

Adaptive Resolution Molecular Dynamics: Coupling different levels of resolution

Luigi Delle Site Max Planck Institute for Polymer Research Mainz I on *"Multiscale Modeling and Simulations of Hard and S*

School on *"Multiscale Modeling and Simulations of Hard and Soft Materials"* JNCASR, Bangalore December 2009

Outline of Part II (a): The Method

Generalizing AdResS in AdRepS:

- Reformulation of part I (a) in terms of two generic force fields
- Explicit calculation of the latent Heat
- The concept of thermodynamic force
- Examples:
 - (i) Two spherical models interfaces adaptively
 - (ii) Tetrahedral/spherical adaptive simulation
 - (iii) Binary mixture, atomistic/coarse-grained adaptive

Outline of Part II (b): Applications

Recent (and in progress) developments of AdResS

- Switching resolution for bonded interactions
- Extension to basic quantum description of atoms:
 - (i) The Path Integral approach to map a quantum problem onto a classical one
 - (ii) Adaptive path integral/atomistic for spherical particles

(iii) Adaptive path integral/coarse-grained for tetrahedral molecules

• Coupling atomistic and continuum

Motivations: Why generalise AdResS?

- Target: Identify those DOFs which are strictly required (e.g. small quantum region in a classical "bath")
- For Example: update on the fly (based on quantum calculations) the force field in the region of interest G.Csanyi *et al.* Phys.Rev.Lett. 93, 175503 (2004).
- That is: Some force fields may treat differently the DOFs of interest
- Adaptive exchange of particles to properly capture local density fluctuations

Interfacing two resolutions: Conceptual Aspects

- (a) Consider two different force-fields, **f1** and **f2**, describing the same molecule in two (interfaced) regions of space
- (b) The exchange of particles must happen in an adaptive way under conditions of equilibrium: $\rho_{f1} = \rho_{f2}$, $p_{f1} = p_{f2}$, $T_{f1} = T_{f2}$

Problems

- (1) Coupling interactions between the two force-fields
- (2) The two representations have (intrinsic) different chemical potentials → How to control the thermodynamic equilibrium

Coupling Interactions

Smooth Transition via a Switching Function:

- (a) Smooth coupling of the potentials: Hamiltonian or Lagrangian approach: $U_{coupling} = w(X_{\alpha})w(X_{\beta})U_{f1} + [1 - w(X_{\alpha})w(X_{\beta})]U_{f2}$
- (b) Smooth coupling of forces: Direct dynamical approach: $\mathbf{F}_{\alpha\beta} = w(X_{\alpha})w(X_{\beta})\mathbf{F}_{\alpha\beta}^{f1} + [1 - w(X_{\alpha})w(X_{\beta})]\mathbf{F}_{\alpha\beta}^{f2}$

Force approach

 $\mathbf{F}_{\alpha\beta} = w(X_{\alpha})w(X_{\beta})\mathbf{F}_{\alpha\beta}^{f1} + [1 - w(X_{\alpha})w(X_{\beta})]\mathbf{F}_{\alpha\beta}^{f2}$

- Molecule from $f1 \to f2$: vanishing contributions of switching DOF of f1, increasing contribution of activating DOF of f2
- w(x) smoothly "freezes" the dynamical evolution and the contribution to the interactions of switching DOFs of f1
- w(x) smoothly "activates" the dynamics and the contributions to the interactions of **f2**
- and vice versa

by construction the **third Newton's Law** is preserved **(crucial in MD)**.

Thermodynamical equilibrium

- Adaptive force alone cannot assure thermodynamic equilibrium (potential energy cannot be written explicitly)
- Free energy is an extensive quantity and thus proportional to the number of DOF
- preferential tendency of one species to migrate into the other region that is: $\mu_{f1} \neq \mu_{f2}$
- adaptive system via $w(x) \to \text{local chemical potential}$ $\mu_w(x) \to \phi(x) = \mu_{f1} - \mu_w(x)$
- **unphysical**: artifact of the different representations.

Explicit Calculation of $\phi(x)$

 $\phi(x) = \mu_{f1} - \mu(w(x))$ (free energy per particle)

 (a): Excess chemical potential μ^{exc}(w_i):insertion particle method (IPM) for each i (numerical)

(b): kinetic (ideal gas) contributions μ^{kin}(w):formalism of fractional calculus (analytic)

Excess chemical potential $\mu^{exc}(w_i)$

• For each w_i apply IPM with:

$$\mathbf{F}_{\alpha,\beta} = w_i w_i \mathbf{F}_{atom} + (1 - w_i w_i) \mathbf{F}_{cg} \Longrightarrow \mu(w_i)$$

 µ^{exc}(w_i): excess chemical potential the system would have if
 all the molecules were interacting with some w_i
 "resolution" (representation)

