
Adaptive Resolution Molecular

Dynamics

Luigi Delle Site

Max Planck Institute for Polymer Research

Mainz

School on “Multiscale Modeling and Simulations of Hard and Soft

Materials” JNCASR, Bangalore December 2009



Outline of Part I (a):

The Method

• Concept of adaptive: Changing the number of degrees of freedom (DOF) on

the fly

• Test system: Liquid of tetrahedral molecules

• The coupling formula on forces and the transition region

• Limitations regarding the control of the thermodynamic equilibrium

• Concept of switching as continuous change of phase space dimensionality and

latent heat for equilibrium

• Why forces and not potentials

• Is the method working? Numerical tests



Outline of Part I (b):

Applications

• Solvation of polymer in a liquid of tetrahedral molecules:

(i) The solvent properties, adaptive v.s. full atomistic

(ii) The polymer properties, adaptive v.s. full atomistic

• Liquid water:

(i)How to treat long range interactions

(ii)Properties of the liquid, adaptive v.s. full atomistic

(iii)Diffusion and position dependent thermostat
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Motivations

• many problems in condensed matter are inherently multiscale

• main aspect: scales’ interplay =⇒ simultaneous treatment of all

the relevant scales

• optimal computational approach: treat only those degrees of

freedom strictly required

• different regions may require different resolution



Examples



MD Simulation

All-Atom MD simulation:

• Atomistic (chemical) details

• (often) incapable to bridge the gap between a wide range of length

and time scales

Coarse-Grained MD simulation:

• reduced number of degrees of freedom =⇒ longer length and time

scales

• specific chemical details are lost

Solution:

• Hybrid Adaptive MD Schemes



Method and model: General Idea

Adaptive Resolution MD Scheme

• on-the-fly interchange between atomistic and coarse-grained

description Hybrid Model

with: ρex = ρcg , pex = pcg , Tex = Tcg

M.Praprotnik, L.Delle Site and K.Kremer; Annu.Rev.Phys.Chem. 59, 545-571

(2008)



Scale Coupling

Two-stage procedure:

(a) Effective (coarse-grained) pair potential U cm from the reference

all-atom system.

(b) Fαβ = w(Xα)w(Xβ)Fatom
αβ + [1 − w(Xα)w(Xβ)]Fcm

αβ
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How to define the switching function I

X

F(x) BA ∆

−d +d

• What happens in ∆ ?

• The number of DOF is n = n(x) with ; nA = constA; nB = constB ; and

n∆ = n(x)

• The system is in equilibrium which implies:

limx→d−

∂FA(x)
∂x

= limx→d+
∂FB(x)

∂x
= 0

• If not true → a free energy density gradient along x within the same level of

resolution.



How to define the switching function II

• limx→d−

∂FA(x)
∂x

= limx→d+
∂FB(x)

∂x
= 0 can be shown to be equivalent to

limx→d−

∂nA(x)
∂x

= limx→d+
∂nB(x)

∂x
= 0

• w(x) is such that w(x) = 1; ∀x ∈ A and w(x) = 0; ∀x ∈ B, with

limx→d+
∂w(x)

∂x
= limx→d−

∂w(x)
∂x

= 0.

• In accordance with the equation above, we require that the weighting function

w(x) is continuous up to the first derivative and that goes monotonically from

the value one to zero in the region ∆.



Spherical Geometry

Spherical Symmetry:

Fαβ = w(Rα)w(Rβ)Fatom
αβ + [1 − w(Rα)w(Rβ)]Fcm

αβ

C.Junghans, M.Praprotnik and L.Delle Site, in Multiscale Simulation

Methods in Molecular Sciences, NIC Series Volume 42 (2009)



Change of Resolution

• Molecule from Atom → cg: vanishing contributions of switching

DOFs

• w(x) smoothly ”freezes” the dynamical evolution of such DOFs

and their contribution to the interactions

• (vice versa) w(x) smoothly “reactivates” their dynamics and their

contributions to the interactions

by construction the third Newton’s Law is preserved (crucial in

MD).



