number of particles in solid cluster n (based on bond order q6)

Outline

- Part I
 - Rare events
 - The need for unbiased transition paths
 - Sampling the path ensemble
- Part 2
 - Analyzing the path ensemble
 - Calculation of rate constants
 - Transition state ensemble and reaction coordinate
- Part 3
 - Application to protein folding

Sampling paths is only the beginning

- Eugene Wigner: "It is nice to know that the computer understands the problem. But I would like to understand it too."
- Path ensemble needs to be further explored to obtain:
 - Rate constants
 - Free energy
 - Transition state ensembles
 - Mechanistic picture
 - Reaction coordinate
- Illustrative example: crystal nucleation

T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005)

Nucleation rate

Order parameter n = number of solid-like particles in crystal nucleus

$$k_{AB} = (1.0 \pm 0.8) \times 10^{-6}$$

Moroni, ten Wolde, Bolhuis, PRL, 2005

Free energy follows directly Moroni, van Erp, Bolhuis, PRE, 2005

Structural analysis?

Committor analysis

An attempt to find out the reaction coordinate

Conclusion crystallization

- Crystal nucleation very diffusive.
- Interplay between size and structure in critical nucleus.
 - combination of n and Q_6 better reaction coordinate
- Many crystal nucleation pathways
 - If critical cluster is small, it is more FCC structured
 - If critical cluster is larger, it is less FCC structured.
- Large BCC content: Ostwalds step rule.
- However, exact reaction coordinate still not completely known

Moroni, ten Wolde, Bolhuis PRL 2005

Outline

- Part I
 - Rare events
 - The need for unbiased transition paths
 - Sampling the path ensemble
- Part 2
 - Analyzing the path ensemble
 - Calculation of rate constants
 - Transition state ensemble and reaction coordinate
- Part 3
 - Application to protein folding

How do proteins find their native state?

- Guided by free energy landscape
 - how is this related to folding kinetics?
 - mechanisms important to understand misfolding (Alzheimer,CJD, etc)

Folding of Trp-cage

20-residue protein NLYIQ WLKDG GPSSG RPPPS 2-state folder, experimental rate 4 μs (Andersen et al, Nature 2002, Zhou et al. PNAS 2004, others)

System: IL2Y in 2800 waters OPLSAA, PME, Nose-Hoover, GROMACS

What is folding mechanism and kinetics in explicit water at 3000K?

Jarek Juraszek

REMD: m replica's running MD in the NVT ensemble at a different temperature $\beta_1, \beta_2..\beta_m$. Allow swapping between replicas using Metropolis Monte Carlo

$$P_{acc}(i \leftrightarrow j) = \min\left[1, e^{(\beta_i - \beta_j)(U_i - U_j)}\right]$$

A swap between two systems of different temperatures (β_i, β_i) is accepted if their energies are close.

Advantage: no order parameters needed

Flexible one way shooting

- Variable length shooting (PGB 2003, Juraszek & PGB 2006)
 - Choose new shooting point randomly from old path
 - Integrate in one direction until one stable states is reached

- higher acceptance, better convergence for diffusive transitions and long pathways
- requires some stochastic dynamics

MMSM 2009

N-L rates for Trp-cage

Likelihood maximization

- Each TPS shot can be seen as a committor shot. Based on this look for best model of reaction coordinate r
- The probability p(TP|r) to be on a transition path provided we are at a structure x with rc r is (for diffusive dynamics)

$$p(TP|r) = 2p_B(r)(1 - p_B(r))$$

• Assume committor function to be

$$p_B(x) = \frac{1}{2} + \frac{1}{2} \tanh[r(q(x))]$$

• parametrize r as linear combination of q

$$r(\mathbf{x}) = \sum_{i} \alpha_{i} q(\mathbf{x}) + \alpha_{0}$$

best r is maximizing likelihood

$$L(\alpha) = \prod_{i=1}^{N_B} p_B(r(q(\mathbf{x}_i^{(B)}))) \prod_{i=1}^{N_A} (1 - p_B(r(q(\mathbf{x}_i^{(B)}))))$$

Peters & Trout, JCP 125 054108(2006)

MMSM 2009

Summary Trp-cage

- TPS can sample all-atom folding pathways even for events with μ s time scales
- Shows switching between mechanisms
- Folding rate of Trp-cage compares to experiment, unfolding not
- Transition state ensemble (TSE) :
 - characterized by solvation
 - water expulsion is last step upon folding.
 - water dynamics probably no part of RC at TSE , water structure is.
 - does not always correspond with a FE landscape saddle
- Reaction coordinate involves secondary structure rmsd as well as global rmsd

Conclusion

- TPS, TIS
 - can be used for wide range of rare event processes
 - has no need for reaction coordinate, just stable state definitions
 - gives true, unbiased molecular dynamical reaction pathways
 - do not assume reaction tube
 - yields correct rate constant, no suffering from low transmission coefficient
 - RC from LM methods
- Disadvantages
 - final state has to be known
 - multiple channels can be difficult (RETIS alleviates this)
 - long lived metastable states have to be treated separately or by MSTPS
- When is path sampling worthwhile?
 - rare event in complex system (when straightforward MD is inefficient)
 - complex unknown RC
 - other methods fail to do proper sampling

MMSM 2009

Challenges for path sampling

- Multiple channels
 - multiple channels are not sampled properly with shooting

T.S. van Erp, PRL 98, 268301 (2007) PGB, JCP 129, 114108 (2008)

- Presence of intermediates
 - paths become very long because of intermediates

J. Rogal, PGB, JCP 129, 224107 (2008).

Acknowledgments

- Group members
 - Jocelyne Vreede
 - Marieke Schor
 - Lizhe Zhu
 - Weina Du
 - Kristen Marino
 - Rosanne Zeiler
- Ex-group members
 - Jarek Juraszek
 - Elske Leenders
 - Jutta Rogal
- Funding: FOM/NWO/EU

several PhD positions open

- Collaborators
 - Evert Jan Meijer
 - Bernd Ensing
 - Klaas Hellingwerf (Amsterdam)
 - Christoph Dellago (Vienna)

MMSM 2009