Excess chemical potential: Interacting slabs

- Let us take a generic w_i, then one has to applied the IPM using as an interaction between the particles in the whole box the formula:
 F_{α,β} = w₀w_iF_{atom} + (1 w₀w_i)F_{cg}
- This leads to: μ_{0i} : the chemical potential the system would have if all the molecules were interacting with some $= w_0 w_i$ "resolution" (representation)
- Then this procedure is repeated again but now using: $\mathbf{F}_{\alpha,\beta} = w_1 w_i \mathbf{F}_{atom} + (1 - w_1 w_i) \mathbf{F}_{cg}$ this leads to: μ_{1i} , \rightarrow again with $w_2 w_i$, up to the generic $w_n w_i \rightarrow \mu_{ni}$.
- Then: $\mu_{w_i} = \sum_{n=0}^{N+1} \left[\frac{N_{w_i} + N_{w_n}}{N_{tot}} \mu_{ni} \right]$

 N_{w_i} is the average number of molecules in the region w_i in the "adaptive" simulation box and equivalently N_{w_n} , while N_{tot} is the total number of molecules in the system.

Kinetic Contribution: Fractional formalism

- For Statistical calculation of physical quantities:
 (a) a DOF q, fully activated → (∫ ...dq)
 (b) fully deactivated → no integration over q
- In Δ (0 < w(x) < 1): switching equivalent to continuously change the dimensionality of the phase space
- mathematical formalism: fractional calculus ⇒
 dV_w = d^wq Γ(w/2)/2π^{w/2}Γ(w) = |q|^{w-1}dx/Γ(w) = dq^w/wΓ(w)
 (for a fixed value of w, and generic DOF q)

μ^{kin} and Temperature

• kinetic contribution: μ^{kin} :

$$A_q = -lg[\int e^{-\beta q^2} d^w q] = \mu_q(w) \Longrightarrow \mu^{kin}(w) = \sum_q \mu^{kin}(w)$$

• Temperature in the adaptive system:

fractional analog of the Equipartition Theorem:

$$\langle K_w \rangle = \frac{d(\beta A_w)}{d\beta} = \frac{w}{2\beta} = \frac{wT}{2}$$

 $\langle K_w \rangle$: average kinetic energy per fractional quadratic DOF with the parametric weight w

Example I: Interfacing two spherical molecular models

- Two CG models of an atomistic model, interfaced adaptively
- They fit different portion of the atomistic equation of state (high and low density)

Chemical Potential

• No kinetic contribution; only excess chemical potential

Thermodynamic Force

How do we use this concepts: addition of a thermodynamic force:

Example II: Atomistic-CG adaptive

Calculations

(a) Excess Chemical Potential μ^{exc}

(b) Kinetic contribution (internal heat): $\mu^{kin} \propto \left(\frac{w}{2}\right) lg(T) + lg \frac{\Gamma\left(\frac{w}{2}\right)}{\Gamma(w)} \longrightarrow \phi(x)^{kin} \propto (1 - w(x)) lg(T)$

Thermodynamic Force

How do we use these concepts: Part I

• addition of a thermodynamic force:

 $F_{thm} = -\nabla_x^{exc} \mu(x)$ for the "interaction part"

• Thermodynamic force + Thermostat (for the kinetic part/internal heat)

Internal/latent Heat

- A posteriori check of the heat calculated analytically and "deterministic" control of the system
- internal (latent) heat:

 $Q_{latent} = (1 - w(x))Q_{atom}$ (extra heat to be given due to the deactivated part of a DOF)

 $Q_{fractional/explicit} = w(x)Q_{atom}$ (direct thermalization of the active part of a switching DOF)

$$\longrightarrow Q_{\Delta} = Q_{fractional/explicit} + Q_{latent} = Q_{atom}$$

Mixtures

- Two species, two resolutions each: \rightarrow 4 different chemical potentials
- how to preserve equilibrium?
- Thermodynamic force proportional to the concentration of the components

Chemical Potential of Mixtures

$$\mu_{tetra}^{mix} = \mu_{tetra}^0 + kT \log[c_{tetra}] + f_{int}^{mix}(c_{tetra}, c_{solute})$$
(1)

$$\mu_{solute}^{mix} = \mu_{solute}^{0} + kT \log[c_{solute}] + g_{int}^{mix}(c_{tetra}, c_{solute})$$
(2)

$$f_{int}^{mix}(c_{tetra}, c_{solute}) = \left[\frac{\partial f}{\partial c_{tetra}}\right]_{c_{tetra}^{0}, c_{solute}^{0}} \cdot c_{tetra}$$
(3)

$$g_{int}^{mix}(c_{tetra}, c_{solute}) = \left[\frac{\partial g}{\partial c_{solute}}\right]_{c_{tetra}^0, c_{solute}^0} \cdot c_{solute}$$
(4)

Determination of the unknown coefficients

- (a) Use a thermodynamic force without the terms of the mixing:
 Result: a non uniform density profile (or concentration profile) in the transition region.
- (b) The mixing terms are functions of the density (concentration)
 → take this density profile and tune the unknown coefficients of f and g until the complete thermodynamic force provides a flat profile
- (c) Test of consistency: the resulting thermodynamic force will lead to a stationary flat profile independently from the initial (density) condition

Results

S.Poblete, M.Praprotnik, K.Kremer and L.Delle Site, *"Coupling different levels of resolution in molecular simulations"*, http://lanl.arxiv.org/abs/0907.5497

Bonded Interactions

• Reparametrize the bonded interaction between monomers, fitting the bond distribution by using the Iterative Boltzmann Method.