Technical aspects of the test

molecule

A tetrahedral molecule has a defined spatial orientation and 3N = 12

DOFs:

· 3 translational

· 3 rotational

· 3N − 6 = 6 vibrational



Molecular Interactions in the Test

System

Shifted 12-6 Lennard-Jones potential:

Uatom
LJ (riαjβ) =

8

<
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˜
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8

<

:

− 1
2
kR2

0 ln
ˆ

1 −
` riαjα

R0

´2˜

; riαjα ≤ R0

∞; riαjα > R0



Effective pair potential

• In the limit of ρ → 0:

Ueff = F (r) = −KBT ln g(r) (1)

• For ρ > 0 we use the above relation as the initial approximation of an

iteration scheme:

Ueff
i+1 (r) = Ueff

i (r) + kBT ln
gi(r)

gtarget(r)
(2)

Pressure correction:

∆Vlin = A(1 −
r

rcut
). (3)

D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem., 24, 1624 (2003).



effective pair potentials
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Equation of state
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Control of the thermodynamical

equilibrium (I)

• Adaptive force alone cannot assure thermodynamic equilibrium

• it is not conservative =⇒ potential energy cannot be written

explicitly

• BUT: statistical mechanics principles of varying resolution =⇒

tools for thermodynamical equilibrium



Control of the thermodynamical

equilibrium (II)

• Free energy is an extensive quantity and thus proportional to the

number of DOF

• preferential tendency of one species to migrate into the other

region

• or equivalently µatom 6= µcg

• unphysical: artifact of the different representations.



Change of resolution and corresponding

latent heat

• The change of resolution: change of the number of

active/thermalized DOF =⇒ latent heat φ

• µatom = µcg + φ

• Explicit form of φ unknown

• numerical: couple the system to a position dependent thermostat

• How to define the temperature in ∆



Temperature in the region ∆

• Equipartition Theorem: TA =
2〈KA〉

nA
; TB =

2〈KB〉
nB

• in ∆: T∆ =
2〈K∆〉

n∆
?; What is 〈K∆〉?

• 2-dimensional example:

A B∆

θ θ

R RR

• KA = 1
2
[Ṙ2 + p2

Θ] = 1
2
[Ṙx

2
+ Ṙy

2
+ Θ̇2]; KB = 1

2
Ṙ2 = 1

2
[Ṙx

2
+ Ṙy

2
]

• Rx, Ry, and Θ, contribute each with T/2 to the kinetic energy

• Hence, TA = 2<KA>
3 , TB = 2<KB>

2



Adaptive resolution via a continuous

change of the phase space dimensionality

• Statistical calculation of physical quantities:

(a) a DOF fully counts in the atomistic region (
∫

...dθ)

(b) it does not count at all in the coarse-grained region (no

integration over θ)

• In ∆ (0 < w(x) < 1): switching equivalent to continuously

change the dimensionality of the phase space

• mathematical formalism: fractional calculus =⇒

dVw = dwq Γ(w/2)/2πw/2Γ(w) = |q|w−1dq/Γ(w) = dqw/wΓ(w)

(for a fixed value of w, and generic DOF q)



Temperature in the region ∆: The

extension of the Equipartition Theorem to

non integer DOF

• partition function for the fractional quadratic DOF Θ:

exp(−βFw) = C
R

exp(−βp2
Θ/2) dVw =

2C
R ∞
0 exp(−βp2

Θ/2) |pΘ|w−1 dpΘ

Γ(w)
=

2w/2CΓ(w/2)
Γ(w)

β−w/2 ∼ β−w/2

• fractional analog of the Equipartition Theorem:

〈Kw〉 =
d(βFw)

dβ
= w

2β
= wT

2

〈Kw〉: average kinetic energy per fractional quadratic DOF with the

parametric weight w

• In equilibrium TA = TB = T∆ = T and thus: n∆ = 2 + w (proof

of consistency)



Fractional DOF: A more general view

• A generic statistical average of a quantity A in the canonical ensemble:

< A >=

R ∞
0 e−βH(q)A(q)dq

R ∞
0 e−βH(q)dq

. (4)

• with a fractional degrees α:

< A >α=

R ∞
0 e−βH(q)qα−1A(q)dq

R ∞
0 e−βH(q)qα−1dq

. (5)

• If H(q) = |q|m; m > 0 and A(q) = Cn|q|n; n > 0 then:

< A >α=
Cn

R ∞
0 e−β|q|mqα+n−1dq

R ∞
0 e−β|q|mqα−1dq

. (6)

< A >α=
Γ( α+n

m
)

Γ( α
m

)
β−n/m. (7)

• if m = n → < H(q) >α:

< H(q) >α= α
n

β−1 that is < H(q) >α= α < H(q) >



The average molecular bond: An example of

adaptive representation

Consider the case of the average length of a diatomic molecule

• < |l| >α=
R

∞

o
lαe−βl2dl

R

∞

o
e−βl2dl

• < |l| >α=
Γ( 1

2 )Γ(α+1
2 )

Γ(α
2 )

< |l| >

l α lα

l

α

lα α0 1

0 1/3 2/3 1



Theoretical Basis: Conclusions

• (1) Changing Resolution → Latent Heat → position dependent

Thermostat

• (2) The temperature in the switching region, T∆, can be obtained

by extending the equipartition theorem to non integer

dimensions

M.Praprotnik, K.Kremer and L.Delle Site, Phys.Rev.E, 75, 017701 (2007);

M.Praprotnik, K.Kremer and L.Delle Site, J.Phys.A:Math.Th.40, F281 (2007).

• Still to address : Why forces and not potentials



Coupling the atomistic and mesoscopic

scales via a POTENTIAL approach

Why the forces and not the Potentials?

• Coupling potentials:

Uαβ = w(xα)w(xβ)Uatom
αβ + [1 − w(xα)w(xβ)]Ucg

αβ

• Consequence: Fdrift = Uatom
∂w
∂x

+ Ucg
∂w
∂x

(a) if considered physical −→ violation of Third Newton’s law

M.Praprotnik, K.Kremer and L.Delle Site, J.Phys.A:Math.Th.40, F281 (2007)

(b) if removed −→ mathematical inconsistency

L.Delle Site, Phys.Rev.E, 76, 047701 (2007)



Violation of the Third Newton’s law I

• if: Vαβ = w(xα)w(xβ)V atom
αβ + [1 − w(xα)w(xβ)]V cg

αβ

• Then: Fαβ = −
∂Vαβ

∂rα

• −
∂Vαβ

∂rα
= w(xα)w(xβ)Fatom

αβ + [1 − w(xα)w(xβ)]Fcg
αβ

+
(

∂w(xα)
∂xα

w(xβ)
[

V cg
αβ − V atom

αβ

]

, 0, 0
)

• The force acting on the molecule β is: Fβα = −
∂Vαβ

∂rβ

• −
∂Vαβ

∂rβ
= w(xα)w(xβ)Fatom

βα + [1 − w(xα)w(xβ)]Fcg
βα

+
(

∂w(xβ)
∂xβ

w(xα)
[

V cg
αβ − V atom

αβ

]

, 0, 0
)

• where ∂
∂r

= ( ∂
∂x

, ∂
∂y

, ∂
∂z

), F
atom
αβ = −

∂V atom
αβ

∂rα
, and F

cg
αβ = −

∂V
cg

αβ

∂rα
.



Violation of the Third Newton’s law II

• Using F
atom
βα = −F

atom
αβ and F

cg
βα = −F

cg
αβ we obtain:

• −Fβα = w(xα)w(xβ)Fatom
αβ + [1 − w(xα)w(xβ)]Fcg

αβ

−
(

∂w(xβ)
∂xβ

w(xα)
[

V cg
αβ − V atom

αβ

]

, 0, 0
)

• In order that the force satisfies Newton’s Third Law:
∂w(xα)

∂xα
w(xβ) = −

∂w(xβ)
∂xβ

w(rα)

• implying that: 1
w(xα)

∂w(xα)
∂xα

= − 1
w(xβ)

∂w(xβ)
∂xβ

• whose solution is w(xα) and w(xβ) are constants!



The Mathematical Problem I

• A generalization to the potentials using two generic weighting functions f(x)

and g(x) writes:Ucoupling = f(Xα, Xβ)Ucg + g(Xα, Xβ)Uatom

• Fdrift = 0 →

Ucg
∂f(Xα, Xβ)

∂Xα
+ Uatom

∂g(Xα, Xβ)

∂Xα
= 0

Ucg
∂f(Xα, Xβ)

∂Xβ
+ Uatom

∂g(Xα, Xβ)

∂Xβ
= 0. (8)

equations of first order, each 2 boundary conditions (system overdetermined)

• If generalized: Ucoupling = f(Xα, Xβ)Ucg + g(Xα, Xβ)Uatom + Φ: →

overdetermination shifted from f and g to Φ.



The Mathematical Problem II

Above all:

•
R

[Ucg
∂f(x)

x
+ Uatom

∂g(x)
x

Uatom]dx + Φ0 = Φ(x)

• cannot be a solution, since one must have either

Φ(x0) = Φ0 = 0 (atomistic region) or

Φ(x1) = Φ0 = Uatom − Ucg (coarse-grained region)

but not both!

• Overdetermination of Φ → Conserved Energy does not correspond to

dynamical equations



Does the method work?

Comparison of the results of AdResS with those of full atomistic

simulations:

• Global and local structures are reproduced

• There is no net flux across the transition region

• The diffusion occurs in a correct way

• Method successfully reproduces statistical properties of the model

liquid.

see in particular:

medium dense liquid: M.Praprotnik, L.Delle Site and K.Kremer,

J.Chem.Phys.123,224106 (2005).

dense liquid: M.Praprotnik, L.Delle Site and K.Kremer, Phys.Rev.E, 73, 066701

(2006).



Results for a medium dense liquid
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Number of DOFs
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Diffusion across the transition

regime
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Further application: Solvating a

Polymer

A generic Polymer solvated by a Tetrahedron Liquid



Static properties of the solvent
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Static properties of the polymer
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Liquid Water

The simulation speed-up is ∼ 17 − 20 compared to atomistic simulations

M.Praprotnik, S. Matysiak, L. Delle Site, K. Kremer, C. Clementi, J. Phys.:

Condens.Matter, 19, 292201, 2007.



Reaction field method for

Electrostatics

The electrostatic forces interactions are described using the Reaction

field (RF) method:

F
atom
Ciαjβ

(riαjβ
) =

eiαejβ

4πǫ0

[

1

r3
iαjβ

−
1

R3
c

2(ǫRF − 1)

1 + 2ǫRF

]

riαjβ
.

The RF is suitable to be used with AdResS because:

• it is pairwise

• like AdResS it must also be applied with a thermostat



Results for water

S.Matysiak, C.Clementi, M.Praprotnik, K.Kremer and L.Delle Site;

J.Chem.Phys.128, 024503 (2008).



Interface effect of the cg water

transition transitionall-atom

The transition regime neutralizes the interface effect of the cg water

=⇒

the structure of water in the explicit regime is the same as in the bulk.



Diffusion across the transition regime

coarse-grain transition all-atom



Position dependent Langevin

thermostat

The Langevin equation with a position dependent coefficient Γ(x) can be written

as:

midvi/dt = Fi − miΓ(x)vi + Ri(x, t) (9)

where Ri(x, t) is:

〈Ri(x, t)〉 = 0, (10)

〈Ri(x, t1)Rj(x, t2)〉 = 2Γ(x)mikTδ(t1 − t2)δij (11)

Γ(x) =

8

<

:

Γcg if x ≤ 0.6

αx + β if 0.6 < x ≤ 1.0
(12)

This choice provides a simple interpolation between the two limit values of

Γ(0.6) = Γ(0) = Γcoarse−grained and Γ(1) = Γall−atom



Diffusion across the simulation box I



Diffusion coefficient across the simulation box

II.

(v) Position dependent thermostat (w) Regular thermostat



Next: Hydrophobic solvation via adaptive

simulation

What is the range of influence of the hydrogen bonding network of the

bulk in the formation of the hydration structure around the solute?