• Perform AdResS simulations interpolating the bonded forces through the same scheme for non-bonded interactions: $\vec{F}_{bond}(\vec{r}_1, \vec{r}_2) = w(\vec{r}_1)w(\vec{r}_2)\vec{F}_{bond}^{ex} + (1 - w(\vec{r}_1)w(\vec{r}_2))\vec{F}_{bond}^{cg}$

Static properties of the solvent

Static properties of a 20mers polymer (I)

Static properties of a 20mers polymer (II)

What about Quantum/Classical adaptive? (I)

Quantum properties based on the electronic structure

- Problem: Interfacing not only two resolutions but also two different **KINDS** of physics
- Adaptive of QM/MM type introduces the process of creation and annihilation of electrons
- However, QM region can be used to update the classical force field on the fly
- Electronic properties (e.g. excited states): Very much questionable

Quantum properties based on the delocalization of atoms

Classical Representation

Path Integral (ring polymer) representation of classical atoms See: M.E.Tuckerman, NIC Series, Vol.10, pg 268 (2002).

Path Integral/Classical adaptive

• Path Integral formalism allows to map a quantum object onto a classical one

• Principles of the adaptive can be applied straightforward

Path Integral/Classical adaptive: Useful?

Better description of bonding (hydrogen)

Lennard-Jones Liquid

Lennard-Jones liquid for semirigid rings:

Morse Potential: Semirigid rings I

liquid for semirigid rings (k = 30): Global properties

Morse Potential: Semirigid rings II

liquid for semirigid rings (k = 30): Local properties

Morse Potential: Flexible rings I

liquid for flexible rings (k = 5): Global properties

Morse Potential: flexible rings II

liquid for flexible rings (k = 5): Local properties

Morse Potential: flexible rings III

liquid for flexible rings (k = 5): Full quantum properties

Tetrahedral Molecules

Tetrahedral Molecules:Results I

semiflexible case: k = 1000

Tetrahedral Molecules:Results II

Extension to Continuum: Concurrent triple-scale simulation

- is a combination of two dual-scale models: a particle-based Adaptive Resolution Scheme (AdResS), which couples the atomic and mesoscopic scales, and a hybrid continuum-molecular dynamics scheme (HybridMD)
- covers the **length-scales** ranging from the **micro** to **macro**-scale
- successfully sorts out the problem of **large molecule insertion** in the hybrid particle-continuum simulations of molecular liquids

Triple-scale model

R. Delgado Buscalioni, K. Kremer, MP, J. Chem. Phys. 128, 114110, 2008.

HybridMD: Coupling particle-based and continuum descriptions

- The hybrid particle-continuum scheme (HybridMD) connects the dynamics of a "molecular domain" with a continuum description of the surrounding fluid flow.
- The method is based on **flux-exchange**.
- The system is divided in (at least) two domains, described via classical molecular dynamics (MD) and continuum fluid dynamics (CFD), i.e., solving the Navier-Stokes equations.
- The MD and CFD domains share one unique "hybrid interface", *H*: Flux balance implies the **conservation of mass and momentum** across *H*.

G. De Fabritiis, R. Delgado Buscalioni, P. Coveney, Phys. Rev. Lett **97**, 134501, 2006.

Molecular density profile

Radial distribution functions

 RDF_{cm}s of the liquid in the atomistic and transition domains (ex + hyb) and in the total molecular region (ex + hyb + cg) of the triple-scale model together with the reference RDF_{cm} of the all-atom system (ex(PBC))

Triple-scale liquid water

URL: http://www.mpip-mainz.mpg.de/~praprot/

Adaptive Resolution in MD: Other work

- B.Ensing, S.O. Nielsen, P.B. Moore, M.L. Klein, and M.Parrinello, J. Chem. Theory Comput., 2007, 3 (3), pp 11001105 see also:R.E. Bulo, B.Ensing, J.Sikkema and L.Visscher, J. Chem. Theory Comput., 2009, 5 (9), pp 22122221
- A.Heyden and D.G. Truhlar, J. Chem. Theory Comput., 2008, 4 (2), pp 217221
- M.G.Guthrie, A.D. Daigle and M.R. Salazar, J. Chem. Theory Comput.DOI: 10.1021/ct900449q
- S.Izvekov and G.A. Voth, J. Chem. Theory Comput., DOI: 10.1021/ct900414p